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ABSTRACT
Matsubara dynamics has recently emerged as the most general form of a quantum-Boltzmann-conserving classical dynamics theory
for the calculation of single-time correlation functions. Here, we present a generalization of Matsubara dynamics for the evaluation of
multitime correlation functions. We first show that the Matsubara approximation can also be used to approximate the two-time sym-
metrized double Kubo transformed correlation function. By a straightforward extension of these ideas to the multitime realm, a multitime
Matsubara dynamics approximation can be obtained for the multitime fully symmetrized Kubo transformed correlation function. Although
not a practical method, due to the presence of a phase-term, this multitime formulation of Matsubara dynamics represents a benchmark
theory for future development of Boltzmann preserving semiclassical approximations to general higher order multitime correlation func-
tions. It also reveals a connection between imaginary time-ordering in the path integral and the classical dynamics of multitime correlation
functions.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5110427., s

I. INTRODUCTION

It is undebatable that quantum thermal time correlation func-
tions (TCFs) play a central role in the description of the dynami-
cal properties of chemical systems.1–3 This has in large been driven
by linear response theory,4 which connects linear absorption spec-
troscopy, diffusion coefficients, and reaction rate constants with
single-time correlation functions. Although sometimes a complete
classical description of these properties suffices, there are plenty of
examples where nuclear quantum effects (NQE), such as zero-point
energy fluctuations and tunneling, play crucial roles and modu-
late the dynamical behavior of the system.5–15 However, despite the
great advances in recent years of algorithms for the exact quan-
tum mechanical propagation of small systems comprising few par-
ticles,16–18 the exact full quantum mechanical calculations of TCFs
for condensed phase systems involving many degrees of freedom
are still impractical. Therefore, there is great interest in the devel-
opment of reliable approximate methods based on classical molec-
ular dynamics that retain the quantum nature of the Boltzmann
distribution.

Over the past three decades, significant progress has been made
in this direction, with the development of approximate classical-like
methodologies that to some extent include quantum statistics,19–27

providing efficient and robust ways of including NQE into dynam-
ical properties such as vibrational spectra, diffusion coefficients,
and reaction rate constants for a variety of condensed phase sys-
tems.12,25,28–37 Recently, a new approximation known as Matsubara
dynamics38 was derived and demonstrated to give the most consis-
tent way of obtaining classical dynamics from quantum dynamics
while preserving the quantum Boltzmann statistics. Although not
a practical methodology, due to the presence of a phase factor in
the quantum distribution that gives rise to a sign problem, Mat-
subara dynamics represents a benchmark theory to develop and to
rationalize approximate methods. Upon performing additional
approximations39,40 to Matsubara dynamics, it is possible to
obtain previous heuristic methodologies such as centroid molec-
ular dynamics (CMD),19,20,22 ring-polymer molecular dynamics
(RPMD),23,24 and the planetary model27,34 (also known as the
Feynman-Kleinert quasiclassical Wigner method), but its true
potential comes from its ability to yield new approximations.41 The
theory of Matsubara dynamics for the evaluation of single-time cor-
relation functions provides a step toward the correct theoretical
description of the combination of classical dynamics and quantum
Boltzmann statistics.

However, not all experimental observables can be related to
single-time correlation functions. Multitime correlation functions
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involving more than one time variable are of great importance
in chemical physics since they are implicated in the description
of nonlinear spectroscopy42,43 and nonlinear chemical kinetics.44

Recently, we have presented a basic theory45 that relates two-
time double Kubo transformed correlation46 functions to the sec-
ond order response function as a practical approach to include
NQE into the simulation of 2D Raman47 and 2D Terahertz-
Raman spectroscopy.48 Obtaining quantum-Boltzmann-conserving
classical approximations for the evaluation of multitime cor-
relation functions is of great interest. Here, we present the
extension of Matsubara dynamics to the multitime realm, pro-
viding a general quantum Boltzmann preserving classical approx-
imation to multitime symmetrized Kubo transformed correlation
functions.

This paper should be viewed as an extension of the work
of Hele et al.38 and is organized as follows: We first review the
derivation of the single-time Matsubara dynamics approximation38

in Sec. II using a slightly different, albeit completely equiva-
lent, notation that makes use of the Janus operator49 along with
the Wigner-Moyal series. In Sec. III, we present the two-time
Matsubara dynamics approximation. Section IV presents the gener-
alization of the Matsubara approximation to any arbitrary amount of
time variables. Final remarks and future applications are discussed in
Sec. V.

II. SINGLE-TIME MATSUBARA DYNAMICS
To facilitate the derivation of the multitime Matsubara dynam-

ics approximation, we first review the formulation of single-time
Matsubara dynamics.38 This allows us to present the notation that
will be used in the paper and to focus on the critical steps of the
derivation that will be important for the multitime generalization.
This section closely follows the derivation presented in Ref. 38 and
the references therein. The reader is referred to these for further
details.

The starting point for deriving Matsubara dynamics is to obtain
a path integral discretization of the Kubo transformed single-time
correlation function defined by4

KAB(t) =
1
Zβ ∫

β

0
dλ Tr[e−(β−λ)ĤÂe−λĤeiĤt/h̵B̂e−iĤt/h̵

], (1)

where β = 1/kBT is the inverse temperature and Z is the partition
function defined as

Z = Tr[e−βĤ]. (2)

For clarity of presentation, we consider a one-dimensional system
with a Hamiltonian of the form Ĥ = p̂2

/2m + V(x̂), with the exten-
sion to multidimensional systems being straightforward.38 In addi-
tion, to further simplify the derivation, Â = A(x̂) and B̂ = B(x̂)
are assumed to be position-dependent operators, although similar
expressions can be obtained for operators that only depend on the
momentum operator.

Discretizing the integral over lambda into N terms, and insert-
ing N − 1 identities of the form

1̂ = eiĤt/h̵e−iĤt/h̵, (3)

Eq. (1) can be recast as50

K[N]AB (t) =
1

ZNN

N

∑
k=1

Tr
⎡
⎢
⎢
⎢
⎢
⎣

(e−βN ĤeiĤt/h̵e−iĤt/h̵
)

N−k−1

e−βN ĤÂeiĤt/h̵e−iĤt/h̵

×(e−βN ĤeiĤt/h̵e−iĤt/h̵
)
k−1

e−βN ĤeiĤt/h̵B̂e−iĤt/h̵
], (4)

where

ZN = Tr
⎡
⎢
⎢
⎢
⎢
⎣

(e−βN Ĥ)
N⎤
⎥
⎥
⎥
⎥
⎦

(5)

and βN = β/N. Note that the symmetric structure of Eq. (4) allows for
the interpretation of the trace in terms of a repeating block structure
of the form Ĵ(1) ≡ e−βN ĤeiĤt/h̵e−iĤt/h̵, with the operator Â evaluated
inside a particular block depending on the value of the sum index k
and the operator B̂ evaluated at the last block.

