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ABSTRACT: Understanding the effect of vibronic coupling
on electron transfer (ET) rates is a challenge common to a
wide range of applications, from electrochemical synthesis and
catalysis to biochemical reactions and solar energy conversion.
The Marcus−Jortner−Levich (MJL) theory offers a model of
ET rates based on a simple analytic expression with a few
adjustable parameters. However, the MJL equation in
conjunction with density functional theory (DFT) has yet to
be established as a predictive first-principles methodology. A
framework is presented for calculating transfer rates modulated
by molecular vibrations, that circumvents the steep computational cost which has previously necessitated approximations such as
condensing the vibrational manifold into a single empirical frequency. Our DFT−MJL approach provides robust and accurate
predictions of ET rates spanning over 4 orders of magnitude in the 106−1010 s−1 range. We evaluate the full MJL equation with a
Monte Carlo sampling of the entire active space of thermally accessible vibrational modes, while using no empirical parameters.
The contribution to the rate of individual modes is illustrated, providing insight into the interplay between vibrational degrees of
freedom and changes in electronic state. The reported findings are valuable for understanding ET rates modulated by multiple
vibrational modes, relevant to a broad range of systems within the chemical sciences.

■ INTRODUCTION

Electron transfer (ET) reactions are paramount in many fields
of the chemical, physical, and biological sciences.1−8 Control-
ling the movement of charges between weakly coupled donors
(D) and acceptors (A) is pivotal for a host of applications, e.g.
photocatalytic processes,9−11 dye-sensitized solar cells,12,13 and
organic photovoltaics,14,15 in photosystem II16−18 and in other
redox-driven catalytic processes.19−21 The ability to describe
the mechanisms and rates of charge transfer in the weakly
coupled regime is thus essential for understanding a wide range
of systems and mechanisms as well as for the design and
characterization of molecular components for solar energy
conversion and catalytic applications.
The semiclassical Marcus theory has become a standard tool

for modeling ET processes.1,22 The theory models the ET rates
according to a simple equation
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by approximating the reactants and products as harmonic states
at temperature T. Here, kB is the Boltzmann constant, HAD is
the electronic coupling between donor and acceptor, λ is the

reorganization energy, and ΔG0 is the free energy change of the
ET reaction.
Equation 1 shows that the maximum kET is obtained when λ

= −ΔG0, corresponding to an activationless transfer. The rate
then decreases when ΔG0 becomes more negative in the so-
called Marcus inverted region, despite the reaction being more
thermodynamically favorable. The resulting parabolic functional
form of log(kET) as a function of −ΔG0 is schematically shown
in Figure 1b. The inverted region was experimentally confirmed
for a homologous series of donor−spacer−acceptor (D−Sp−
A) dyads, with the same D and a rigid saturated hydrocarbon
spacer (Sp) to ensure weak coupling and uniform D−A
separation (10 Å) for all dyads, while changing A to have
increasing thermodynamic driving potential (−ΔG0) for charge
transfer, as represented in Figure 1.23,24

The Marcus equation, eq 1, has been extensively applied as a
3-parameter model for ET to fit experimental data.1,25−28 The
reorganization of the system due to ET is modeled in eq 1 by a
single parameter that effectively accounts for both the outer-
sphere (solvent) and inner-sphere (solute) reorganization
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energies. Predictions based on eq 1 typically underestimate the
kET values in the inverted region and fail to capture the
asymmetric shape of the curve of log(kET) vs −ΔG0.29−31 The
Marcus−Jortner−Levich (MJL) theory, described by eqs 2 and
4,32−34 overcomes some of the limitations of the original
Marcus model by separating the outer-sphere reorganization
energy λS, from the inner-sphere reorganization energy λV, and
by explicitly including the contribution from the vibronic
coupling between reactant and product state, while still
approximating those states as harmonic. The resulting MJL
framework predicts higher ET rates in the inverted region, and
thus kET vs ΔG0 parabolas that agree with the asymmetric shape
observed in experimental measurements (Figure 1c).2

