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ABSTRACT
We introduce a semi-classical approximation for calculating generalized multi-time correlation functions based on Matsubara dynamics,
a classical dynamics approach that conserves the quantum Boltzmann distribution. This method is exact for the zero time and harmonic
limits and reduces to classical dynamics when only one Matsubara mode is considered (i.e., the centroid). Generalized multi-time correlation
functions can be expressed as canonical phase-space integrals, involving classically evolved observables coupled through Poisson brackets in a
smooth Matsubara space. Numerical tests on a simple potential show that the Matsubara approximation exhibits better agreement with exact
results than classical dynamics, providing a bridge between the purely quantum and classical descriptions of multi-time correlation functions.
Despite the phase problem that prevents practical applications of Matsubara dynamics, the reported work provides a benchmark theory for
the future development of quantum-Boltzmann-preserving semi-classical approximations for studies of chemical dynamics in condensed
phase systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0146654

I. INTRODUCTION
Thermal time correlation functions (TCFs) provide a power-

ful framework for studying chemical dynamical processes in the
condensed phase. By expressing the dynamics of a system in terms
of n-point quantum correlation functions involving time-evolved
operators at different times, TCFs enable us to explore a wide
range of phenomena, from linear and nonlinear (multidimensional)
spectroscopy,1,2 to transport phenomena,3–5 and to quantum chaos.6
The classical descriptions of these TCFs can often yield a decent
approximation; however, nuclear quantum effects, such as zero-
point energy fluctuations and tunneling, can dramatically modify
and regulate the structural and dynamical behavior of the system.7,8

Thus, there is currently significant interest in the development of
semi-classical methods that incorporate quantum mechanical effects
into condensed phase molecular dynamics simulations.

Several semi-classical methodologies have been introduced
over the past decades, mainly focused on the simulation of two-point
correlation functions. For example, methods based on the linearized
semi-classical initial value representation (LSC-IVR)9–15 have suc-
cessfully been used for simulations of quantum dynamics and
infrared and Raman spectroscopy of condensed phase systems,16–24

despite the fact the method does not preserve the quantum statistics
and neglects interference effects. Similarly, Boltzmann-preserving

methodologies derived from the path-integral formalism,7,25–29

such as Matsubara dynamics,30–33 Centroid Molecular Dynamics
(CMD),34–39 Quasi-Centroid Molecular Dynamics (QCMD),40 or
Ring Polymer Molecular Dynamics (RPMD),41–44 where one fol-
lows the dynamics of a classical system in an extended phase-space,
have been applied with incredible success for the calculation of one-
time correlation functions.20,40,42,45–56 The path integral Liouville
dynamics57–61 method has also shown promising results for the lin-
ear IR spectra of several gas-phase systems.62,63 However, despite the
success of these methodologies, the application of these methods is
mainly restricted to the calculation of two-point correlation func-
tions. Understanding how these methods can be extended for the
calculation of multidimensional response functions involving multi-
point time correlation functions and what are the approximations of
the exact quantum dynamics remains a non-trivial and outstanding
challenge.64–67

Recently, we have introduced an exact imaginary-time path-
integral phase-space formulation of multi-time correlation func-
tions.68 This formalism provides an attractive platform for the devel-
opment of approximate methods that incorporate nuclear quan-
tum effects in chemical dynamics. The formalism is based on the
discrete imaginary-time Feynman path integral representation of
quantum mechanics.25,26,69 It enables us to describe various types
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of n-point correlation functions as “sine/cosine” multi-time correla-
tion functions that depend on imaginary-time-translation-invariant
phase-space observables coupled through Poisson bracket operators
evolving in an extended ring-polymer phase-space (Sec. II). This
formulation is formally exact; however, due to the exact quantum
Liouvillian governing the ring-polymer dynamical evolution (which
is equivalent to solving the Schrödinger equation), the approach is
computationally intractable for all but the simplest systems. Here,
we extend the capabilities of the method by introducing semi-
classical approximations in the evaluation of generalized multi-time
correlation functions based on Matsubara dynamics.30,65

The Matsubara dynamics formalism, originally implemented
for calculations of Kubo transform (KT) single-time correlation
functions30 and recently extended to the evaluation of double-Kubo
transform (DKT) correlation functions,65 provides a semi-classical
approximation that combines classical dynamics with exact quan-
tum Boltzmann statistics while satisfying detailed balance.30 This
approximation is based on the realization that, in calculations
of time-independent properties, only “smooth” Feynman paths in
imaginary time (i.e., Matsubara modes) contribute to the Boltz-
mann factor and non-smooth, jagged paths can be discarded for
calculations of static properties.30 Classical dynamics emerges by
assuming that the “smoothness” also applies to quantum dynamics,
i.e., restricting the dynamics to the smooth Matsubara space.

Here, we extend and generalize the results of Refs. 30 and 65
to show that Matsubara dynamics can also be employed for the
calculations of generalized “sine/cosine” n-point correlation func-
tions. Specifically, we show that generalized multi-time correlation
functions can be expressed within the Matsubara approximation in
terms of classical-like correlation functions involving time-evolved
observables coupled through Poisson brackets operators in a smooth
Matsubara space. Matsubara dynamics offers a unique perspective
into the correspondence between quantum and classical dynamics,
being exact in the zero time and harmonic limit, and transitioning
to classical dynamics when only one Matsubara mode (i.e., the cen-
troid) is considered. This provides an effective bridge between a fully
quantum and purely classical description of multi-time correlation
functions. Moreover, the presence of the Poisson-bracket couplings
between different observables is related to stability matrices that
measure the sensitivity of dynamical variables to the initial condi-
tions, providing an interpretation of quantum dynamics in terms of
“interfering trajectories” of the ring-polymer in phase space. Unfor-
tunately, the Matsubara quantum distribution presents a phase
factor, rendering the methodology numerically challenging for
applications to condensed phase systems (see, however, Ref. 70 for
a recent application of Matsubara dynamics to a condensed phase
model Hamiltonian). Despite this limitation, Matsubara dynam-
ics can be used as a valuable benchmark for the development of
quantum-Boltzmann-preserving semi-classical approximations for
condensed phase systems.31,66 In effect, by performing a mean-
field average of the dynamics over the fluctuation modes or further
approximating the dynamics by discarding part of the Liouvillian,
CMD and RPMD approximations to the multi-point TCFs pre-
sented in the present work can be developed (a detailed derivation
and analysis will be provided elsewhere). While computationally
challenging, due to the phase problem, Matsubara dynamics pro-
vides a solid foundation for the future development of quantum-
Boltzmann-preserving semi-classical approximations for chemical
dynamics in the condensed phase.

This paper is organized as follows: first, Sec. II reviews the
exact ring-polymer phase-space formulation of multi-time correla-
tion functions.68 Section III presents the derivation of the Matsubara
approximation for such multi-time correlation functions. Section IV
then discusses the properties and limiting cases of the Matsubara
dynamics, and Sec. V presents computational results, which test
the accuracy of Matsubara dynamics on a model potential. Finally,
Sec. VI provides final remarks and an outline of potential future
applications.

II. EXACT RING-POLYMER PHASE-SPACE
FORMULATION OF MULTI-TIME CORRELATION
FUNCTIONS

In a recent paper, we derived an exact ring-polymer phase-
space formulation of quantum mechanics for dynamical evolu-
tion taking place on single-surface (Born–Oppenheimer) potential
energy surfaces.68 Here, we summarize the main findings pertinent
to the development of the Matsubara approximation. To make the
presentation more accessible, we focus on a one-dimensional sys-
tem with Hamiltonian Ĥ = p̂ 2/2m + V(q̂), although the results we
derive apply to systems with any number of dimensions. More-
over, we restrict the analysis to equilibrium systems, namely systems
in which the Hamiltonian controlling the dynamics and statistics
is the same; generalizations for processes characterized by thermal
non-equilibrium initial conditions are straightforward. For further
information, we refer the reader to Ref. 68.

