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I. NON-CANONICAL CHANGE OF VARIABLES
By making the variable substitution
F)j — ﬁ)] + imij_j

and noting that

CL)j = —w_j

© N S ot

10
10

11
11
12

14
14
15
17
18

19



the Matsubara phase can be written as
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and the kinetic energy can be written as
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Combining both results it follows that
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and, therefore,

Moreover, by noting that under the variable substitution
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FIG. 1. Contour integration lines used for the analytic continuation in Eq. 10, with L — oo and

)\j = —imij,j.

the Matsubara Liovullian can be cast as
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II. ANALYTIC CONTINUATION

After making the change of variables P; — ]5] + imw;Q)—; for every Matsubara mode,
the Matsubara approximation to the fully symmetrized (imaginary-time ordered) n-th order

Kubo transformed multi-time correlation function can be exactly expressed as

Foo—imw;Q _;
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Eq. 9 is an exact rewriting of Eq. 2 in the main text where the momenta f’j are evaluated

in the complex plane. However, since the integrals involved are of the form

+o0—A;j N _
| anr@P, (10)
—OO—)xj
(with A\; = —imw;Q)_;) one can use the contours defined in Figure 1 to evaluate them.

Provided that the function f(Q,P,t) remains analytic (namely, free from singularities)
inside the region (which is the case for any analytic Hamiltonian)® , by Cauchy’s integral
theorem the integral can be re-expressed as
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The first term on the right hand side corresponds to the analytic continuation on the real
axis, whereas the second and third represent the edges of the contour integration. These
edge terms can be shown to be zero for a series of cases,” including the t = 0 limit, and
therefore allow us to rewrite Eq. 9 as
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III. LIOUVILLIAN PROPERTIES

In this section we will summarize some of the properties of the Liovillian operators defined

in the main text.



A. Ring-polymer Liouvillian

Action of the ring-polymer Liouvillian Lzp(Q, P)

L@ P)= 3 [%{gj ) <8UM<Q>

j=—11

on the centroid position @)y allows one to obtain the following relations
R
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Similarly the action of Lzp(Q, P) on the Matsubara potential gives
M
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and action on the ring-polymer spring potential gives
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Combining the previous results it follows that

P2
LrpRy = Lrp o +5Su(Q)+Un(Q)| =0,

which implies that £zp conserves the ring-polymer Boltzmann distribution e=#f .

B. Imaginary Matsubara Liouvillian

Action of the imaginary Matsubara Liouvillian £;(Q, P)

LiQ.P)= >, [wj (Pjag .—Qjagjﬂ ,

j=—M -

on the centroid position )y gives
L1Qo = —woQo = 0,
and action on the centroid momenta Fy gives
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Additionally, it follows that
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where we have used the fact that’ dQ;/dr = —w;Q_; to obtain the next-to-last line and

the last line follows from the imaginary time invariance (smooth nature) of the Matsubara

potential.



L;(Q, P) acting on the ring-polymer spring energy gives
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where the last line follows from symmetry about j = 0, i.e. the jth term will be canceled

out by the —jth term (and wy = 0). Similarly, the imaginary Matsubara Liouvillian acting

on the kinetic energy gives
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for the same reason as the previous case.

Additionally, £;(Q, P) acting on the Matsubara potential gives
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where we have used the fact that” d@;/dr = —w;Q_; to obtain the next-to-last line and
the last line follows from the imaginary time invariance (smooth nature) of the Matsubara
potential. The steps used to obtain Eq. 27 can be generalized to show that the action of £;
on any permutationally invariant function of the form f(Q)g(P) with df /dr = dg/dt = 0
will be zero.

Combining the previous results it follows that
2

LiRag = L1 |5+ Su(@) + V(@) =0. (28)

m

which implies that £; conserves the ring-polymer Boltzmann distribution e=#%

C. Matsubara Liouvillian

Action of the Matsubara Liouvillian £,/(Q, P) = Lrp(Q, P)+iL;(Q, P) on the centroid
position Qg gives
LaQo = [Lrp +iL1] Qo
= LrprQo (29)

where we have used Eq. 22. Additionally,
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where we have used Eq. 14 and 23 to arrive at the final result. Also,
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where we have used Eqgs. 15 and 24 to obtain the last result. Finally, it follows that

L3Qo = L (£3,Qo)
= L (L3pQo)
= [Lap +iLi] (£35Q0)
= LhpQo +iLLEpQo.