Closs et al. measured the intramolecular ET rates for dyads
2−9 after reduction of the donor moiety.23,24 The parameters
λV, λS, and HAD were fitted to the experimental rates using
literature values for ΔG0 and assuming a single effective
vibrational mode of the aryl system with frequency ω = ωeff =
1500 cm−1, according to the one-mode version of the MJL
equation23,24
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The one-mode model has been used for modeling photo-
induced ET35 as well as triplet−triplet energy and electron
transfer.36,37 Many other studies have also adopted the single
effective mode model with a typical frequency of 1500−1600
cm−1,38−40 corresponding to an average stretching mode of an
organic conjugated system. The outstanding question is
whether MJL theory can be used as a truly predictive theory

at the density functional theory level, without relying on
adjustable parameters or simplified vibronic models.
Here, we implement a scheme for calculations based on the

full active space of vibrational modes, as described by eq 4,
moving beyond the one-effective-mode approximation32
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Here the index i runs over all N normal modes i with quantum
numbers vi, frequencies ωi, and reduced masses μi, and the
prefactor and first exponential can be evaluated separately from
the succeeding nested sum. This form of the MJL equation
explicitly and quantum mechanically considers the complete
manifold of intrasolute states, whereas solvent-polarizing
modes, typically with frequencies ℏω ≪ kBT, are implicit as
derived by Ulstrup and Jortner.32,41 The ET reaction causes
displacements in nuclear coordinates Q, often entailing partial
changes in bond order, which is reflected in different minimum-
energy geometries of reactant and product. The resulting
reaction coordinate displacements are projected onto the
nuclear displacement associated with the ith vibrational mode
to obtain ΔQi. The unitless reduced displacements ΔQi(μiωi/
ℏ)1/2 are directly related to the Huang−Rhys factors Si as per
eq 5. Thus, the Si constitute a measure of the reaction−
vibration overlap and the contribution of mode i to the ET rate
constant.
The DFT−MJL model, based on eq 4, describes electronic

(vibronic) state transitions semiclassically within the Golden

Figure 1. (a) The donor(D)−spacer(Sp) structure is coupled to 9 different acceptors (A1−A9), forming dyads 1−9. (b) Schematic depiction of a
symmetric parabolic curve of ET rates (log scale) as a function of −ΔG0, as predicted by Marcus theory, eq 1. (c) Corresponding schematic
representation of rates based on the Marcus−Jortner−Levich theory, where consideration of vibronic couplings yields an asymmetric curve with
higher predicted rates in the inverted region (−ΔG0 > λ).

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b00513
J. Chem. Theory Comput. 2017, 13, 6000−6009

6001

http://dx.doi.org/10.1021/acs.jctc.7b00513


rule approximation of first-order time-dependent perturbation
theory. It is practical since it requires no explicit dynamical
simulations and is comparable to other approaches to model
ET beyond the simple Marcus approximation.36,42−44 The
consideration of all intramolecular vibrational modes con-
stitutes an improvement compared to prevailing theoretical
descriptions of ET rates. Other recently proposed strategies to
refine this picture concern local temperature differences
between reactant and product,45 the temperature dependence
of ΔG0 and λ,46 and the more general effect of a non-
equilibrated thermal bath.47

We find that eq 4 can be efficiently evaluated by Monte Carlo
sampling of vibrational quantum numbers vi, bypassing the
need for reducing the dimensionality of the vibronic manifold
or employing empirical parameters. All vibrational modes,
within the ℏω ≫ kBT approximation, are considered; which is
particularly helpful for molecules where the ET is in the
inverted region. The parameters ΔG0, λV, λS, ω, and HAD can be
computed directly at the DFT level or at a higher level of
quantum chemistry if desired. In the following section, we show
that the resulting approach yields first-principles rate
predictions in agreement with experiments over a wide range
of values of ET rates and provides insights on the modulation
of ET rates by couplings to multiple vibrational modes.