We begin by introducing the general “sine/cosine” n-point
ring-polymer phase-space correlation functions defined as follows:68

⟨Ôn(tn)
←→
Jn ⋅ ⋅ ⋅

←→
J2 Ô1(t1)

←→
J1 Ô0(t0)⟩

N

≡ Z−1
N

(2πh̵)N ∫ dq∫ dp [e−βĤ ]
N
(q, p)

× {[Ôn(tn)]N
←→
Jn ⋅ ⋅ ⋅

←→
J2 [Ô1(t1)]N

←→
J1 [Ô0(t0)]N}, (1)

with partition function

ZN =
1

(2πh̵)N ∫ dq∫ dp [e−βĤ ]
N
(q, p), (2)

where ∫ dq = ∫ dq1 ⋅ ⋅ ⋅ ∫ dqN represents a phase-space aver-
age over N ring-polymer position coordinates q = q1, . . . , qN ,
with similar definitions for the momenta p. The ring-polymer
Boltzmann–Wigner operator, introduced by Eq. (1), is defined as
follows:30,33,65,68

[e−βĤ ]
N
(q, p) ≡ ∫ dΔ

N

∏
l=1

e
i
̵h plΔl⟨ql−1 −

Δl−1

2
∣e−βN Ĥ ∣ql +

Δl

2
⟩

= ( m
2πβN h̵2 )

N/2

∫ dΔ (
N

∏
l=1

e
i
̵h plΔl)

× exp(− m
2βN h̵2

N

∑
l=1
[ql +

Δl

2
− ql−1 +

Δl−1

2
]

2
)

× exp(−βN

2

N

∑
l=1
[V(ql +

Δl

2
) + V(ql −

Δl

2
)]),

(3)
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with βN = β/N defined by the inverse temperature β = 1/kBT, with
coordinates satisfying cyclic boundary conditions (i.e., q0 = qN ). The
time evolution of observables [Ô(t)]

N
, introduced by Eq. (1), is

governed by the quantum Liouville equation,

[Ô(t)]
N
(q, p) = eL

q,p
N t[Ô]

N
(q, p), (4)

where

L q,p
N = (

2N
h̵
)
⎡⎢⎢⎢⎢⎣

1
N

N

∑
j=1
(

p2
j

2m
+ V(q j))

⎤⎥⎥⎥⎥⎦
sin( h̵

2
←→
Λ q,p

N ) (5)

is the exact generalized quantum Liouvillian, in which

←→
Λ q,p

N =
N

∑
j=1

←ÐÐ
∂

∂pj

ÐÐ→
∂

∂qj
−
←ÐÐ
∂

∂qj

ÐÐ→
∂

∂pj
(6)

is the negative Poisson bracket in ring-polymer phase-space, with
the arrows indicating the direction in which the derivative operator
is applied. The generalized ring-polymer Wigner–Weyl transform
of an operator Ô that depends only on position is given by the ring-
polymer average (for general observables, refer to Ref. 68),30,33,65

[Ô(q̂)]
N
(q, p) = 1

N

N

∑
j=1

O(q j). (7)

The analogous definition holds for operators that depend only on
momenta.

To simplify the equations, we often suppress the (q, p) depen-
dence and we use

←→
J [as in Eq. (1)] to represent operators coupling

ring-polymer Wigner–Weyl transforms, defined by either sine (←→s )
or cosine (←→c ) coupling operators as follows:

←→s = (2N
h̵
) sin( h̵

2
←→
Λ q,p

N ) (8)

and

←→c = cos( h̵
2
←→
Λ q,p

N ). (9)

Different n-point correlation functions emerge from Eq. (1) (see
Appendix A for examples) by choosing a different number and
combination of coupling operators←→s and←→c .68

The time correlation functions defined by Eq. (1) play an
important role in providing an exact ring-polymer phase-space rep-
resentation of correlations in Hilbert space in the limit of infinite
N. This was demonstrated in Ref. 68, where it was shown that sine
couplings in ring-polymer space are equivalent to commutators in
Hilbert space as follows:

[Ô1]N
←→s [Ô2]N ←→ (

i
h̵
)[Ô1, Ô2], (10)

while the cosine couplings correspond to the (symmetrized) Kubo
integrals as follows:

[Ô1]N
←→c [Ô2]N ←→

1
β∫

β

0
dλ Ô1(−ih̵λ)Ô2, (11)

allowing us to map Hilbert space correlations into ring-polymer
“sine/cosine” correlations (and vice versa). (See Appendix A for
applications of the mapping.) Quite remarkably, correlation func-
tions involving commutators and Kubo integrals are ubiquitous in
quantum chemistry, appearing in the context of linear and nonlinear
response theory, chaos theory, and chemical dynamics.1–6 As such,
the “sine/cosine” correlation functions play the central dynamical
role in quantum theory.

The expression for the sine/cosine correlation functions pro-
vided by Eq. (1) is general and involves no approximation. It is
quantum-mechanically exact in the N →∞ limit. However, the
evaluation of the quantum sine/cosine correlations is complicated,
making it impractical to use in anything but the simplest of systems.
Two factors contribute to this difficulty. First, the time evolution
of ring-polymer phase-space observables [Eq. (4)] is equivalent to
solving the Schrödinger equation. Second, by virtue of the Taylor
expansion of the sine/cosine couplings [Eqs. (8) and (9)], the ring-
polymer phase-space functions in Eq. (1) can be expressed in terms
of an infinite series in powers of h of correlations involving the eval-
uation of

←→
Λ couplings between time-evolved ring-polymer observ-

ables (note that for operators that can be expressed as polynomials
in ring-polymer phase-space coordinates, the expansion is exactly
truncated at some order). Therefore, the development of semi-
classical approximations for the practical evaluation of sine/cosine
correlation functions is essential.

III. MATSUBARA APPROXIMATION
A. Normal modes

We introduce the ring-polymer normal mode transforma-
tion71,72 as follows:

Xk =
N

∑
j=1

T jk√
N

xj , (12)

for xj = {qj, pj, Δj} with corresponding associated normal-modes
coordinates Xj = {Qj, Pj, Dj}, with inverse

x j =
N̄

∑
k=−N̄

√
NT jkXk (13)

and matrix elements

T jk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
N

, k = 0,
√

2
N

sin (2π jk/N), 0 < k ≤ N̄,
√

2
N

cos (2π jk/N), −N̄ ≤ k < 0,

(14)

with N̄ = (N − 1)/2. The associated normal frequencies (i.e., square
roots of the eigenvalues of the transformation matrix) are given by

ωn =
2

βN h̵
sin(nπ

N
). (15)

For convenience, N is chosen to be odd, although similar expres-
sions can be derived for even N. Note that the transformation is not
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unitary but defined such that the k = 0 normal mode converges to
the centroid25,73 X0 = 1

N∑ j x j of the ring-polymer distribution in the
limit N →∞. The significance of the normal mode transformation
is that it allows for a description of the ring-polymer coordinates in
terms of the centroid X0 as well as collective fluctuations X∣n∣>0 of the
free ring polymer distribution.