A path integral representation of Eq. (4) can be obtained by
inserting identities inside the building blocks Ĵ(1) in the form (see
the schematic representation in Fig. 1)

Ĵ(1) = ∫ dq′l ∫ dq′′l ∫ dzl e
−βN Ĥ ∣q′l⟩⟨q

′
l ∣e

iĤt/h̵
∣zl⟩

× ⟨zl∣e
−iĤt/h̵

∣q′′l ⟩⟨q
′′
l ∣ (6)

to yield (see the supplementary material)

K[N]AB (t) =
1
ZN
∫ dq′ ∫ dq′′ ∫ dzA(q′)B(zN)

N

∏
l=1
⟨q′′l−1∣e

−βN Ĥ ∣q′l ⟩

× ⟨q′l ∣e
iĤt/h̵
∣zl⟩⟨zl∣e

−iĤt/h̵
∣q′′l ⟩, (7)

FIG. 1. (a) Schematic diagram of the path integral discretization of the block struc-
ture Ĵ(1) [Eq. (6)] used to obtain the generalized Kubo transform in Eq. (9). Blue
wavy lines represent the t time propagation. Black lines show the βN imaginary
time propagation. (b) Schematic diagram of the structure of the Kubo transform
time correlation function [Eq. (9)] for N = 4.
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where

O(x) =
1
N

N

∑
k=1

O(xk) (8)

and ∫dx = ∫dx1 ∫dx2 ⋯ ∫dxN (with x0 = xN). Note, however, that due
to the cyclic structure of the path integral representation, the oper-
ator B̂ can be averaged over all z coordinates to give an even more
symmetric form of the Kubo transform,

K[N]AB (t) =
1
ZN
∫ dq′ ∫ dq′′ ∫ dzA(q′)B(z)

N

∏
l=1
⟨q′′l−1∣e

−βN Ĥ ∣q′l⟩

× ⟨q′l ∣e
iĤt/h̵
∣zl⟩⟨zl∣e

−iĤt/h̵
∣q′′l ⟩. (9)

This expression, whose schematic representation is presented in
Fig. 1 for N = 4, represents an exact path integral representa-
tion of Eq. (1) in the limit N → ∞ and emphasizes the symmetry
with respect to cyclic permutations of the coordinates of the path
integral.38,51

In order to make the Matsubara approximation, it is necessary
to express Eq. (9) in terms of a phase space average.52 To this end,
making a change of variables on the Cartesian q′ and q′′ variables to
sum/difference coordinates,

ql =
q′l + q′′l

2
, (10)

Δl = q
′
l − q

′′
l (11)

for each value l = 1, . . ., N, allows us to re-express Eq. (9) as

K[N]AB (t) = ∫ dq∫ dΔ∫ dzA(q + Δ/2)B(z)ρ(q,Δ;β)G(q,Δ, z; t),

(12)

where we have defined

ρ(q,Δ;β) =
1
ZN

N

∏
l=1
⟨ql−1 −

Δl−1

2
∣e−βN Ĥ∣ql +

Δl

2
⟩ (13)

and

G(q,Δ, z; t) =
N

∏
l=1
⟨ql +

Δl

2
∣eiĤt/h̵

∣zl⟩⟨zl∣e
−iĤt/h̵

∣ql −
Δl

2
⟩. (14)

Equation (12) is known in the literature as the generalized Kubo
transformed correlation function.38,53 We anticipate that obtaining
an expression of this form for multitime correlation functions would
be a key step in the multitime generalization of Matsubara dynamics
(see Secs. III and IV).

Equation (12) can be recast as a phase space average by insert-
ing identities of the form

1 = ∫ dΔ′l δ(Δl + Δ′l) = (2πh̵)
−1
∫ dΔ′l ∫ dpl e

ipl(Δl+Δ′l )/h̵ (15)

for each l = 1, . . ., N to obtain

K[N]AB (t) =
1

(2πh̵)N ∫
dq∫ dp[e−βĤÂ]

N
(q,p)[B̂(t)]

N
(q,p),

(16)

where

[e−βĤÂ]
N
(q,p) =

1
ZN
∫ dΔA(q + Δ/2)

N

∏
l=1

× ⟨ql−1 −
Δl−1

2
∣e−βN Ĥ∣ql +

Δl

2
⟩eiΔlpl/h̵ (17)

and

[B̂(t)]
N
(q,p) = ∫ dΔ∫ dzB(z)

N

∏
l=1
⟨ql −

Δl

2
∣eiĤt/h̵

∣zl⟩

× ⟨zl∣e
−iĤt/h̵

∣ql +
Δl

2
⟩eiΔlpl/h̵. (18)

The generalized Wigner transform52 in Eq. (17) contains a complex
structure that couples different blocks together, whereas the general-
ized Wigner transform in Eq. (18) is just a sum of one-dimensional
Wigner transformed products of each block. Note that since B̂ is just
a function of x̂ consequently at time t = 0,

[B̂(t = 0)]
N
(q,p) = B(q). (19)

To complete the phase space representation of the Kubo trans-
form, it is useful to recast Eq. (16) in terms of the quantum
Liouvillian instead of the Hamiltonian. By noting that51,54

d
dt
[B̂(t)]

N
(q,p) = L̂N[B̂(t)]N(q,p), (20)

one can formally write the exact correlation function in Eq. (16) as

K[N]AB (t) =
1

(2πh̵)N ∫
dq∫ dp[e−βĤÂ]

N
(q,p)eL̂N tB(q). (21)

In Eqs. (20) and (21), L̂N represents the Moyal expansion of the
quantum Liouvillian of the N blocks as defined by54–56

L̂N =
2
h̵

N

∑
l=1
[
p2
l

2m
+ V(ql)] sin(

h̵
2
Λ̂l), (22)

where

Λ̂l =

←Ð
∂

∂pl

Ð→
∂

∂ql
−

←Ð
∂

∂ql

Ð→
∂

∂pl
(23)

is known as the Janus operator49 and the arrows indicate the direc-
tion in which the differential operators are applied, i.e., to the left or
right. In what follows, it will be convenient to rewrite the Liouvillian
more compactly as