■ METHODS

Free Energies and Frequencies. Electronic structure
calculations of free energies ΔG0 and harmonic frequencies ω
were carried out using the Gaussian0948 software, at the
B3LYP49/6-31+G(2d,p) level of theory, using an ultrafine
integration grid, and the SMD implicit solvent model for
tetrahydrofuran (THF).50,51 Comparisons to the M062X52 and
ωB97XD53 functionals and the 6-311+G(2d,p) basis set show
consistent results for the free energies, see Table S3 in the
Supporting Information (SI). The ΔG0 were computed by
fragmenting the dyads into three separate units, including the
donor (D), spacer, and acceptor (A) (see Figure S4 in the SI
for details on the fragmentation scheme). Since the spacer is a
redox-inactive, rigid hydrocarbon fragment, systematic analysis
of the trends in ΔG0, λ, and ΔQ across the whole series of
dyads is performed considering D and A only, disregarding the
spacer.35

The free energies of the fragments D and A in their neutral
and reduced forms (i.e., GD, GA, GD−, GA−) are obtained in
terms of the electronic energies plus thermal corrections to the
Gibbs free energy based on the ideal-gas, rigid-rotor, harmonic-
oscillator approximation in conjunction with the SMD implicit
solvent model,51,54,55 as follows:

Δ = − = + − +− −G G G G G G0 ( ) (G )prod react D A D A (6)

The Dushin code56 was used to align the geometries of reactant
and product and to project the reaction coordinate difference
vectors on the vibrational mode displacement vectors to obtain
the reduced displacements ΔQi.
Reorganization Energies. The reorganization energies

were computed separately for each fragment, corresponding to
infinite D−A distance at the same level of theory as ΔG0, but
without thermal contributions since vibrational free energies are
reliably calculated only at stationary points. The total
reorganization energies λT∞, including the reorganization of
both solute (inner-sphere) and solvent (outer-sphere),57,58

were obtained as the averages of the reorganizations of
reactants λT∞,R and products λT∞,P as follows:

λ λ

λ
λ λ

= − = −

=
+

∞ ∞

∞
∞ ∞

E E E E(3) (2), (4) (1),

2

T ,R T ,P

T
T ,R T ,P

(7)

This is a variant of Nelsen’s four-point method,59 where E(1)−
E(4) correspond to the energies of states 1−4 on the potential
energy surfaces (PES) of reactant and products (Figure 2).

Such deviations from the Marcus−Hush formalism through
introduction of different reorganization energies for forward
and backward ET transitions have also been studied extensively
by Matyushov.60 The total reorganization energies λT,∞ are
calculated without relaxing the “slow” reaction field corre-
sponding to the solvent nuclear motion during fast ET.57,61,62

Accordingly, the reaction fields associated with states 1 and 2
are used for the nonequilibrium-reaction-field energy calcu-
lations of states 3 and 4 (see the SI for example input files).
The inner-sphere reorganization energy λV does not enter

explicitly in eq 4, but this parameter is inferred as the sum of
contributions from each mode i as follows:63,64
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S
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1 (8)

The outer-sphere (solvent) reorganization energies λS,∞ are
obtained by subtracting the inner-sphere λV from the total
reorganization energy λT,∞ as follows:

λ λ λ= −∞ ∞S, T, V (9)

The Marcus expression for outer-sphere reorganization energies
λS,R depends explicitly on the D−A distance R as follows:65

Figure 2. Reactant and product potential energy surfaces. Computed
energies of states 1−4 are used to obtain total reorganization energies
λT∞.
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This expression is used to correct our fragment-based
calculations of λS for finite D−A distances
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where R is the average of the shortest and largest atom-to-atom
distance between D and A of each dyad. The donor and
acceptor effective solvation radii aD and aA are obtained from
the implicit solvation cavity volumes or surface areas, assuming
spherical fragments. Finally, the total reorganization energy λT
is corrected for finite D−A distances as follows:

λ λ λ= +T S V (12)

The reorganization energies were calculated in a dielectric
continuum solvation model. While existing studies hint toward
variations in reorganization energies calculated using such
models in viscous,66,67 polar,68−71 and soft condensed media,72

the computed energies typically agree within 10% of
experimental values, as pointed out by Buda.73

Electronic Couplings. The electronic couplings HAD
between the lowest unoccupied molecular orbital (LUMO) of
the donor and the LUMO of the acceptor were calculated at
the B3LYP49/TZ2P level of theory, using the ADF74,75 package
and the charge transfer integral (CTI) method:76−78
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Here, JDA is the off-diagonal element of the Fock matrix
corresponding to the donor and acceptor orbitals. SDA is the
overlap integral of the two orbitals, and eD and eA are the
energies of the system bearing the electron on the donor or
acceptor, respectively. Electronic couplings, and thus kET,
depend strongly on the distance and relative orientation
between the donor and acceptor.79,80 Because of the rigidity of
the steroid spacer, however, the distance between donor and
acceptor in these dyads is fixed. Nevertheless, the single bonds
connecting the donor and acceptor units to the spacer can
rotate. The strength of electronic coupling is modulated by the
coplanarity between the donor and acceptor aryl groups,81,82 as
defined by a dihedral angle φ of rotation. Therefore, we
construct a Boltzmann average of the electronic couplings to
include the effect of thermal fluctuations as follows
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where HAD(T) is the conformationally averaged coupling, and
ΔE(φ) is the energy of each dyad relative to its global
minimum. The ΔE(φ) were calculated using relaxed scans over
φ using Gaussian09 and B3LYP/6-31g(d) in implicit THF
solvent. The integrals in eq 14 are evaluated by quadrature in φ
intervals of 15°.

Monte Carlo Rate Calculations. To solve the full MJL
expression eq 4, we implement an importance-sampling Monte
Carlo (MC) scheme to avoid explicit evaluation of all terms in

Figure 3. (a) Decomposition of rate contributions from individual modes. The Huang−Rhys factors Si and wave numbers ωi of the most important
modes i (with Si > 0.03) of representative fragments (A2, A5, and A7). Heat map showing the contributions to the rates from each mode i as a
function of vi, assuming vj≠i = 0 for the other modes [see eq 16]. (b) Displacement vectors upon reduction, scaled by a factor of 30 for visibility. (c)
Displacement vectors of the vibrational mode with the largest Si, i.e. the largest overlap between vibrational mode displacement and changes in
reaction coordinates upon ET.
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the nested sum, instead focusing on sampling those sets of vi
that contribute to the rate. The MC routine samples vibrational
quanta in the vi = 0−11 range for all contributing (Si > 1 ×
10−6) vibrational modes N of each dyad, up to N = 77 for dyad
5. The evaluations of kET,eq 4 are fully converged within 108 MC
iterations, which constitutes a tremendous efficiency improve-
ment compared to the ∼1022 evaluations necessary for explicitly
computing all possible sets of vi in the same 0−11 range. The SI
includes a thorough description of the MC algorithm, including
the analysis of convergence and comparisons to benchmark
calculations, sampling function form, and other technical
details.

■ RESULTS AND DISCUSSION
Vibrational Modes. Eq 2 provides the simplest possible

model for vibronic effects on ET rates based on the MJL
formalism, assuming that vibrations influence the rate as a
single effective mode with frequency ωeff. Previous studies have
implemented the one-mode model by fitting or assuming ωeff to
approximately match the observed rates.23,24,38−40 More
rigorously, ωeff can be computed in terms of the DFT
frequencies ωi and Huang−Rhys factors Si as follows:83
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Since the spacer of dyads 1−9 is structurally rigid, only the
modes of the redox-active D and A moieties change upon ET
and, therefore, require consideration in eq 15.84 The DFT
values of ωeff for dyads 1−9 range from 835 cm−1 for 5 to 992
cm−1 for 2. Interestingly, those effective frequencies are
considerably lower than the 1500 cm−1 value empirically fitted
by Closs et al.,23 who assumed that the ET is mostly coupled to
an aryl breathing mode.
Due to the Poissonian-like dependence of the rates with Si