D. Centroid Liouvillian

Action of the centroid Liouvillian L& (Qo, Fo)

R D OWy(Qo)
£C(QOaPO) - E@Qo - aQO 8P0’

on the centroid position Qg gives
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E. White-noise Fokker-Planck operator
Action of the white-noise Fokker-Planck operator
m
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on the ring-polymer distribution e #%M gives
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which proves that A,,, conserves the ring-polymer Boltzmann distribution.

IV. ERROR ANALYSIS FOR SINGLE-TIME CORRELATION
FUNCTIONS

A. RPMD

For the case of single-time correlation functions, the general error term between RPMD

and Matsubara dynamics become

F(l) = (AgAi Ay ... (thL'AL) (39)

) e

for | =0,1,2,... and L = Lrp or L = L);. Alternatively one can perform integration by
parts along with making use of the fact that £Lye ™ ?fM = Lppe Py = 0 to rewrite Eq. 39

as

F() = = (L' AgAr Ay ... (LAY
— (AL Ay As . (B LAY
— (ApA L Ay (LAY

This last expression shows that one can “redistribute” the Liouvillian associated with A,
(therefore reducing it order) to all other observables Ay.,. Recursive applications of integra-
tion by parts allows one to obtain similar expressions to Eq. 40 where additional reductions

[ —2,1—3,... can be performed albeit at an increase in the number of combinations of
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terms. Armed with Eqs. 39 and 40, the short-time error of RPMD can be determined by
looking for the first term in which L4, A # Ll 5 Ag.

For linear operators, since £4,Qq = L% ,Qy for | < 3, a straightforward analysis of Eq. 39
demonstrates that RPMD agrees with Matsubara up to order t3. For [ > 4, £},Qq # L% Q.
However, one can reduce the Liouvillian order in A, by using Eq. 40 (up to three times),

to show that for [ = 4,5,6 RPMD and Matsubara agrees up to t5.

For the case of nonlinear operators the disagreement between the RPMD and Matsubara
Liouvillian occurs at [ = 2. A similar analysis of Eqs. 39 and 40 reveals that RPMD TCF

agrees up to order t* with Matsubara dynamics.

B. CMD

For the case of single-time correlation functions of centroid- dependent only operators (i.e.

linear operators) the general error term between CMD and Matsubara dynamics becomes

F(1) = {Ao(Qo)A1(Qo) A2(Qo) - .. (tLL An(Q0)) ) pp (41)

for { =0,1,2,.... In the previous equation, Ax(Qy) = (o, but we use the A, notation to
emphasize that a higher-order Kubo transform is being evaluated albeit all but one operator

is time-independent.

Since LyQo = L.Qo, it is obvious to see that CMD agrees with Matsubara dynamics for
l=1.

For I =2, £2,Q # L>Q,. However, the non-centroid modes of the Matsubara Liouvillian

12



can be integrated out from Eq. 41 to give

10~ ez [ 1@ [ 4P e H Ak<@o>: (£3,4,(Q0))
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Ny m / dQy / dP, ;ﬁj Ak(QO): miﬁﬁiQoe_B (s
~ oy [ 1@ [ ari o ;i:[:Ak(Qo) (£24,(@0) (#2)

where we have used Eqgs. 30 and 15 to obtain the second line, the definition of Z; in terms
of the potential of mean force Wy in the sixth line and Eq. 35 to obtain the last line,
demonstrating that CMD agrees with Matsubara dynamics for single-TCFs for [ = 2. We
remark that the key step in the derivation is the passage from the third to fourth line. Note
that in the case of multi-TCF, the term 8Ué‘+Q(OQ) will appear elevated to a power different than

one which will invalidate the derivation, demonstrating the disagreement between CMD and

Matsubara dynamics for [ = 2.