L̂N =
2
h̵
[
p2

2m
+ UN(q)] sin(

h̵
2
Λ̂N), (24)

where

UN(q) =
N

∑
l=1

V(ql), (25)

Λ̂N =
←Ð
∇ p ⋅
Ð→
∇ q −

←Ð
∇ q ⋅
Ð→
∇ p, (26)
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and

∇
T
q = (

∂

∂q1
,
∂

∂q2
, . . . ,

∂

∂qN
). (27)

The advantage of having the Kubo transformed correlation
function expressed as a phase space average in ring polymer coordi-
nates, namely, Eq. (21), is that now it is possible to make a coordinate
transformation to the normal modes describing the centroid and the
fluctuations of the free ring polymer.57,58 The normal transformation
is defined by the matrix T with elements,

Tlk =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
1
N k = 0,

√
2
N sin(2πlk/N) 0 < k ≤ N̄,

√
2
N cos(2πlk/N) −N̄ ≤ k < 0,

(28)

where N̄ = (N − 1)/2 is chosen to be odd for convenience (even N
leads to the same result38). The normal mode coordinates (denoted
as Q and P) are defined by the relations

q =
√
NTQ (29)

and

p =
√
NTP, (30)

where we have included an extra
√
N factor to ensure that the Q

converge in the limit N →∞, giving the centroid for Q0. The square
roots of the eigenvalues of the matrix defined in Eq. (28) are given
by

ω̃k =
2 sin(kπ/N)

βN h̵
. (31)

In these new coordinates, Eq. (21) takes the form

K[N]AB (t) =
1

(2πh̵)N ∫
dQ∫ dP[e−βĤÂ]

N
(Q,P)eL̂N tB(Q), (32)

where ∫ dX = ∫ dX−N̄ ∫ dX−N̄+1⋯∫ dXN̄−1 ∫ dXN̄ and where the
Liouvillian in these new coordinates is given by

L̂N =
2N
h̵
[
P2

2m
+
UN(Q)

N
] sin(

h̵
2N

Λ̂N), (33)

with the Janus operator now defined as

Λ̂N =
←Ð
∇P ⋅

Ð→
∇Q −

←Ð
∇Q ⋅

Ð→
∇P. (34)

Following the notation of Hele et al.,38 in Eqs. (32)–(34) and for what
follows it is to be understood that all instances of Q (P) inside a func-
tion should be interpreted as

√
NTQ (

√
NTP), i.e., the coordinate

transformations defined in Eqs. (29) and (30).
The M lowest frequencies of Eq. (31) in the limit as N → ∞

are known in thermal field theories as the Matsubara modes of
distinguishable particles.59 An explicit form for these frequencies
exists,

lim
N→∞

ω̃k = ωk =
2πk
βh̵

, ∣k∣ < M̄, (35)

where M̄ = (M − 1)/2. In this limit, the M lowest modes (the
Matsubara modes) become Fourier coefficients of the position
q(τ) = ql (with τ = βN h̵l), which means that q(τ) can be built from a
superposition of Matsubara modes as

q(τ) = Q0 +
√

2
M̄

∑
k=1

sin(ωkτ)Qk + cos(ωkτ)Q−k. (36)

The significance of working with the Matsubara modes is that q(τ)
is a smooth and continuous function of the imaginary time vari-
able τ.38 This will not in general be true if q(τ) is built of both
Matsubara and non-Matsubara modes, where the latter will give
rise to nonsmooth (non-Boltzmann) distributions. Note that quite
remarkably, at time t = 0, one can integrate out the non-Matsubara
modes of Eq. (32) giving rise to an alternative expression for the
Kubo transform in the limit M →∞, M≪ N,40,60–63

K[M]AB (0) =
1

(2πh̵)MZM
∫ dQ∫ dPe−βRM(Q,P)AM(Q)BM(Q),

(37)

where

RM(Q,P) =
M̄

∑
n=−M̄
(
P2
n

2m
+
m
2
ω2
nQ

2
n) + UM(Q), (38)

UM(Q) =
1
βh̵ ∫

βh̵

0
dτ V(q(τ)), (39)

and

ZM =
1

(2πh̵)M ∫
dQ∫ dPe−βRM(Q,P), (40)

with AM(Q) and BM(Q) defined analogously to UM(Q). This expres-
sion is significant since it implies that only smooth Matsubara
modes contribute to the Boltzmann average of the Kubo correla-
tion function at time zero. At finite times, unless the potential is
harmonic, non-Matsubara modes will couple to the smooth modes
due to Eq. (33), and, hence, the distribution would become jagged,
and detailed balance will not be satisfied. It is worth mention-
ing that the Janus operator [Eq. (34)] does not couple different
normal modes together. It is only through the sine function in
Eq. (33) that the Janus operator mixes the modes together in the
Liouvillian.

The Matsubara approximation is then to assume that one can
neglect the coupling to the non-Matsubara modes for all times and
use only the Matsubara modes to describe the time evolution of the
system. This is done by neglecting the non-Matsubara mode terms in
Eq. (34), which produces the effect of decoupling the non-Matsubara
modes from the Matsubara modes in the dynamical evolution. The
quantum Liouvillian then reduces to a classical Liouvillian in the
Matsubara modes in the limit N →∞,
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lim
N→∞

LN ≈ L̄M =
M̄

∑
k=−M̄

Pk
m

∂

∂Qk
−

1
N

∂UN(Q)
∂Qk

∂

∂Pk
, (41)

which happens because in the Matsubara subspace h̵ is replaced by
an effective Planck’s constant h̵/N which in the limit as N → ∞
vanishes. The Matsubara approximation to the Kubo transformed
correlation function is then

K[M]AB (t) = lim
N→∞

1
(2πh̵)N ∫

dQ∫ dP[e−βĤÂ]
N
(Q,P)eL̄M tB(Q).