and vi, modes with small Si contribute mostly with vi = 0.
Conversely, vibrational excitations in modes with larger Si
couple to the ET, making these modes contribute with higher
vibrational quantum numbers vi in the inverted region, as
shown in Figure 3. Figure 3a shows the distribution of values of
Si and ωi for modes with Si > 0.03 in three representative dyads,
including results in the normal, near-activationless, and inverted
regions. Figure 3a also depicts the contributions to the rates as
a function of vi for the same modes, when all other modes are in
the ground state with vi = 0 as follows:
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The heat map of Z in Figure 3a shows that multiple modes
couple to ET and unavoidably modulate the rates. Most modes
have associated Huang−Rhys factors Si < 1.0, for which vi = 0
dominates the rate contribution in the normal region. However,
all acceptors exhibit multiple modes with sufficiently large Si to
significantly affect the rate. The modes with larger Si involve
stretching of the aryl rings, due to delocalization of the
transferred electron across the whole conjugated system (see
Figures S14−S22 in the SI for the displacement vectors of all
modes in all donors and acceptors with Si > 0.03). This signifies
that the aryl stretching modes are critical for ET, and efforts to
alter vibronic transfer rates should focus on tuning such modes.
Figure 3b shows the atomic displacements induced by ET in

A2, A5 and A7, as compared to the displacement vector

components of the vibrational mode with the largest Si (i.e., the
mode with the largest overlap with the reaction coordinate
change) shown in Figure 3c. The modes shown for
benzoquinonyl (A7) and naphthyl (A2) both exhibit displace-
ment vectors strikingly similar to the overall nuclear displace-
ments induced by ET (Figure 3b). However, this similarity is
not necessarily immediately obvious for any fragment or mode,
as seen for example for hexahydronaphthoquinonyl (A5)
shown in Figures 3b and 3c. The lack of apparent agreement
for A5 is because the vibration−reaction overlaps are calculated
in curvilinear internal coordinates, making the 2D projection
illustrated in Cartesian coordinates as shown in Figure 3b
incapable of providing a good representation of the internal-
coordinate changes in this case. Overall, the results from Figure
3 highlight the importance of systematic evaluation of the
Huang−Rhys factors for all modes with significant contribu-
tions to the rates, and the precariousness of neglecting
contributions from the complete set of modes that couple to
ET. This is most significant for the inverted region, where
several modes of large Si often contribute significantly.

Electron-Transfer Free Energies. The ET free-energy
changes ΔG0 are negative for the entire set, except for the
practically symmetric dyad 1 for which ΔG0 = 0. Figure 4

compares the DFT-calculated values of ΔG0 to the
corresponding experimental values (see Table S3 in the SI),
showing remarkable agreement with a mean absolute deviation
of only 0.037 eV, over the complete set of dyads 1−9. Accurate
and efficient calculations of ΔG0 are essential for reliable
predictions of ET rates, since ΔG0 is squared in the exponential
of eq 4, therefore affecting the rates considerably.

Reorganization Energies. Table 1 reports the calculated
values of reorganization energies. The mean inner-sphere λV =
0.56 eV obtained from our first-principles calculations is larger
than the corresponding experimentally fitted dyad-wide value
(λV = 0.45 eV), whereas our mean outer-sphere λS = 0.79 eV is
in close agreement with the experimental estimate (λS = 0.75
eV).23,24 The smallest λV corresponds to the pyrenyl dyad 4
where the added electron is extensively delocalized and
therefore does not polarize or distort the structure significantly,
whereas the largest λV corresponds to the hexahydronaphto-