Showing that CMD and Matsubara dynamics agrees for the case of [ = 3 is trivial if
one realizes that both £3,Qq (Egs. 31 and 16) and £3Q, (Eq. 36) give a function that is
linear in P;. Therefore, performing the Gaussian integrals over the momenta in Eq. 41 gives

f(3) =0 for both CMD and Matsubara dynamics.
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V. MEAN-FIELD AVERAGE
A. Mean-Field Partition Function

The mean-field partition function is given by

ZMF(QN,PN) — /dQ /dP/ BHM (Q,P)—i0r (Q,P)]

/dQ /dPI — +UM( ) Z@]\{(Q,P)]

1
(2rh)M-N
1
)

_ e ,B2m eZBGM (@n.Pn) /dQ /dP/ - +UM Q)— iGM(Q/,P/)]
@RV~
P2
e ~B3 B0y (Qn.Py) /dQ /dP’ B[ B2 +UM(Q)+51(Q)~S1(Qw)]
@)V
— Bgm 1690 (QN,PN) m d —BlUm(Q)+Sm(Q)—Sm(Qn)]
‘ (%5712) Qe
— 6—5%eiﬁeM(QMPN)e—ﬁWMF(QN) (43)

where we have singled out the contribution of the N lowest Matsubara modes to the kinetic
energy and phase factor in the third line, we have performed the change of variables P; —
15]- +imw;)—; and used the contour-integration trick for the mean-field modes in the fourth

line (recognizing that 1;_;; — iy (Q', P') — PQ + Su(Q) — Su(Qn)), we have performed

the Gaussian integrals over the P’ modes in the fifth line, and we used the definition of

potential of mean-force in the last line.

For the case of the centroid mean-field average, noting that wy = 0, Eq. 43 reduces to

Zy(Qo, Py) = s /dQ /dp/ —B[ 221U ( Q)+5um(Q)]
2
e 1O ¢~ PlUM(Q)+51(Q)]
(27r5h2) / Qe
52m e ﬁWo(Qo)‘ (44)

with W, the centroid potential of mean-force.

Note that the Matsubara partition function can be expressed in terms of mean-field
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variables as

L /dQ/dP e~ BlHM(Q,P)—i0r (Q,P)]
(2mh)M
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where we have performed the change of variables P; — 15]- +tmw;Q_; and used the contour-

2
integration trick for the Py modes in the last line, recognizing that 5—712 — 0y (Qn, Py) —
By N1 9212
I T 2= 3 Q5

B. Mean-Field Liouvillian

The mean-field Liouvillian can be obtained by performing the mean-field average

1 - —i
Lyr(Qn,Py) = L /dQ//dP/ e~ BlHMQP)=0m(QP) L (Q P), (46)

on the Matsubara Liouvillian

u(Q,P) = Z (47)

where

P09 U@ @
man 8QJ 8P]’

£;(Q, P) = (48)

represents the terms involving derivatives with respect to the k-th Matsubara normal mode.

Therefore, the centroid mean-field average involves evaluating integrals of the form

(B)uur = ey NZMF /dQ /dP/ ~BH(@P)-0(QP)] p, (49)

and

aUM(Q>> 1 / 1 —BHm(Q,P)—ibfr (Q,P)] (aUM(Q))
< 0Q; /[ ur (QWH)MNZMF/CZQ /dP ‘ 0Q; {50)

15



where we have introduced (-),, as a shorthand notation for the mean-field average.
Averages of the form Eq. 49 can be evaluated directly. For a normal mode that has not

been integrated out, namely j < N, it is straightforward to show that

1 - —if

1 - —i
=P

7

(51)

where we have used the definition of Z;r in the last step. For normal modes being integrated
out, namely j > N, it is straightforward to realize that (P;),,, = 0 by noting that the

integrals involve terms of the form

p2
-8 [ﬁlipjwj@j}
(Pj) prr ™~ /dPJ € P;
= 0.