(42)

Note that Eq. (42) still depends on the non-Matsubara modes
through the potential. However, since these modes are decoupled
from the Matsubara modes, they can be analytically integrated out
to give38,64

K[M]AB (t) =
1

2πh̵ZM
∫ dQ∫ dPe−βHM(Q,P)

× eiβθM(Q,P)AM(Q)eLM tBM(Q), (43)

where it is to be understood that all the variables are now of
the Matsubara modes only. LM is the classical Liouvillian in the
Matsubara subspace [Eq. (41)] but with the Matsubara potential
UM(Q) [defined by Eq. (39)] replacing UN(Q)/N. The Matsubara
Hamiltonian is given by

HM(Q,P) =
M̄

∑
k=−M̄

P2
k

2m
+ UM(Q), (44)

and the Matsubara phase, which converts what would be a classical
Boltzmann distribution into a quantum one, is

θM(Q,P) =
M̄

∑
k=−M̄

ωkQ−kPk. (45)

It can be straightforwardly shown that the Matsubara correla-
tion function of Eq. (43) contains all the symmetries of the Kubo
transformed correlation function. Furthermore, it can be shown
that the classical dynamics generated by the Matsubara Liouvillian
preserve both the Matsubara phase and the Boltzmann distribu-
tion, which ensures that the quantum Boltzmann distribution is
conserved during the classical evolution of the Matsubara modes.
Matsubara dynamics is also exact in the harmonic limit for any
correlation function due to the fact that for this particular poten-
tial the non-Matsubara modes do not couple to the Matsubara
modes. Matsubara dynamics will perform better than Ring Polymer
Molecular Dynamics (RPMD)23,31 and Centroid Molecular Dynam-
ics (CMD)19,20,22 in general due to the fact that it explicitly includes
the fluctuation dynamics that both CMD and RPMD miss. This
is to date the most general form of classical Boltzmann preserv-
ing dynamics from which it has been shown that RPMD, CMD,
and the planetary model27 are in fact approximations of Matsubara
dynamics.39,40

III. TWO-TIME MATSUBARA DYNAMICS
Having established the key steps of the formulation of single-

time Matsubara dynamics, we now present the derivation of the
Matsubara approximation for the two-time symmetrized double
Kubo transform correlation function. To keep the discussion con-
cise, we utilize many of the results from Sec. II.

A. Path integral discretization of the symmetrized
double Kubo transform

We start by defining the symmetrized double Kubo transform
as45,46

Ksym
ABC(t, t

′
) =

1
Zβ2 ∫

β

0
dλ∫

β

0
dλ′⟨T̂βÂ(−ih̵λ)B̂(−ih̵λ

′ + t)Ĉ(t′)⟩,

(46)

where ⟨⋯⟩ = Tr[e−βĤ
⋯], Ô(τ) = eiĤτ / h̵Ôe−iĤτ / h̵, and T̂β is the

imaginary time ordering operator,

T̂βÔ(−ih̵λ)P̂(−ih̵λ
′
) =

⎧⎪⎪
⎨
⎪⎪⎩

Ô(−ih̵λ)P̂(−ih̵λ′) if λ > λ′

P̂(−ih̵λ′)Ô(−ih̵λ) if λ < λ′
. (47)

Here, t and t′ are taken to be independent time variables. By
using the definition of the imaginary time ordering operator and
exchanging the integration limits, Eq. (46) can be expressed as

Ksym
ABC(t, t

′
) = I1 + I2, (48)

where

I1 =
1

Zβ2 ∫

β

0
dλ∫

λ

0
dλ′Tr[e−(β−λ)ĤÂe−(λ−λ

′)ĤB̂(t)e−λ
′ĤĈ(t′)]

(49)

and

I2 =
1

Zβ2 ∫

β

0
dλ∫

λ

0
dλ′Tr[e−(β−λ)ĤB̂(t)e−(λ−λ

′)ĤÂe−λ
′ĤĈ(t′)].

(50)

Note here that β ≥ λ ≥ λ′ ≥ 0, which ensures that there is no back-
ward imaginary time propagation. The symmetrized double Kubo
transform is a real function of time that shares the formal prop-
erties and symmetries with classical two-time correlation functions
(see the Appendix of Ref. 45) and has recently been related to the
second-order response function of nonlinear spectroscopy.45

Following the ideas of Sec. II, we discretize the iterated inte-
grals and make the expression more symmetric by inserting N − 1
identities of the form

1̂ = eiĤt/h̵e−iĤt/h̵eiĤt′/h̵e−iĤt′/h̵ (51)

to obtain
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I1 =
1

ZNN2

N

∑
k=1

k

∑
l=1

Tr[(e−βN ĤeiĤt/h̵e−iĤt/h̵eiĤt′/h̵e−iĤt′/h̵
)

N−k−1

e−βN ĤÂeiĤt/h̵e−iĤt/h̵eiĤt′/h̵e−iĤt′/h̵
(e−βN ĤeiĤt/h̵e−iĤt/h̵eiĤt′/h̵e−iĤt′/h̵

)

k−l−1

× e−βN ĤeiĤt/h̵B̂e−iĤt/h̵eiĤt′/h̵e−iĤt′/h̵
(e−βN ĤeiĤt/h̵e−iĤt/h̵eiĤt′/h̵e−iĤt′/h̵

)

l−1

e−βN ĤeiĤt/h̵e−iĤt/h̵eiĤt′/h̵Ĉe−iĤt′/h̵
] (52)

and

I2 =
1

ZNN2

N

∑
k=1

k

∑
l=1

Tr[(e−βN ĤeiĤt/h̵e−iĤt/h̵eiĤt′/h̵e−iĤt′/h̵
)

N−k−1

e−βN ĤeiĤt/h̵B̂e−iĤt/h̵eiĤt′/h̵e−iĤt′/h̵
(e−βN ĤeiĤt/h̵e−iĤt/h̵eiĤt′/h̵e−iĤt′/h̵

)

k−l−1

× e−βN ĤÂeiĤt/h̵e−iĤt/h̵eiĤt′/h̵e−iĤt′/h̵
(e−βN ĤeiĤt/h̵e−iĤt/h̵eiĤt′/h̵e−iĤt′/h̵

)

l−1

e−βN ĤeiĤt/h̵e−iĤt/h̵eiĤt′/h̵Ĉe−iĤt′/h̵
]. (53)

The structure of Eqs. (52) and (53) suggests that the interpretation
of the double Kubo transforms can be cast in terms of a new block
structure of the form Ĵ(2) = e−βĤeiĤt / h̵e−iĤt / h̵eiĤt

′ / h̵e−iĤ t ′/ h̵, with the
operators Â and B̂ evaluated in different blocks depending of the
sum indexes. Note, however, that in Eq. (52) the operator Â is eval-
uated over all the blocks, whereas the operator B̂ is evaluated only at
particular blocks (constrained by the inner sum index); in Eq. (53),
the opposite behavior is found, i.e., B̂ is evaluated over all the blocks,
whereas Â is constrained at particular blocks. This is a consequence
of the imaginary time ordering found in Eqs. (49) and (50). How-
ever, since the underling block structure is the same for both I1 and
I2 (i.e., the block structure Ĵ(2) is common to both traces), the sum of
I1 and I2 allows the evaluation of both Â and B̂ over all the blocks.
This is vital for obtaining a symmetric form of the Kubo transform
and will be crucial for constructing the multitime generalization of
Matsubara dynamics (see Sec. IV).