Figure 4. Correlation between calculated and experimental23 ET free
energy changes −ΔG0 for dyads 1−9.
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quinonyl dyad 5 where the conjugation is disrupted by two
saturated carbons. The λS values exhibit a very narrow spread
due to the similar radii of the D and A fragments. The radii are
in the 3.2−3.7 Å range as obtained from the implicit solvent
cavity volume. This increases to 3.6−4.2 if instead obtaining the
radii from the cavity surface area, with the difference stemming
from the fragments not being perfectly spherical. Nevertheless,
λS remains unchanged to within 3% if instead using the latter
radii.
The good agreement with experimentally fitted λ values

yields similar curvatures of the log(kET) vs ΔG0 curves (Figure
6), providing partial validation of our distance-correction
scheme based on relatively simple geometric arguments.
Electronic Couplings. Figure 5 illustrates the dependency

of HAD(φ) and ΔE(φ) on φ, for dyads 2 and 8, showing that
the estimation of HAD based only on the minimum energy
conformation would typically neglect important contributions

from thermally accessible conformations. Similar results for the
other dyads are included in the SI (Figures S5−S13). This
shows clearly that the minimum-energy conformation typically
is not the one with the strongest D−A electronic coupling.
Table 2 compares the ensemble-average couplings HAD(T)

and the electronic couplings HAD,opt of the minimum-energy

conformations. For dyads A1−A4 with a polyaromatic
hydrocarbon acceptor, the couplings of the minimum-energy
conformation largely determine the value of the ensemble
average. However, for dyads 5−9 the ensemble average
includes important contributions from twisted conformations
partly due to steric hindrance caused by proximal carbonyl
oxygen atoms. The mean value of the rotationally averaged
DFT couplings 6.62 × 10−4 eV agrees well with the empirical
value (7.7 × 10−4 eV) obtained by fitting to measured rates
according to eq 2.23 We note, however, that rather than a
uniform value for the couplings, DFT calculations show that
|HAD(T)| varies by more than a factor of 2 across the set of
dyads investigated, and HAD(T)

2 varies by more than a factor of
5. Furthermore, the use of only minimum-energy conforma-
tions (HAD,opt) would underestimate kET by up to 2 orders of
magnitude compared to the ensemble average (HAD(T)). It is,
therefore, clear that the conformational-averaging procedure is
essential for proper modeling of ET rates.
Estimating electronic coupling strengths from quantum

chemistry calculations is challenging, although various
methodological developments have been made recently.85−92

Our method of estimating the coupling for ET with DFT is
based on the single-orbital approximation, i.e. that the coupling
between reactant and product state is described by the coupling
between only LUMOdonor and LUMOacceptor, see Table S6 in
the SI for elaboration. This method is straightforward while
somewhat crude and, like any DFT method, likely involves
shortcomings with respect to the level of theory, e.g.
overdelocalization of charge, which is only partly remedied by
the employment of hybrid exchange−correlation functionals.90

Hence, the good agreement of our calculated rates to those
reported experimentally is expected to involve some
cancellations of error.
The process investigated here corresponds to an ET from the

LUMO of the donor to the LUMO of the acceptor. However,
the methodology is readily applied to ET between other
orbitals, e.g. highest occupied molecular orbital (HOMO) to
HOMO transfers, which are relevant to the oxygen-evolving
half-cell in photocatalytic water-splitting dye cells, or LUMO−
HOMO which dominate the recombination process in dye-

Table 1. Reorganization Energies of All Dyads

dyad λV [eV] λS [eV]

1 0.66 0.72
2 0.45 0.79
3 0.48 0.79
4 0.43 0.82
5 0.69 0.83
6 0.56 0.81
7 0.58 0.80
8 0.59 0.80
9 0.59 0.79
mean 0.56 0.79

Figure 5. Relative energies ΔE (red) and electronic couplings |HAD|
(black), as a function of the dihedral angle φ between the fixed
donor−spacer (D−Sp) and the acceptor (A) for (a) dyad 2 and (b)
dyad 8.