(52)
Averages of the form Eq. 50 can be evaluate by noting that
ae—ﬁ[HM—i@M] _ _Be—ﬁ[HJVI_iel\/l] |:8HM B Z@HM}
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_ i ou 4
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J
For normal modes with j < N, it is straightforward to show that
an MF (QWh)M_NZMF an
1 1 0 . ,
— dQ’ | dP' | = = (e BHM=0M]\ _ ;. , P o= BlHMm—i0M]
2rh) N Zyp / Q / [5 2Q, (e ) —iw_;P_je
L 0Zyr .
= —iw_;P_;
BZur 0Q; Y
1 (9 lIl(ZMF) .
= B—an —iw_jP_;
_ OWur(Qn) (54)
0Q; ’

where we have used the identity in Eq. 53 in the second line, and the definition of Z;r in

terms of the potential of mean force Wjy,;r to obtain the last line. For the case of modes
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with j > N, a similar analysis gives

aUM(Q)> 1 / / , BlHa(@.P)—i ( aUM>
_ _ 10’ | dP M(Q,P)—iby(Q,P)] [ _ZZM
< aQ] MF (QWH)M_NZMF Q € 6Q]

1 .
_ dQ' | aP’ ¢ PlHM@Q.P)=i0m(Q.P)] (_; , P .
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= —iw_; (P-j)

=0, (55)

where we have again used the identity in Eq. 53 (noting that the partial derivative of
e AUHM=0M) with respect to P; can be integrated out) in the second line, and Eq. 52 to

obtain the last line.

Combining the above results, the mean-field Liouvillian can therefore be written as

ﬁMF(QN,PN) = j)MF

-
=

hl
|
2

P 0 OWur(Qn) 0 (56)
m

0Q; 0Q; 0P

M=

-N

J

Note that for the case of centroid mean-field averages, the centroid Liouvillian is obtained

RO OW(Q) O
QB =550, 0, omy o

C. Mean-field Multi-Time Correlation Functions

For operators that only depends on the @y modes, by replacing the Matsubara Liouvillian

with the mean-field Liouvillian (Eq. 56), the following approximation to the multi-time
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correlation function can be obtained

sym 1 — —i -
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k=1
D. Centroid Molecular Dynamics

By replacing the Matsubara Liouvillian with the centroid Liouvillian, the CMD approx-

imation is obtained

n

sym 1 — 7
KCyMD(t) W/dQ/dP e PHM(Q,P)—ib( QP]AO QO H <(Qo,Fo) tkAk QO)

1

—BRM(Q,P) L:(Qo,Po)tr
(27rh)M /dQ/dP e ) Ao(Qo) ge Ap(Qo).

27thM /on/dPo Zo(Qo, o) Ao(Qo) H £elQuT0lt 44(Qo)

2m+ Wo(Qo) - Le(Qo,Po)t
— sz [ 4@ [drie [PRES [[eem a9

where we have used the contour-integration trick to obtain the second line (note that Qg
is not affected by the variable transformation), and the definition of Z; in terms of the

potential of mean force W, to obtain the last lines.
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VI. ADDITIONAL NUMERICAL RESULTS
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FIG. 2. Contour plots of the symmetrized double Kubo transformed (G2§(t1)d(t2)) correlation

function, for the quartic potential at § = 2, at different levels of theory.
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FIG. 3. Contour plots of the error between exact and approximated symmetrized double Kubo
transformed <(j2(j(t1)(j(t2)> correlation function, for the quartic potential at f = 2, at different

levels of theory.
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FIG. 4. Contour plots of symmetrized double Kubo transformed (G2¢?(t1)¢*(t2)) correlation func-

tion, for the quartic potential at § = 2, at different levels of theory.
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FIG. 5. Contour plots of the error between exact and approximated symmetrized double Kubo
transformed <cj2cj2(t1)(jQ(t2)> correlation function, for the quartic potential at 8 = 2, at different

levels of theory.
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FIG. 6. Contour plots of symmetrized double Kubo transformed (G2¢?(t1)¢*(t2)) correlation func-

tion, for the harmonic oscillator potential at 8 = 4, at different levels of theory.
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FIG. 7. Contour plots of the error between exact and approximated symmetrized double Kubo

transformed <qAQqA2(t1)ch(t2)> correlation function, for the harmonic oscillator potential at § = 4,

at different levels of theory.
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