It is straightforward to apply the normal mode transformation
to Eq. (1). In particular, note that the Janus and Liouvillian operators
transform as follows:

←→
Λ q,p

N →
1
N
←→
Λ Q,P

N (16)

and

L q,p
N → L Q,P

N , (17)

where

←→
Λ Q,P

N =
N̄

∑
j=−N̄

←ÐÐ
∂

∂Pj

ÐÐ→
∂

∂Qj
−
←ÐÐ
∂

∂Qj

ÐÐ→
∂

∂Pj
(18)

is the negative Poisson bracket in normal modes, while the
Liouvillian in normal modes is given by

L Q,P
N = (2N

h̵
)
⎡⎢⎢⎢⎢⎣

N̄

∑
j=−N̄

P2
j

2m
+ V(Q)

⎤⎥⎥⎥⎥⎦
sin( h̵

2N
←→
Λ Q,P

N ), (19)

with

V(Q) = 1
N

N

∑
j=1

V
⎛
⎝

N̄

∑
k=−N̄

√
NT jkQk

⎞
⎠

. (20)

Applying the normal mode transformation to Eq. (1), we obtain

⟨Ôn(tn)
←→
Jn ⋅ ⋅ ⋅

←→
J2 Ô1(t1)

←→
J1 Ô0(t0)⟩

N

≡ Z−1
N NN

(2πh̵)N ∫ dQ∫ dP [e−βĤ ]
N
(Q, P)

× {[Ôn(tn)]N
←→
Jn ⋅ ⋅ ⋅

←→
J2 [Ô1(t1)]N

←→
J1 [Ô0(t0)]N}, (21)

where [e−βĤ ]
N
(Q, P) is the ring-polymer Boltzmann–Wigner fac-

tor in normal mode coordinates [see Appendix B, Eq. (B1)]. The
sine/cosine J-couplings are now given as follows:

←→s = (2N
h̵
) sin( h̵

2N
←→
Λ Q,P

N ) (22)

and

←→c = cos( h̵
2N
←→
Λ Q,P

N ). (23)

The time-evolved observables are given by

[Ô(t)]
N
(Q, P) = eL

Q,P
N tO(Q), (24)

with O(Q) defined similar to Eq. (20). Note that no approxi-
mation has been introduced so far, making Eq. (21) quantum
mechanically exact.

B. Matsubara approximation
This section introduces the Matsubara approximation. The

Matsubara modes28,30,74 are defined as the M lowest frequency ring-
polymer normal modes in the limit N →∞ such that M ≪ N, with
frequencies defined as follows:

ωn = lim
N→∞
M≪N

2
βN h̵

sin(nπ
N
) = 2πn

βh̵
. (25)

They have the special property that any superposition of them
produces a smooth ring-polymer distribution,28,75

q(τ) = Q0 +
√

2
M̄

∑
k=1

sin (ωkτ)Qk + cos (ωkτ)Q−k, (26)

where M̄ = (M − 1)/2. We have identified q(τ) ≡ qj with the
imaginary time τ = βNhj.

Note that the Matsubara modes represent the Fourier coeffi-
cients of q(τ).28,75–78 As such, the ring-polymer distribution q(τ) is
guaranteed to be a smooth, continuous, and differentiable path in
imaginary time (Fig. 1).30,79 This would not be true, in general, if
q(τ) were built with both Matsubara and non-Matsubara modes,
where the latter would give rise to jagged, discontinuous, non-
smooth distributions. Thus, the ring-polymer distribution given
by Eq. (26) can be interpreted as a Fourier filter of the original
ring-polymer distribution.28,75

The Matsubara approximation consists of assuming that one
can describe the quantum dynamical evolution encoded in the TCFs
using only Matsubara modes, so any initial smooth distribution in
q and p remains smooth for all times.30,79 To effect this approxi-
mation in Eq. (21), we neglect the contribution of non-Matsubara
modes to the exact Janus operator [Eq. (18)] to effectively decouple
the Matsubara and non-Matsubara modes. The Janus operator is,
thus, replaced by the Matsubara Janus operator defined as follows:65

←→
Λ M =

M̄

∑
j=−M̄

←ÐÐ
∂

∂Pj

ÐÐ→
∂

∂Qj
−
←ÐÐ
∂

∂Qj

ÐÐ→
∂

∂Pj
. (27)

Note that the Matsubara Janus operator includes only Matsubara
modes.

Considering that in the Matsubara approximation,

h̵
N
←→
Λ M ∼ O(

h̵M
N
), (28)

it follows that in the limit N →∞, M ≪ N, we obtain

←→s ≈ lim
N→∞
M≪N

(2N
h̵
) sin( h̵

2N
←→
Λ M) =

←→
Λ M , (29)

FIG. 1. Schematic representation of jagged ring-polymer imaginary-time paths qj .
When only a superposition of Matsubara modes is used, smooth imaginary-time
paths q(τ) are obtained, which are differentiable in imaginary time τ.
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←→c ≈ lim
N→∞
M≪N

cos( h̵
2N
←→
Λ M) = 1. (30)

Therefore, the sine and cosine couplings become linearized in the
subspace of Matsubara modes. Note that the presence of the 2N/h
factor in Eq. (29) guarantees the existence of this limit.

The linearization process that occurs under the Matsubara
approximation has several interesting consequences. First, note that
the Matsubara Liouvillian is obtained as follows:

L Q,P
N ≈ LM , (31)

where

LM ≡
M̄

∑
j=−M̄

⎡⎢⎢⎢⎢⎣

P j

m

ÐÐ→
∂

∂Qj
− ∂VM(Q)

∂Q j

ÐÐ→
∂

∂Pj

⎤⎥⎥⎥⎥⎦
, (32)

with

VM(Q) =
1
N

N

∑
j=1

V
⎛
⎝

M̄

∑
k=−M̄

√
NT jkQk

⎞
⎠

(33)

representing the Matsubara potential (strictly speaking, the poten-
tial in Eq. (32) should be V(Q) and this becomes VM(Q) after
integrating out the non-Matsubara modes detailed below). Note
that the Matsubara Liouvillian only contains first derivatives and is,
therefore, a classical Liouvillian albeit in the Matsubara subspace.30

Second, note that the elimination of the non-Matsubara modes
from the Janus operator allows for the analytical integration and
elimination of the non-Matsubara modes from Eq. (21). Indeed, fol-
lowing Refs. 30, in Appendix B, we show that in the Matsubara limit,
Eq. (21) leads to the classical-like Matsubara correlation functions,

⟨(On)M(tn)
←→
Jn ⋅ ⋅ ⋅

←→
J2 (O1)M(t1)

←→
J1 (O0)M(t0)⟩

M

= Z−1
M

(2πh̵)M ∫ dQ∫ dP e−β(HM(Q,P)−iθM(Q,P))

× {(On)M(tn)
←→
Jn ⋅ ⋅ ⋅

←→
J2 (O1)M(t1)

←→
J1 (O0)M(t0)}, (34)

where the phase-space integrals are now over Matsubara modes
only, the Matsubara partition function is given by

ZM =
1

(2πh̵)M ∫ dQ∫ dP e−β(HM−iθM), (35)

and the Matsubara Hamiltonian and Matsubara phases are given,
respectively, by

HM(Q, P) =
M̄

∑
k=−M̄

P2
k

2m
+ VM(Q) (36)

and

θM(Q, P) =
M̄

∑
k=−M̄

ωkQ−kPk. (37)

The time-evolved observables in Eq. (34),

OM(t) = eL M tOM(Q) = OM(Qt), (38)

FIG. 2. Schematic representation of the generalized Matsubara correlation func-

tions ⟨(On)M(tn)
←→
Jn ⋅ ⋅ ⋅

←→
J2(O1)M(t1)

←→
J1(O0)M(t0)⟩

M
[Eq. (34)] for the case of

three observables. An initial smooth ring-polymer distribution Q evolves in time
by the classical Matsubara Liouvillian LM . Observables are computed along the

trajectory. The coupling between observables at different times via
←→
Λ M or

←→
1

operators gives rise to different correlation functions.

are now classical-evolved functions of the smooth Matsubara
observable OM(Q) [defined similar to Eq. (33)]. Finally, the Mat-
subara J-couplings correspond to the linearized versions of the sine
and cosine couplings [Eqs. (29) and (30)], namely

←→
J =
⎧⎪⎪⎨⎪⎪⎩

←→
Λ M ,
←→
1 .