Table 2. LUMOD−LUMOA Electronic Couplings Calculated
at the Minimum Energy Geometry As Compared to the
Thermal Ensemble Average at Room Temperature T

dyad |HAD,opt| [eV] |HAD(T)| [eV]

1 4.86 × 10−4 6.88 × 10−4

2 5.29 × 10−4 5.42 × 10−4

3 5.40 × 10−4 8.33 × 10−4

4 2.73 × 10−4 1.00 × 10−3

5 4.53 × 10−5 9.73 × 10−4

6 2.53 × 10−4 4.53 × 10−4

7 8.83 × 10−5 4.84 × 10−4

8 1.31 × 10−4 5.40 × 10−4

9 1.16 × 10−4 4.39 × 10−4

mean 2.74 × 10−4 6.62 × 10−4
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sensitized solar cells. Therefore, the reported findings on the
participation of multiple vibrational states and the influence of
thermal fluctuations on the average electron couplings should
be valuable for theoretical modeling ET in a wide range of
systems and applications.
Electron Transfer Rates. Figure 6 compares the

experimental ET rates, kET, for dyads 1−9 to those obtained

with DFT−MJL theory, according to eqs 1, 2, and 4. Clearly, eq
4 provides a better agreement with experimental data than
calculations based on the more approximate models (see Table
S1 in the SI for all tabulated rates), enabling predictions with
no adjustable parameters or effective vibrational approxima-
tions. We note that the experimental rate for 5 is a lower-bound
instrument-limited value,23 so the actual rate is most likely in
better agreement with theory than is apparent from Figure 6.
Using the full MJL expression eq 4, the rate ratio kET,eq 4/

kET,exp ranges between 0.20 and 5.13, corresponding to dyads 9
and 5, respectively, resulting in a very small mean absolute error
(MAE) on the logarithmic scale of 0.35 log(s−1). The one-
effective mode ratio kET,eq 2/kET,exp ranges from 0.06 to 5.69,
corresponding to the same dyads, with MAE = 0.52 log(s−1).
Overall, the correlation is remarkably good, considering the
sensitivity of kET to the parameters of the model and the several
orders of magnitude wide span of absolute rate constants across
the homologous set of dyads.

■ CONCLUSIONS
The Marcus−Jortner−Levich (MJL) theory based on one
effective vibrational mode, introduced by eq 2, has been
extensively used for fitting experimental ET rates with an
analytic model that involves a few adjustable parameters
including the reaction free energy ΔG0, the electronic coupling
HAD, solute and solvent reorganization energies λV and λS, and
the frequency ωeff of a single effective vibrational mode. Here,

we have shown that the theory can be used in conjunction with
DFT beyond the single effective vibrational mode model, as a
predictive method without empirical parameters, including the
complete active space of vibrational modes as introduced by eq
4. Implementation of the resulting all-mode MJL framework as
per eq 4 is based on a Monte Carlo scheme to efficiently sample
the ensemble of quantum numbers for all vibrational modes.
The explicit consideration of all modes allows us to improve
prediction of rates by an order of magnitude in the inverted
region where tunneling and nuclear effects are prominent, while
also permitting a decomposition of the rate contribution from
individual modes, providing physical insight unavailable under
the one-effective-mode approximation. In all of the studied
moieties, delocalized aryl stretching modes show the strongest
coupling to the ET process and are thus worthy of particular
attention when developing systems with improved transfer
rates.
Direct comparisons with experimental data illustrate the

importance of considering the complete active space of
vibrational modes that unavoidably couples to ET, the
donor−acceptor relative orientations, and the solvent exclusion
volume due to the proximity of the electron donor and acceptor
partners. By addressing all of these important effects, MJL
theory based on DFT calculations is able to predict ET rates for
the whole set of nine dyads spanning over 4 orders of
magnitude in the 106−1010 s−1 range. It is, therefore, expected
that the reported methodology should be particularly useful for
reliable descriptions of charge-transfer rates in a wide range of
applications, including solar photovoltaic and photocatalytic
processes.
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