To obtain a path integral representation of the double Kubo
transform, we path integral discretize the building blocks Ĵ(2) in the
form (see Fig. 2 for a schematic representation)

Ĵ(2) = ∫ dq′l ∫ dq′′l ∫ dzl ∫ dz′l e
−βN Ĥ ∣q′l⟩⟨q

′
l ∣e

iĤt/h̵
∣zl⟩

× ⟨zl∣e
−iĤt/h̵eiĤt′/h̵

∣z′l ⟩⟨z
′
l ∣e
−iĤt′/h̵

∣q′′l ⟩⟨q
′′
l ∣, (54)

and add Eqs. (52) and (53) to obtain (see the supplementary
material)

Ksym,[N]
ABC (t, t′) =

1
ZN
∫ dq′ ∫ dq′′ ∫ dz∫ dz′A(q′)B(z)C(z′)

×
N

∏
l=1
⟨q′′l−1∣e

−βN Ĥ ∣q′l ⟩⟨q
′
l ∣e

iĤt/h̵
∣zl⟩

× ⟨zl∣e
−iĤt/h̵eiĤt′/h̵

∣z′l ⟩⟨z
′
l ∣e
−iĤt′/h̵

∣q′′l ⟩. (55)

A schematic diagram of this expression for N = 4 is shown in
Fig. 2 and highlights the symmetry of the symmetrized double Kubo
transform.

By making the change of variables from Cartesian coordinates
to the sum/difference coordinates of Eqs. (10) and (11), we can re-
express Eq. (55) as

Ksym,[N]
ABC (t, t′) = ∫ dq∫ dΔ∫ dz∫ dz′A(q + Δ/2)B(z)C(z′)

× ρ(q,Δ;β)G(q,Δ, z, z′; t, t′), (56)

where ρ(q, Δ; β) is defined in Eq. (13) and

G(q,Δ, z, z′; t, t′) =
N

∏
l=1
⟨ql +

Δl

2
∣eiĤt/h̵

∣zl⟩

× ⟨zl∣e
−iĤt/h̵eiĤt′/h̵

∣z′l ⟩⟨z
′
l ∣e
−iĤt′/h̵

∣ql −
Δl

2
⟩.

(57)

Equation (56), which we term the generalized double Kubo trans-
formed correlation function, corresponds to an exact path integral

FIG. 2. (a) Schematic diagram of the path integral discretization of the block struc-
ture Ĵ(2) used to obtain the generalized symmetrized double Kubo transform in
Eq. (56). Blue wavy lines show the t propagation. Red wavy lines show the t′ prop-
agation. Black lines show the βN propagation. Note that there is no identity inserted
between the forward t evolution and the backward t′ evolution. (b) Schematic dia-
gram of the structure of the generalized symmetrized double Kubo transform time
correlation function [Eq. (56)].
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representation of the symmetrized double Kubo transform and rep-
resents the first important result of this paper. To the best of our
knowledge, this is the first time that an expression that emphasizes
the symmetry with respect to cyclic permutations of the coordinates
of the path integral for the symmetrized double Kubo transform has
been presented.

B. Phase space representation
A phase space representation of the generalized double Kubo

transform Eq. (56) can be obtained by inserting Dirac delta identities
of the form of Eq. (15) to arrive at

Ksym,[N]
ABC (t, t′) =

1
(2πh̵)N∫

dq∫ dp[eβĤÂ]
N
(q,p)[B̂(t)Ĉ(t′)]

N
(q,p),

(58)

where [eβĤÂ]
N
(q,p) has been defined in Eq. (17) and

[B̂(t)Ĉ(t′)]
N
(q,p) = ∫ dΔ∫ dz∫ dz′B(z)C(z′)

N

∏
l=1

× ⟨ql −
Δl

2
∣eiĤt/h̵

∣zl⟩⟨zl∣e
−iĤt/h̵eiĤt′/h̵

∣z′l ⟩

× ⟨z′l ∣e
−iĤt′/h̵

∣ql +
Δl

2
⟩eiΔlpl/h̵. (59)

The structure of the two-time Wigner transform in Eq. (59) involves
a double sum over product of one-dimensional Wigner transforms.
However, with the use of the Moyal product,54,65 which replaces a
Wigner transformed product with a product of Wigner transforms,
it can be recast in the more compact form (see Appendix A)

[B̂(t)Ĉ(t′)]
N
(q,p) = [B̂(t)]

N
(q,p)e−ih̵Λ̂N/2[Ĉ(t′)]

N
(q,p), (60)

with [Ô(t)]
N
(q,p) defined in Eq. (18) and the Janus operator Λ̂N

defined in Eq. (26). Since Â and B̂ only depend on position, at
t = t′ = 0 it follows that

[B̂(0)Ĉ(0)]
N
(q,p) = B(q)C(q). (61)

Noting that due to the identity in Eq. (60) and the fact that t
and t′ are independent variables it holds that

dn

dtn
dm

dt′m
[B̂(t)Ĉ(t′)]

N
(q,p)

= (L̂N)n[B̂(t)]N(q,p)e−ih̵Λ̂N/2(L̂N)m[Ĉ(t′)]N(q,p), (62)

where L̂N is the Liouvillian defined in Eq. (22), Eq. (58) can be recast
in terms of a phase space representation as

Ksym,[N]
ABC (t, t′) =

1
(2πh̵)N ∫

dq∫ dp[eβĤÂ]
N
(q,p)

× eL̂N tB(q)e−ih̵Λ̂N/2eL̂N t
′

C(q). (63)