(39)

Note that for simplicity, we will often omit the
←→
1 coupling from the

notation.
Equation (34) represents the main result of this paper, show-

ing that general multi-time correlation functions can be expressed in
terms of classical-like correlation functions involving time-evolved
observables coupled through Poisson brackets in a smooth Mat-
subara space, e.g., ⟨{CM(t2)

←→
Λ MBM(t1)}

←→
Λ MAM(t0)⟩

M
(see Fig. 2).

Note that when all
←→
J =←→1 , Eq. (34) reduces to the Matsub-

ara approximation of Kubo-like correlation functions, originally
derived by Hele et al. in Ref. 30 for two-point KT correlations
(namely, “cosine” TCFs) and extended for multi-point KT correla-
tions (namely, all-“cosine” TCFs) by us in Ref. 65. The new insights
provided in the current work are to show that Matsubara dynam-
ics also holds for correlations involving

←→
J =←→Λ M couplings between

observables. In other words, the novel result is to recognize that
the Matsubara approximation can be applied to generalized correla-
tion functions involving combinations of sine and cosine couplings,
which while in Hilbert space translate to commutator and Kubo
integrals between operators, in Matsubara space become

←→
Λ M and

←→
1 couplings between observables. We believe that this is a remark-
able result that provides an interesting interpretation of quantum
dynamics and a unique perspective into the correspondence between
quantum and classical dynamics (see Sec. IV). To the best of our
knowledge, Eq. (34) represents the first derivation of Matsubara
dynamics for general multi-point time correlation functions.

IV. DISCUSSION
A. Classical-like correlation functions

The Matsubara approximation for general multi-point time
correlation functions given by Eq. (34) produces a set of
classical-like correlation functions. This is because the dynamics
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generated by the Matsubara Liouvillian [Eq. (32)] is classical and
emerges without having to explicitly assume that h → 0. It is
worth noting that the exact Liouvillian [Eq. (19)] is an expan-
sion in terms of the effective Planck constant h/N which, in the
Matsubara space, vanishes as N →∞.30 Thus, the classical-like
correlation functions emerge naturally from linearization in the
Matsubara subspace.

The decoupling of Matsubara and non-Matsubara modes not
only produces a linearization of the dynamics in the Matsub-
ara subspace but also allows for an exact truncation of the sine
and cosine couplings to first order [i.e., Eqs. (29) and (30)]. We
remark that this result naturally emerges from the presence of
the effective Planck constant h/N and not for any h → 0 assump-
tion. Quite remarkably, note that the presence of the 2N/h factor
in the definition of the sine coupling, which naturally emerges
in the imaginary-time ring-polymer phase-space representation of
quantum dynamics,68 guarantees the existence of this limit. As a
result, Eq. (34) involves multi-time correlation functions of classical-
like time-evolved observables coupled through Poisson brackets in
Matsubara space (Fig. 2). It is worth highlighting the remarkable
similarity between the different Matsubara correlation functions that
can be obtained from Eq. (34), which emerges from the similar struc-
ture of the original quantum expressions in terms of sine and cosine
couplings.68

The classical dynamics generated by LM preserves both the
Matsubara phase and the Matsubara Hamiltonian, namely LMHM
= LMθM = 0,30,65,66 and consequently, conserves both the Matsub-
ara phase factor eiβθM and classical Boltzmann distribution e−βHM .
As such, Matsubara dynamics conserves the exact quantum Boltz-
mann distribution e−β(HM−iθM) during the classical evolution of the
Matsubara modes. Additionally, since the dynamic is classical and
Hamiltonian (cf. generated by HM) albeit in the Matsubara subspace,
Matsubara dynamics has several properties of Hamiltonian classical
dynamics (see the supplementary material), such as the conserva-
tion of the phase-space volume element (namely, dQdP = dQtdPt)
and the canonical invariance of the Poisson bracket to the change
of variables (Q, P)→ (Qt , Pt). These properties provide interesting
symmetries to the multi-time correlation functions in Eq. (34) that
are shared with the exact quantum TCFs. For example, the TCFs are
invariant to an overall shift in the time origin. Moreover, for time-
independent observables, Matsubara dynamics reproduces the exact
time-independent thermal expectation values.

B. Generalized fluctuation–dissipation relations in
Matsubara space

It is worth remarking that sine/cosine TCFs share a remarkable
connection in the Matsubara space. Specifically, using the fact that
the Hamiltonian is the generator of the dynamics, namely

d
dt

OM(Qt) = LMOM(Qt) = HM
←→
Λ MOM(Qt), (40)

and the smoothness of the ring-polymer distribution to imaginary-
time translations, namely30

d
dτ

OM(Qt) = θM
←→
Λ MOM(Qt) = 0, (41)

it is straightforward to prove that

e−β(HM−iθM)←→Λ MOM(Qt) = −βe−β(HM−iθM) d
dt

OM(Qt). (42)

We remark that Eq. (42) resembles a Matsubara version of the Kubo
identity.80

The relation given by Eq. (42) has several implications for the
connection between correlations in the Matsubara space. In particu-
lar, it is straightforward to show that the two-point Matsubara TCFs
satisfy the following relation:

⟨BM(t1)
←→
Λ MAM(t0)⟩

M
= β

d
dt1
⟨BM(t1)AM(t0)⟩M , (43)

which corresponds to a Matsubara version of the well-known
fluctuation–dissipation (FD) relation that relates the linear response
of a system to Kubo two-point correlation functions.3,5,81 Further-
more, for three-point correlation functions, Eq. (42) allows us to
establish the generalized FD relations,

⟨{CM(t2)
←→
Λ MBM(t1)}

←→
Λ MAM(t0)⟩

M

= β
d

dt0
⟨{CM(t2)

←→
Λ MBM(t1)}AM(t0)⟩

M
(44)

and

⟨{CM(t2)
←→
Λ MBM(t1)}AM(t0)⟩

M

= β
d

dt1
⟨CM(t2)BM(t1)A(t0)⟩M

+ ⟨CM(t2){BM(t1)
←→
Λ MAM(t0)}⟩

M
, (45)

highlighting the connection between different Matsubara TCFs.
Similar relations can be derived for higher-order correlation
functions.

The relations established by Eqs. (43)–(45) have implications
for the calculation of linear and nonlinear response functions.
Indeed, correlations involving commutators between operators at
different times, which are equivalent to correlations involving sine
couplings in ring-polymer space, are ubiquitous in the description of
response theory.1,2,68 As such, the Matsubara correlation functions
given by the left-hand side of Eqs. (43) and (44) provide approxi-
mations to linear and second-order response functions, respectively.
The fluctuation relations established by Eqs. (43)–(45), however,
allow us to express the response functions in terms of different
Matsubara TCFs. We remark that this result is very encouraging
since it guarantees the equivalence of response functions as com-
puted with any TCF. Note, however, that, in practice, the calculation
of the different TCFs can have different numerical convergences,
since, for instance, the Matsubara approximation to sine–sine corre-
lation functions involves the calculation of a double Poisson bracket,
whereas the approximation to cosine–cosine TCF is a standard
correlation function. As such, the equivalences given by Eqs. (44)
and (45) provide a route that can be exploited as a numerical
advantage.

The second significance of the generalized FD relations is that
they provided a direct time-domain connection between response
functions and multi-time correlation functions. To contrast, note
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that in Ref. 66, we have derived relations between the second-
order response functions and Kubo-like correlation functions in the
Fourier domain that involve complicated correction factors. Similar
considerations apply to the Fourier connection between third-order
response functions and Kubo correlation functions derived recently
by Jung and Markland.82 Additionally, the efficient semi-classical
evaluation of the Fourier formulation in Refs. 66 and 82 required
discarding “asymmetric” correlations that, at the time, were hypoth-
esized to not have a semi-classical limit. The present formulation
of Matsubara dynamics and FD relations Eqs. (43)–(45), along with
similar relations that can be derived for the sine–sine–sine third-
order response function, allows us to overcome these difficulties
without the need to work in the Fourier domain or applied addi-
tional approximations. The drawback of the present formulation is
that the direct computation of Poisson brackets can be challenging
to converge for many-body molecular systems, although methods
based on non-equilibrium and hybrid equilibrium/non-equilibrium
molecular dynamics83,84 can be used to efficiently implement this for
the condensed phase system.

C. Interference of trajectories in Matsubara space
The presence of the Poisson-bracket coupling in the Matsubara

correlation functions [Eq. (34)] provides an interesting interpreta-
tion of the different time correlation functions in terms of “jumps” in
phase-space85 or classical “interfering trajectories” between closely
lying trajectories,81 albeit in the extended phase space. In par-
ticular, note that the evaluation of the Poisson bracket between
two observables at different times, e.g., BM(t1)

←→
Λ MAM(t0), requires

the calculation of derivatives of BM(t1) with respect to Xj(t0),
with Xj = (Qj, Pj) denoting a Matsubara phase-space point. These
derivatives involve the evaluation of stability matrices of the form
(see Appendix D)

M jk(t1, t0) =
∂X j(t1)
∂Xk(t0)

, (46)

which relates small deviations δXj to δXk at different times; namely,
they measure the sensitivity of a trajectory at time t1 to infinitesimal
changes in the initial conditions at time t0. For example, consider-
ing for simplicity the correlation between linear operators that only
involve the centroid modes Q0 and P0 (generalization to nonlinear
operators is straightforward), the sine correlation function can be
written in terms of stability matrices as

⟨Q0(t1)
←→
Λ MQ0(t0)⟩

M
= ⟨∂Q0(t1)

∂P0(t0)
⟩

M
, (47)

which can be interpreted as follows: for each initial phase-space
point X(t0), two trajectories with infinitesimal close initial con-
ditions δP0 are launched. After time t1, the difference between
the trajectories is computed. These trajectories interfere with one
another in the sense that they make slightly different contributions
to the correlation function. The final TCF is obtained by adding
the contributions of all these trajectories (see Fig. 3). Alternatively,
understanding derivatives in Eq. (46) as a response to an infinites-
imal jump in phase-space variable, Eq. (47) can be computed in
terms of deterministic trajectories that undergo an infinitesimal
jump P0 → P0 + δP0 at time t0, opening the door to the development

FIG. 3. Schematic representation of the interference of closely lying trajectories
giving rise to the correlation involving Poisson bracket operators, for the case of
linear operators. From the initial phase-space point (Q0, P0), two trajectories with
infinitesimal close initial conditions δP0 are launched. The interference (i.e., differ-
ence) between these trajectories at a later time t determines the response of the
system.

of methods based on non-equilibrium and hybrid equilibrium/non-
equilibrium molecular dynamics.83,84 We remark that the concept of
stability matrix is common in the context of classical response the-
ory and classical chaos theory,81,86,87 providing an interpretation of
classical response functions in terms of interfering trajectories and of
chaos dynamics in terms of sensitivity of trajectories to initial con-
ditions. The formulation of Matsubara dynamics presented in this
work provides a natural extension of these concepts to the Matsub-
ara ring-polymer phase space, providing a unique perspective into
the correspondence between quantum and classical dynamics.

D. Limits
In this section, we analyze some limits of the Matsubara

correlation functions.

1. Zero time limit
Noting that the Poisson bracket involves derivatives of

momenta and position, it is easy to recognize that, for observables
that are only functions of positions (or momenta), any correla-
tion involving a

←→
Λ M coupling vanishes at the zero time limit.

More generally, since the Poisson bracket remains unchanged upon
a canonical change of variables (Q, P)→ (Qt , Pt), it follows that
BM(Qt)

←→
Λ MAM(Qt) = 0 as long as the observables are evaluated at

any equal time t. Recalling that the
←→
Λ M couplings arise from sine←→s couplings that map into commutators in Hilbert space, this zero

t = 0 limit is, therefore, exact.
For the case of correlations not involving any

←→
Λ M couplings,

when t = 0, an alternative form of Eq. (34) can be obtained by per-
forming an analytical continuation of the phase factor.30,31,66,88,89

In effect, making the change of variables Pk → Pk + imωkQ−k for
each Matsubara mode, the quantum Boltzmann distribution can
be transformed into the ring-polymer distribution in Matsubara
modes,

e−β(HM−iθM) → e−βRM , (48)

where the ring-polymer Hamiltonian is given by RM(Q, P)
= HM(Q, P) + SM(Q), where the polymer spring potential is
defined as

SM(Q) =
M̄

∑
j=−M̄

m
2

ω2
jQ

2
j. (49)
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As such, the zero time limit of Eq. (34) when all
←→
J =←→1 is given by

⟨On ⋅ ⋅ ⋅O1O0⟩M

= Z−1
M

(2πh̵)M ∫ dQ∫ dP e−βRM(Q,P)(On)M ⋅ ⋅ ⋅ (O1)M(O0)M ,

(50)

which represents an exact (smoothed) Fourier path-integral repre-
sentation of the zero-time multi-Kubo correlation functions.39,64,65

2. Harmonic limit
Matsubara dynamics is also exact in the harmonic limit for any

observable OM(Q) due to the fact that for this particular potential,
the non-Matsubara modes do not couple with the Matsubara modes.

In effect, the only approximation in the derivation of Matsubara
dynamics is the removal of the coupling between the Matsubara
modes and non-Matsubara modes in the dynamical evolution (via
neglecting non-Matsubara modes in the Janus operator), which
allows integrating, in the N →∞ limit, the non-Matsubara modes.
For a harmonic potential with natural frequency Ω of the form
V(q̂) = 1

2 mΩ2q̂ 2, the Matsubara potential is given by

VM(Q) =
1
2

mΩ2
M̄

∑
k=−M̄

Q2
k, (51)

and it is straightforward to see that the decoupling between Mat-
subara and non-Matsubara modes naturally arises in the exact

FIG. 4. Sine–cosine correlation function ⟨{q̂(t2)←→s q̂ 2(t1)}←→c q̂⟩ for the quartic potential at β = 2. (Right) 2D-contour plots of the exact (top panel), Matsubara (middle
panel), and classical (bottom panel) correlation functions. (Left) Cuts along selected time slices.
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Liouvillian [Eq. (18)], making Matsubara dynamics not an approxi-
mation in this limit. (See Appendix C for specific examples of simple
TCFs.)

3. Classical limit
The classical limit is recovered as a special case of Matsub-

ara dynamics if one considers only the centroid mode (i.e., M = 1).
In effect, noting that the Matsubara phase does not depend on the
centroid (since ω0 = 0) and that the Matsubara Hamiltonian and
Matsubara Liouvillian reduce to the classical Hamiltonian and clas-
sical Liouvillian for M̄ = 0, it follows that for the centroid mode
alone, Eq. (34) reduces to classical versions of correlation func-
tions involving Poisson bracket between observables. It is worth
remarking that Matsubara dynamics recovers the classical descrip-
tion of response theory when M = 1.81 As such, Matsubara dynamics

provides a bridge between a purely quantum and purely classical
description of response theory and dynamics.