Equation (63) corresponds to an exact ring polymer phase average
representation of the symmetrized double Kubo transformed corre-
lation and, to the best of our knowledge, represents a novel expres-
sion. Note that if not for the Moyal product term, e−ih̵Λ̂N/2, the time

evolution of the double Kubo transform would involve the action of
the (exact) Liouvillian operator L̂N on the observables B̂ and Ĉ for
times t and t′ independently. The effect of the Moyal term is then
to couple trajectories at different times with one another, which is a
consequence of the interference nature of quantum mechanics.66

C. Two-time Matsubara dynamics approximation
It is straightforward to recast Eq. (63) in terms of normal mode

coordinates by applying the transformation in Eq. (28) to obtain

Ksym,[N]
ABC (t, t′) =

1
(2πh̵)NZN

∫ dQ∫ dP[eβĤÂ]
N
(Q,P)

× eL̂N tB(Q)e−ih̵Λ̂N/2NeL̂N t
′

C(Q). (64)

Note that since in the normal coordinates each derivative with
respect to Qk (Pk) brings a factor of N−1/2, the Moyal product term
in Eq. (64) has an effective Planck constant of h̵/N.

Note that at time t = t′ = 0, where Eq. (61) holds, the same
integration of non-Matsubara modes as in Eq. (37) can be done,38

resulting in an expression that only involves Matsubara modes. Fol-
lowing ideas from the single time Matsubara dynamics, one can
make the same approximation of decoupling the dynamical evolu-
tion of the non-Matsubara modes from the Matsubara modes by
neglecting the non-Matsubara terms in the Janus operator (in the
limit as N → ∞ such that M ≪ N). Note that this approxima-
tion has two consequences in Eq. (64): first, just as in the single-
time approximation, the Liouvillian L̂N is replaced by the classical
Matsubara Liouvillian L̄M and second, due to the effective Planck
constant h̵/N in the Moyal product, e−ih̵Λ̂N/2N is forced to unity in the
limit N →∞. Hence, under the Matsubara approximation, Eq. (64)
becomes

Ksym,[N]
ABC (t, t′) = lim

N→∞
1

(2πh̵)NZN
∫ dQ∫ dP[eβĤÂ]

N
(Q,P)

× eL̄M tB(Q)eL̄M t′C(Q). (65)

Note that, just as in the original Matsubara derivation, we have not
used the assumption that h̵→ 0 to reach to this classical expression,
but rather used the fact that in the Matsubara subspace linearization
of the dynamics arises naturally in the limit as N → ∞ (due to the
effective Planck constant h̵/N going to zero).

Equation (65) still depends on the non-Matsubara modes
through the potential term in L̄M . However, since the conjugate
momenta of the non-Matsubara modes are not present in the
Liouvillian nor in A(Q), B(Q), or C(Q), one can integrate out the
non-Matsubara modes, just as in the single-time Matsubara formu-
lation, to obtain

Ksym,[M]
ABC (t, t′) =

1
2πh̵ZM

∫ dQ∫ dPe−βHM(Q,P)eiβθM(Q,P)

×AM(Q)eLM tBM(Q)eLM t′CM(Q), (66)

where it is understood that the integration is performed over only
the Matsubara modes. This expression represents the Matsubara
approximation to the symmetrized double Kubo transform and is
another major result of the paper. Since the dynamics of both B(Q)
and C(Q) are generated from the classical Matsubara Liouvillian,
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which conserves both the Matsubara Hamiltonian and phase fac-
tor, it follows that Eq. (66) satisfies detailed balance and thus pre-
serves the quantum Boltzmann distribution. Matsubara dynamics
is still exact in the harmonic limit for any two-time correlation
function and contains all the same symmetries as the exact double
Kubo transform correlation function. In Appendix B, we present a
numerical demonstration of the convergence of Eq. (66) for a model
system.

At time t = t′ = 0, one can obtain an alternative expression
to Eq. (66). Following Ref. 39, one can perform the same analytic
continuation of the phase factor to obtain

Ksym,[M]
ABC (0, 0) =

1
2πh̵ZM

∫ dQ∫ dPe−βRM(Q,P)AM(Q)BM(Q)CM(Q),

(67)

where RM(Q, P) is the ring polymer Hamiltonian in normal mode
coordinates defined in Eq. (38). This expression represents an exact
(smoothed) path integral Fourier representation of the statistics
of three operators and is equivalent (in the limit of large M) to
previously derived expressions.45,46

It is worth mentioning at this point that the Matsubara approx-
imation is only well defined for the symmetrized part of the dou-
ble Kubo transform, which is just the real part of the double Kubo
transform. As shown in Ref. 45, the double Kubo transform also
contains an imaginary part of which the Matsubara approxima-
tion for this multitime correlation function is zero. This is due to
the leading term of imaginary part scaling as h̵ and thus when the
Matsubara subspace is decoupled from the full normal mode space,
it vanishes. It will be the subject of future work to find a general
Boltzmann preserving classical-like dynamics for correlations of this
kind.

IV. GENERALIZATION TO MULTITIME CORRELATION
FUNCTIONS

Following the derivation of Secs. II and III, it is possible to
perform a generalization of the Matsubara dynamics approximation
to any order of the symmetrized Kubo transformed multitime cor-
relation function. In general, the fully symmetrized nth order Kubo
transform is given by

Ksym
(t) ≡

1
Zβn ∫

β

0
dλ1 ∫

β

0
dλ2 ⋅ ⋅ ⋅ ∫

β

0
dλn−1 ∫

β

0
dλn

× ⟨T̂βA0(−ih̵λ1)A1(−ih̵λ2 + t1) ⋅ ⋅ ⋅

× An−1(−ih̵λn + tn−1)An(tn)⟩, (68)

where t = (t1, t2, . . ., tn) and T̂β is a generalization of Eq. (47). Note
that the single Kubo transform [Eq. (1)] and the symmetrized double
Kubo transform [Eq. (46)] are special cases of this definition (for n
= 1 and n = 2, respectively).

By expanding the time ordering operator T̂β, using the proper-
ties of the trace and exchanging the integration limits, Eq. (68) can
be expressed as a sum of n! terms of the form

Ksym
(t) =

n!