4. The continuum limit
In Sec. III B, the imaginary-time path q(τ) was introduced

to motivate the interpretation of the Matsubara modes as Fourier
coefficients of the ring-polymer distribution. However, this contin-
uum representation is not needed for the derivation of Matsubara
dynamics [i.e., note the N dependence in Eq. (33)].30,79 Neverthe-
less, the interpretation of the Matsubara functions in terms of q(τ)
and the associated smooth imaginary-time momenta p(τ) is advan-
tageous for the derivation of symmetries and relations in Matsubara
space.30,66,79 Here, for completeness, we discuss this limit.

FIG. 5. Sine–cosine correlation function ⟨{q̂(t2)←→s q̂(t1)}←→c q̂ 2⟩ for the quartic potential at β = 2. (Right) 2D-contour plots of the exact (top panel), Matsubara (middle
panel), and classical (bottom panel) correlation functions. (Left) Cuts along selected time slices.
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Specifically, in the continuum picture (N →∞), Matsubara’s
normal modes are given by

Qk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
βh̵∫

βh̵

0
dτ q(τ), k = 0,

√
2

βh̵ ∫
βh̵

0
dτ sin (ωkτ)q(τ), 0 < k ≤ M̄,

√
2

βh̵ ∫
βh̵

0
dτ cos (ωkτ)q(τ), −M̄ ≤ k < 0,

(52)

with a similar definition for the Matsubara momenta Pk in terms
of p(τ). It is straightforward to verify that, in this continuum, all

Matsubara functions can be expressed as integrals over imaginary
time; namely, the Matsubara kinetic energy is given by

M̄

∑
j=−M̄

P2
j

2m
= 1

βh̵∫
βh̵

0
dτ

p(τ)2

2m
, (53)

the Matsubara phase is given by

θ(Q, P) = 1
βh̵∫

βh̵

0
dτ p(τ)∂q(τ)

∂τ
, (54)

the Matsubara ring-polymer spring potential is given by

SM(Q) =
1

βh̵∫
βh̵

0
dτ

m
2
(∂q(τ)

∂τ
)

2

, (55)

FIG. 6. Sine–sine correlation function ⟨{q̂(t2)←→s q̂ 2(t1)}←→s q̂⟩ for the quartic potential at β = 2. (Right) 2D-contour plots of the exact (top panel), Matsubara (middle panel),
and classical (bottom panel) correlation functions. (Left) Cuts along selected time slices.
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and the Matsubara potential is given by

VM(Q) =
1

βh̵∫
βh̵

0
dτ V(q(τ)), (56)

with observable functions OM(Q) defined similar to VM(Q). We
remark that this last expression is useful for obtaining analytical
expressions in Matsubara modes for potentials and observables that
are polynomial in q.30

V. NUMERICAL RESULTS
To illustrate the performance of the Matsubara approx-

imation to sine/cosine correlation functions beyond the har-
monic, short-time, and classical limits, we present comparisons

between Matsubara dynamics and exact results for a simple one-
dimensional model potential. We considered a particle with mass
m = 1 in a quartic potential V(q) = 1

4 q4 at an inverse tempera-
ture β = 2 (atomic units are used throughout). We focused on the
calculation of three-point two-time correlation functions involv-
ing Poisson bracket couplings since these TCFs are novel to this
study. We remark that the performance of Matsubara dynamics for
one-time cosine (aka KT) correlation functions can be found in
Refs. 30 and 31 and, for the two-time cosine–cosine (aka DKT),
in Refs. 65 and 66. Additional computational details can be found
in Appendix D.

We start by focusing on the sine–cosine correlation func-
tion ⟨{Ĉ(t2)←→s B̂(t1)}←→c Â⟩

N
, which in Matsubara space is approx-

imated by ⟨{CM(t2)
←→
Λ MBM(t1)}AM⟩

M
. In Fig. 4, we present the

FIG. 7. Sine–sine correlation function ⟨{q̂(t2)←→s q̂(t1)}←→s q̂ 2⟩ for the quartic potential at β = 2. (Right) 2D-contour plots of the exact (top panel), Matsubara (middle panel),
and classical (bottom panel) correlation functions. (Left) Cuts along selected time slices.
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results for the case Â = Ĉ = q̂, B̂ = q̂ 2. For comparison, we also
present the results for the classical correlation function (i.e., M = 1).
At short times, Matsubara dynamics is seen to be an excellent
approximation, reproducing almost perfectly the first recurrences
of the TCF. As either t1 or t2 increases, the accuracy of Matsub-
ara dynamics decreases. Note, however, that Matsubara dynamics
gives a better treatment than classical dynamics in capturing the
long-time oscillations of the TCF. The same trends are found for
the sine–cosine correlation function with Â = q̂ 2 and B̂ = Ĉ = q̂
(see Fig. 5).

Figures 6 and 7 show the results of the Matsubara correla-
tion ⟨{CM(t2)

←→
Λ MBM(t1)}

←→
Λ MAM⟩

M
and its corresponding exact

sine–sine TCF. Note that this case provides a test for the per-
formance of Matsubara dynamics in approximating the second-
order response function. Comparisons of Matsubara and classical
results show that the former reproduces the first oscillations of
the exact response in terms of both intensity and frequency much
better than the latter. Notice also the persistence of the oscil-
lations and the slower damping of the signal in the Matsubara
results.

The results shown in Figs. 4–7 mask an important aspect of
Matsubara dynamics. In particular, note that since we are con-
sidering observables that are only functions of position, at zero
time (t1 = t2 = 0), the Poisson bracket constrains the correlation
to be zero, irrespective of the quantum or classical nature of the
statistic. In other words, classical correlations are trivially exact
at time zero. This would not be the case if one considers cor-
relations involving position- and momenta-dependent observables
(e.g., ⟨P0(t1)

←→
Λ MQ0(t0)⟩

M
), or correlation not involving Poisson

bracket operators (namely, all-cosine TCFs). In these cases, the
classical correlation would give an erroneous zero time value,
which would become more apparent the lower the temperature. On
the contrary, Matsubara dynamics would provide the exact zero
time value, since it accounts for the exact quantum Boltzmann
statistics.30,31,65,66

The overall conclusion of the numerical results is that Matsub-
ara dynamics performed better than classical dynamics in terms of
both capturing the zero-time limit (by including the exact quan-
tum Boltzmann statistics) and achieving a better agreement with the
exact results at shorter times for multi-time correlation functions,
providing a semi-classical bridge between classical and quantum
response theory. Note, however, that the presence of the phase fac-
tor term renders Matsubara dynamics an unpractical method for the
simulation of condensed phase systems. Nevertheless, the present
Matsubara dynamics formulation of second-order response theory
represents a benchmark theory for the future development of Boltz-
mann preserving semi-classical approximations, such as CMD and
RPMD.31–33,64,66,90

VI. CONCLUSIONS
We have introduced a semi-classical approximation to calcu-

late generalized n-point correlation functions based on Matsubara
dynamics. The approach decouples a subspace of ring-polymer nor-
mal modes (Matsubara modes) from the rest of (non-Matsubara)
modes, resulting in a linearization of the dynamics and the

coupling between quantum observables. We have demonstrated that
when applied to the exact ring-polymer phase-space representa-
tion of quantum mechanics,68 the Matsubara “filtering” produces
classical dynamics that conserves the quantum Boltzmann distri-
bution, resulting in classical-like multi-time correlation involving
time-evolved observables coupled through Poisson brackets in a
smooth Matsubara space. Matsubara dynamics is exact in the zero
time and harmonic limit and recovers the classical limit of multi-
time correlation functions when only one Matsubara mode (i.e.,
the centroid) is considered, offering a unique perspective into the
correspondence between quantum and classical dynamics. More-
over, the presence of Poisson-bracket couplings in the formulation
gives rise to stability matrices, providing an interesting interpre-
tation of quantum dynamics in terms of “interfering trajectories”
in an extended phase space. Our numerical tests have shown that
Matsubara dynamics gives consistently better agreement with exact
quantum TCFs than classical dynamics, making it a reliable way to
incorporate quantum Boltzmann statistics in multi-time correlation
functions.