∑
j=1

Ij(t), (69)

where Ij(t) represents an ordered Kubo transformation with β ≥ λ1
≥ λ2 ≥ ⋯ λn ≥ 0. An example of what one of these terms looks
like is

I1 =
1

Zβn ∫
β

0
dλ1 ∫

λ1

0
dλ2⋯∫

λn−1

0
dλn

× Tr[e−(β−λ1)ĤÂ0e−(λ1−λ2)ĤÂ1(t1)⋯e−λnĤÂn(tn)]. (70)

Note that n! accounts for all the possible permutations of the n oper-
ators {A0, A1, . . ., An−1} inside the integral. For the n = 2 case, the
2! = 2 terms in Eq. (69) are given by Eqs. (49) and (50).

Generalizing ideas from Sec. III A, one can discretize the
integrals and insert N − 1 identities of the form

1̂ = eiĤt1/h̵e−iĤt1/h̵eiĤt2/h̵e−iĤt2/h̵⋯eiĤtn/h̵e−iĤtn/h̵ (71)

to obtain for each Ij a symmetric expression that involves repeating
blocks of the form

Ĵ(n) = e−βĤeiĤt1/h̵e−iĤt1/h̵eiĤt2/h̵e−iĤt2/h̵⋯eiĤtn/h̵e−iĤtn/h̵, (72)

with the operators {A0, A1, . . ., An−1} intercalated in a particu-
lar order and evaluated at a particular block. Following the same
logic as in the two-time case, and noting that the underling building
block structure is the same for all Ij terms, the sum of the n! terms
allows one to evaluate all the An operators over all the blocks. Hence,
by path integral discretizing the building blocks in the form (see
Fig. 3)

Ĵ(n) = ∫ dq′l ∫ dq′′l ∫ dz(1)l ∫ dz(2)l ⋯∫ dz(n)l

× e−βN Ĥ ∣q′l⟩⟨q
′
l ∣e

iĤt1/h̵∣z(1)l ⟩⟨z
(1)
l ∣e

−iĤt1/h̵eiĤt2/h̵∣z(2)l ⟩⋯

× ⟨z(n−1)
l ∣e−iĤtn−1/h̵eiĤtn/h̵∣z(n)l ⟩⟨z

(n)
l ∣e

−iĤtn/h̵∣q′′l ⟩⟨q
′′
l ∣ (73)

and performing the change of variables from the q′ and q′′

Cartesian coordinates to q and Δ sum/difference coordinates, the

FIG. 3. (a) Schematic diagram of the path integral discretization of the block struc-
ture Ĵ(n ) [Eq. (73)] used to obtain Eq. (74). (b) Schematic diagram of the structure
of the general multitime symmetrized Kubo transform time correlation function
[Eq. (74)] for N = 4.
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fully symmetrized nth order Kubo transform Eq. (68) can be
cast as

Ksym,[N]
(t) = ∫ dq∫ dΔ∫ dz(1) ∫ dz(2)⋯∫ dz(n)

A0(q + Δ/2)A1(z(1))A2(z(2))⋯An(z(n))ρ(q,Δ;β)

G(q,Δ, z(1), z(2), . . . , z(n); t), (74)

where ρ(q, Δ; β) is defined in Eq. (13) and G(q, Δ, z, z(1), . . ., z(n); t)
is a multitime generalization of Eq. (57). Equation (74) represents
the complete multitime extension of the generalized symmetrized
Kubo transform correlation function and corresponds to an exact
path integral representation of Eq. (68). A schematic representation
of this expression for N = 4 is presented in Fig. 3.

Inserting delta function identities allows one to re-express
Eq. (74) as a phase space average of the form

Ksym,[N]
(t) =

1
(2πh̵)N ∫

dq∫ dp[eβĤÂ0]
N
(q,p)

× [Â1(t1)Â2(t2)⋯Ân(tn)]N(q,p), (75)

with [Â1(t1)Â2(t2)⋯Ân(tn)]N(q,p) being the multitime generaliza-
tion of Eq. (59). Using a generalization of the derivation presented
in Appendix A,

[Â1(t1)Â2(t2)⋯Ân(tn)]N = [Â1(t1)]Ne
−ih̵Λ̂N/2[Â2(t2)]Ne

−ih̵Λ̂N/2⋯

× [Ân−1(tn−1)]N
e−ih̵Λ̂N/2[Ân(tn)]N ,

(76)

and the fact that all the times are independent of one another, the N
bead phase space representation of Eq. (68) is given by

Ksym,[N]
(t) =

1
(2πh̵)N ∫

dq∫ dp[eβĤÂ0]
N
(q,p)eL̂N t1A1(q)e−ih̵Λ̂N/2

× eL̂N t2A2(q) ⋅ ⋅ ⋅ eL̂N tn−1An−1(q)e−ih̵Λ̂N/2eL̂N tnAn(q).
(77)

The Matsubara approximation to Eq. (77) can be obtained
by transforming to normal modes, taking the limit N → ∞ and
neglecting the non-Matsubara modes from the Janus operator Λ̂N to
yield

Ksym,[M]
(t) =

1
2πh̵ZM

∫ dQ∫ dP e−βH(Q,P)eiβθ(Q,P)

×A0(Q)eLM t1A1(Q)eLM t2A2(Q)⋯

× eLM tn−1An−1(Q)eLM tnAn(Q). (78)

The multitime generalization of Matsubara dynamics is, just as
the single-time counterpart, a classical-like approximation to the
Kubo transformed quantum multitime correlation function that

preserves the Boltzmann distribution. Equation (78) is the most
general form of Matsubara dynamics under the Born-Oppenheimer
approximation from which it can be seen that the single-time for-
mulation is just a special case of it.

V. CONCLUSIONS AND FUTURE WORK
In the present work, we have presented a multitime general-

ization of Matsubara dynamics38 for the calculation of multitime
correlation functions. The theory is based on the extension of the
original Matsubara idea of decoupling of the non-Matsubara modes
from the Matsubara modes in the dynamical evolution of all the
time-dependent operators and provides a general, consistent way of
obtaining classical dynamics from quantum dynamics while preserv-
ing the quantum Boltzmann statistics. Any practical approximation
that has been developed for the single-time case20,23,40,41 should be
straightforwardly applicable.

The multitime generalization of Matsubara dynamics approx-
imates multitime fully symmetrized Kubo transformed correlation
functions, which can be interpreted as imaginary time-ordered cor-
relations. The symmetrized nature of these functions guarantees that
they are always real-valued. However, for general multitime cor-
relation functions, other possible Kubo correlation functions exist.
For example, we have shown how the second order response func-
tion of nonlinear spectroscopy can be expressed in terms of sym-
metrized and asymmetric double Kubo transform, the latter being
a purely imaginary function of time.45 This raises the question if
similar Boltzmann conserving classical dynamics approximations
to the one presented here can be developed to more general Kubo
transformed correlation functions. Future work in this area will be
needed to address this question and to further explore the con-
nection of time-ordering and classical dynamics in the multitime
realm.