TCFs obtained from Matsubara dynamics suffer from the well-
known phase problem, making them impractical for simulations
of condensed phase systems (see, however, Ref. 70). Nevertheless,
they provide a solid foundation for the development of semi-
classical approximations that preserve the quantum-Boltzmann
distribution.31–33,89,90 In particular, by performing a mean-field aver-
age of the dynamics over the fluctuations modes or by discarding
part of the Liouvillian, CMD and RPMD approximations for the
evaluation of KT (aka cosine) and DKT (aka cosine–cosine) cor-
relation functions can be obtained,31,66 two methodologies that do
not suffer from the phase problem and can be applied to con-
densed phase systems. Similar approximations can be applied to
the TCFs involving the Poisson bracket introduced in this work,
resulting in practical methodologies for incorporating nuclear quan-
tum effects in multi-time correlation functions (a detailed analysis
will be provided elsewhere). Alternatively, Matsubara dynamics is
also the starting point to develop approximations based on the
planetary model32 or quasi-CMD40 for the calculation of two-point
TCFs; it remains to be seen if these approximations can be extended
to calculate correlation functions involving Poisson brackets. On
the other hand, the direct computation of Poisson brackets is
highly challenging to converge for many-body molecular systems.
Thus, classical mechanics approaches, such as non-equilibrium and
hybrid equilibrium/non-equilibrium molecular dynamics, can be
used to address this computational overhead. It would be interesting
to explore if these methods can be adapted for calculating Pois-
son brackets in the extended Matsubara/ring-polymer subspace.83,84

The formalism developed in this work provides a benchmark the-
ory for the future development of quantum-Boltzmann-preserving
semi-classical approximations.

Finally, we would also like to remark that although the
present work is focused on Matsubara dynamics, one can envi-
sion the derivation of alternative approximate methodologies from
the exact path-integral phase-space representation of multi-time
correlation functions (Sec. II). For example, by taking the h → 0
limit, one can also linearize the dynamics and sine/cosine cou-
plings, giving rise to LSC-IVR-like correlation functions involv-
ing Poisson-bracket couplings between observables. We leave the
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development and analysis of the performance of such approxima-
tions for future studies.

SUPPLEMENTARY MATERIAL

The supplementary material includes details of the derivation
of the Matsubara approximation and the harmonic limit.
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APPENDIX A: MAPPING BETWEEN HILBERT SPACE
AND IMAGINARY-TIME PHASE-SPACE CORRELATION
FUNCTIONS

The general “sine/cosine” n-point ring-polymer phase-space
correlation functions introduced by Eq. (1) are an exact represen-
tation of correlation functions in the Hilbert space.68 The map-
ping given by Eqs. (10) and (11) provides a relation that allows
mapping Hilbert space correlations into ring-polymer “sine/cosine”
correlations, and vice versa. Here, we provide some examples.

For two-point correlation functions, the following identities
hold in the N →∞ limit:68

⟨B̂(t1)←→s Â(t0)⟩N = (
i
h̵
)Tr{ρ̂[B̂(t1), Â(t0)]}, (A1)

⟨B̂(t1)←→c Â(t0)⟩N =
1
β∫

β

0
dλ Tr{ρ̂B̂(t1)Âλ(t0)}, (A2)

where Ô(t) = eiĤ t/h̵Ôe−iĤ t/h̵ represents a Heisenberg-evolved oper-
ator, Ôλ(t) = Ô(t − ih̵λ) = e+λĤ Ô(t)e−λĤ , and ρ̂ = e−βĤ /Z is the
density matrix of the system with partition function Z. Note that
Eq. (A1) connects sine functions with correlations involving com-
mutators in Hilbert space, whereas Eq. (A2) relates cosine functions

to Kubo transform correlation functions. We remark that sine
and cosine correlation functions are relevant for linear response
theory.68

For three-point correlation functions, the mapping between
ring-polymer phase-space and Hilbert space correlation functions is
given by

⟨{Ĉ(t2)←→s B̂(t1)}←→s Â(t0)⟩N

= ( i
h̵
)

2
Tr{ρ̂[[Ĉ(t2), B̂(t1)], Â(t0)]}, (A3)

⟨{Ĉ(t2)←→s B̂(t1)}←→c Â(t0)⟩N

= i
βh̵∫

β

0
dλ Tr{ρ̂[Ĉ(t2), B̂(t1)]Âλ(t0)}, (A4)

⟨Ĉ(t2)←→c B̂(t1)←→c Â(t0)⟩N

= 1
β2∫

β

0
dλ0∫

β

0
dλ1 Tr{T̂βρ̂Ĉ(t2)B̂λ1(t1)Âλ0(t0)}, (A5)

where T̂β is an imaginary-time ordering operator that orders
the product of operators so that their imaginary time arguments
increase from right to left and ensure that there is no backward
imaginary time propagation inside the integral. We remark that
the three-point correlation functions defined by Eqs. (A3)–(A5) are
relevant for second-order response theory.68

APPENDIX B: NON-MATSUBARA MODES
INTEGRATION

We start by recognizing that in normal mode coordinates, the
generalized Boltzmann factor [e−βĤ ]

N
is given by30

[e−βĤ ]
N
(Q, P) = ( mN

2πβN h̵2 )
N/2

∫ dD
N̄

∏
l=−N̄
(e

i
̵h

NPlDl)

× exp
⎛
⎝
−βN

2

N̄

∑
l=−N̄

[V(η+l (Q, D)) + V(η−l (Q, D))]
⎞
⎠

× exp
⎛
⎝
−β

N̄

∑
l=−N̄

[m
2

ω2
l Q2

l +
m
2

Ω2
l D2

l +mωlΩlDlQ−l]
⎞
⎠

,

(B1)

with

η±l (Q, D) =
N̄

∑
k=−N̄

√
NTlkQk ±

N̄

∑
k=−N̄

√
NTlk

Dk

2
, (B2)

ωl = 2
βN h̵ sin (πl/N), and Ωl = 1

βN h̵ cos (πl/N).
To carry out the integration of the non-Matsubara modes in

Eq. (21), we closely follow Ref. 30 and recognize that upon neglecting
the non-Matsubara modes in the Janus operator, both the time-
dependent observables [Ô(t)]

N
and the sine/cosine←→s /←→c couplings

are independent of the non-Matsubara momenta P. The only depen-
dence on the non-Matsubara momenta comes, therefore, from the
Boltzmann factor [e−βĤ ]

N
, which can be integrated out, giving rise
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to a product of Dirac delta-functions in the non-Matsubara “stretch”
D variables. This, then, allows us to integrate out the non-Matsubara
D modes from the distribution. As a result, the Boltzmann fac-
tor [e−βĤ ]

N
in Eq. (B1) reduces to (we omit constant factors for

simplicity; see the supplementary material for detailed derivation)

[e−βĤ ]
N
(Q, PM)∝ ∫ dDM

⎛
⎝

M̄

∏
l=−M̄

e
i
̵h NPlDl

⎞
⎠

× exp(−βN

2

N

∑
l=1
[V(η+l (Q, DM))

+ V(η−l (Q, DM))])

× exp
⎛
⎝
−β

N̄

∑
l=−N̄

m
2

ω2
l Q2

l
⎞
⎠

× exp
⎛
⎝
−β

M̄

∑
l=−M̄

[m
2

Ω2
l D2

l +mωlΩlDlQ−l]
⎞
⎠

,

(B3)

where PM and DM include only Matsubara modes and

η±l (Q, DM) =
N̄

∑
k=−N̄

√
NTlkQk ±

M̄

∑
k=−M̄

√
NTlk

Dk

2
. (B4)