Besides deriving the multitime formulation of Matsubara
dynamics, which is the main purpose of this work, the derivation
presented here also provides an exact expression for the evalua-
tion of the multitime symmetrized Kubo transform, both in path
integral form [Eq. (74)] and as a phase space average [Eq. (77)].
Although these expressions are impractical for the calculation
of multitime correlation functions for condensed phase systems,
they might serve as starting points for the development of other
semiclassical approximations. Work in this direction is currently
underway.

SUPPLEMENTARY MATERIAL

See supplementary material for detailed derivations of Eqs. (9)
and (55).
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APPENDIX A: PROOF OF EQ. (60)
To prove that Eq. (60) holds, it is useful to re-express Eq. (59),

by noting that N − 1 of the forward-backward propagations are
identities, as

[B̂(t)Ĉ(t′)]
N
(q,p) =

N

∑
j=1
[B̂(t)Ĉ(t′)]

W
(qj, pj)

+
N

∑
j,k=1
j≠k

[B̂(t)]
W
(qj, pj)[Ĉ(t′)]W(qk, pk), (A1)

where [Ô]
W

defines the Wigner transform of operator Ô as

[Ô]
W
(q, p) = ∫ dΔeipΔ/h̵⟨q − Δ/2∣Ô∣q + Δ/2⟩. (A2)

Noting that the Wigner transform of a product is given by54

[Ô1Ô2]W
(q, p) = [Ô1]W

(q, p)e−iΛ̂h̵/2[Ô2]W
(q, p), (A3)

where Λ̂ is the Janus operator [see Eq. (23)], the terms in the first
sum can be further re-expressed as

[B̂(t)Ĉ(t′)]
N
(q,p) =

N

∑
j=1
[B̂(t)]

W
(qj, pj)e−iΛ̂j h̵/2[Ĉ(t′)]

W
(qj, pj)

+
N

∑
j,k=1
j≠k

[B̂(t)]
W
(qj, pj)[Ĉ(t′)]W(qk, pk). (A4)

Using the definition of the Janus operator Λ̂j and noting that
the leading order of an exponential is 1, Eq. (A4) can be cast as

[B̂(t)Ĉ(t′)]
N
(q,p) =

N

∑
j,k=1
[B̂(t)]

W
(qj, pj)e−iΛ̂j h̵/2[Ĉ(t′)]

W
(qk, pk).

(A5)

Noting that mixed derivatives inside the sum are zero, namely,

[B̂(t)]
W
(qj, pj)e−iΛ̂j h̵/2 = [B̂(t)]

W
(qj, pj)e−i∑

N
l=1 Λ̂l h̵/2, (A6)

Eq. (A6) can be recast as

[B̂(t)Ĉ(t′)]
N
(q,p) =

⎛

⎝

N

∑
j=1
[B̂(t)]

W
(qj, pj)

⎞

⎠
e−i∑

N
l=1 Λ̂l h̵/2

× (
N

∑
k=1
[Ĉ(t′)]

W
(qk, pk)). (A7)

Recognizing that∑N
l=1 Λ̂l = Λ̂N and that

N

∑
j=1
[B̂(t)]

W
(qj, pj) = [B̂(t)]N(q,p), (A8)

it follows that

[B̂(t)Ĉ(t′)]
N
(q,p) = [B̂(t)]

N
(q,p)e−iΛ̂N h̵/2[Ĉ(t′)]

N
(q,p). (A9)

APPENDIX B: MATSUBARA DYNAMICS
COMPUTATIONAL DETAILS

To test the performance of the two-time Matsubara dynamics,
we perform numerical comparisons between Eq. (66) and the exact
result for a model potential. We considered the quartic potential
V(q) = 1

4q
4 and evaluated the correlation Ksym

q2qq(t, t
′
) for a temper-

ature β = 1 (atomic units are used). Note that this potential repre-
sents a severe test for any method that neglects (real-time) quantum
phase information. In Fig. 4, we present comparisons between exact
results and the Matsubara dynamics for three different cuts along
the t′ axis. At short times, Matsubara dynamics is seen to be an
excellent approximation, but the accuracy decreases as either t or
t′ increases. Note that at time t = t′ = 0 Matsubara dynamics is exact.
The Matsubara correlation function was calculated entirely in the
normal mode representation for polynomial potentials as described
in the supplementary material of Ref. 38. The initial normal mode
position and momenta were sampled from a normal distribution
and thermalized using the Metropolis-Hastings algorithm by sam-
pling from the Matsubara Hamiltonian. Approximately, 1 × 107

thermalization steps were needed. A long molecular dynamics sim-
ulation was then run on the thermalized configuration with a time
step of 0.1 a.u. with momentum resampling every 15 a.u. from the
Hamiltonian distribution for each mode to compute the correlation
function

Ksym,[M]
ABC (t, t′) =

⟨eiβθM(Q,P)AM(Q)BM(Qt)CM(Qt′)⟩M

⟨eiβθM(Q,P)⟩M
, (B1)

where the brackets denote sampling from the Matsubara Hamilto-
nian as

⟨⋯⟩M =
∫ dQ ∫ dPe−βHM(Q,P)

⋯

∫ dQ ∫ dPe−βHM(Q,P) . (B2)

We found that M = 5 Matsubara modes were sufficient for
reaching convergence. The convergence of the Matsubara two-
time correlation function is slower than that of the single-
time, and adding more Matsubara modes requires much larger
samples restricting the calculation to the high temperature
regime.

In Fig. 4, we also present results for the classical correlation
function. Note that at this relatively high temperature, the clas-
sical simulation does a great job capturing the main features of
the exact correlation function. Nevertheless, the exclusion of the
quantum Boltzmann statistics degrades the agreement with the
exact results as can be seen along the τ = 3 cut at short times
and in the limit t = t′ = 0 (where the classical result is not
exact). These results demonstrate that the inclusion of quantum
Boltzmann statistics by Matsubara dynamics helps achieve a bet-
ter agreement with the exact results for multitime correlation func-
tions.
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FIG. 4. Comparison of the two-time clas-
sical, Matsubara, and exact correlation
functions.
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