In the N →∞ limit, the Gaussian distributions over the Mat-
subara DM modes in Eq. (B3) become nascent Dirac delta functions,
namely

exp
⎛
⎝
−β

m
2

Ω2
l [Dl − i

N
βh̵mΩ2

l
Pl +

ωl

Ωl
Q−l]

2⎞
⎠

N→∞ÐÐÐÐ→δ(Dl), (B5)

allowing us to integrate the DM modes to obtain

[e−βĤ ]
N
(Q, PM)∝ exp(−βN

N

∑
l=1

V(ql(Q)))

× exp
⎛
⎝
− β

2m

M̄

∑
l=−M̄

P2
l − iβ

M̄

∑
l=−M̄

ωlPlQ−l
⎞
⎠

× exp
⎛
⎝
−β

m
2

N̄

∑
l=M̄+1

ω2
l (Q2

l +Q2
−l)
⎞
⎠

, (B6)

where

ql(Q) =
N̄

∑
k=−N̄

√
NTlkQk. (B7)

In the N →∞ limit, the Gaussian distributions over the non-
Matsubara Q modes in Eq. (B6) become nascent Dirac delta
functions, namely

exp(−β
m
2

ω2
l Q2

l )
N→∞ÐÐÐÐ→δ(Ql). (B8)

Therefore, the non-Matsubara Q modes can be integrated out from
the distribution ql(Q), giving rise to the smooth distribution

ql(QM) =
M̄

∑
k=−M̄

√
NTlkQk (B9)

containing only Matsubara modes. Thus, upon integration of the
non-Matsubara Q modes, the Boltzmann factor becomes

[e−βĤ ]
N
(QM , PM)∝ exp

⎛
⎝
−β
⎡⎢⎢⎢⎢⎣

M̄

∑
l=−M̄

P2
l

2m
+ VM(QM)

⎤⎥⎥⎥⎥⎦

⎞
⎠

× exp
⎛
⎝
−iβ

M̄

∑
l=−M̄

ωlPlQ−l
⎞
⎠

, (B10)

and position-dependent functions (including the potential in the
Liouvillian and observables) effectively change as

O(Q) = 1
N

N

∑
j=1

V(q j(Q))→ OM(QM) =
1
N

N

∑
j=1

V(q j(QM)). (B11)

The final result is Eq. (34), where we have dropped the M subscripts
from the Matsubara positions and momenta since there is no longer
a need to distinguish between the Matsubara and non-Matsubara
modes. Only the Matsubara modes remain.

APPENDIX C: MATSUBARA DYNAMICS
FOR HARMONIC POTENTIAL

For a harmonic potential with natural frequency Ω, it is
straightforward to show (see the supplementary material) that
the Matsubara dynamics approximation to the first nontrivial
three-point correlation functions involving nonlinear operators is
given by

⟨{{q2
M(t2)

←→
Λ MqM(t1)}

←→
Λ MqM(t0)}⟩

M

= 2
m2Ω2 sin (Ω(t2 − t1)) sin (Ω(t2 − t0)), (C1a)

⟨{q2
M(t2)

←→
Λ MqM(t1)}qM(t0)⟩

M

= 2
βm2Ω3 sin (Ω(t2 − t1)) cos (Ω(t2 − t0)), (C1b)

⟨{qM(t2)
←→
Λ MqM(t1)}q2

M(t0)⟩
M

= 1
βm2Ω

(∑
k

1
Ω2 + ω2

k
) sin (Ω(t2 − t1)), (C1c)

⟨qM(t2)qM(t1)q2
M(t0)⟩M =

1
β2m2Ω4 [cos (Ω(t2 + t1 − 2t0))

+ cos (Ω(t2 − t1))] +
1

β2m2Ω2

× (∑
k

1
Ω2 + ω2

k
) cos (Ω(t2 − t1)).

(C1d)
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Equations (C1a) and (C1b) are independent of M and agree
with the exact quantum results (see the supplementary material).
Using the identity91 (recall that ωk = 2πk/βh)

lim
M→∞

M̄

∑
k=−M̄

1
Ω2 + ω2

k
= βh̵

2Ω
coth (βh̵Ω/2), (C2)

Eqs. (C1c) and (C1d) also agree with the exact quantum results in
the M →∞ limit (see the supplementary material).

APPENDIX D: COMPUTATIONAL DETAILS

To illustrate the performance of the Matsubara approximation
to general multi-time correlation functions, we show comparisons
between Matsubara dynamics and exact results for the calculation
of two-time correlation functions in simple one-dimensional model
potentials. We considered a particle with mass m = 1 in a quartic
potential V(q) = 1

4 q4 at an inverse temperature of β = 2 (atomic
units are used throughout). Exact results were computed by the
direct evaluation of the trace in a finite harmonic basis set.

The integration over the Matsubara phase was done by
evaluating the ratio33,65,66

⟨cos (βθM)●⟩HM

⟨e−βSM ⟩
HM

, (D1)

where ⟨⋅⟩HM
denotes sampling from the Matsubara distribution

e−βHM and ● is a placeholder for the time-dependent function of
Matsubara modes (that depends on the observables and type of
correlation computed). We remark that the presence of the phase
θM in Eq. (34) means that Matsubara dynamics suffers from the
sign problem, rendering the methodology unpractical for the sim-
ulation of condensed phase systems. A total of circa 109 configu-
rations were necessary to converge the results for M = 5. Including
additional modes or performing the simulations at a lower tempera-
ture makes the computation extremely challenging, highlighting the
impracticality of Matsubara dynamics.

All simulations were performed in the (Matsubara) normal
mode representation using an analytical form for polynomial poten-
tials, as described in the supplementary material of Ref. 30. The
dynamics were performed employing the velocity-Verlet algorithm
with a time step of 0.01 a.u. Momenta were sampled from a classical
Boltzmann distribution every 20 a.u. The evaluation of the Pois-
son bracket was performed using the following relation, valid for
observables that are only dependent on position:

OM(Qt)
←→
Λ MO′M(Qt′) =∑

k,l,m

∂OM(Qt)
∂Qm(t)

∂O′M(Qt′)
∂Ql(t′)

× (MQP
mk(t)M

QQ
lk (t

′) −MQQ
mk (t)M

QP
lk (t

′)),
(D2)

where Mαβ
jk (t) =

∂α j(t)
∂βk

represents an element of the stability
matrix81,87,92 whose time evolution is given by

d
dt

MQP
jk (t) =

1
m j

MPP
jk (t), (D3a)

d
dt

MPP
jk (t) =∑

l
− ∂2UM(t)
∂Q j(t)∂Ql(t)

MQP
lk (t), (D3b)

d
dt

MQQ
jk (t) =

1
m j

MPQ
lk (t), (D3c)

d
dt

MPQ
jk (t) =∑

l
− ∂2UM(t)
∂Q j(t)∂Ql(t)

MQQ
lk (t), (D3d)

with the initial conditions

MQP
jk (0) =MPQ

jk (0) = 0, (D4a)

MPP
jk (0) =MQQ

jk (0) = δ jk. (D4b)

For the simple observables considered in the present paper, ana-
lytical expressions for OM can be obtained and the derivatives
in Eq. (D2) can be evaluated exactly.30 The equations of motion
Eq. (D3) were integrated along the dynamics with the same velocity-
Verlet algorithm. To avoid the calculation of the second-order
stability matrix involved in the double Poisson bracket, correla-
tion functions involving two

←→
Λ M couplings were computed using

numerical differentiation based on relation Eq. (44).
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