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ABSTRACT
Based on a recently developed generalization of Matsubara dynamics to the multi-time realm, we present a formal derivation of multi-
time generalizations of ring-polymer molecular dynamics, thermostatted ring-polymer molecular dynamics (TRPMD), centroid molecular
dynamics (CMD), and mean-field Matsubara dynamics. Additionally, we analyze the short-time accuracy of each methodology. We find that
for multi-time correlation functions of linear operators, (T)RPMD is accurate up to order t3, while CMD is only correct up to t, indicating a
degradation in the accuracy of these methodologies with respect to the single-time counterparts. The present work provides a firm justification
for the use of path-integral-based approximations for the calculation of multi-time correlation functions.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021843., s

I. INTRODUCTION

Quantum thermal time correlation functions (TCFs) play a
central role in the description of dynamical properties of chem-
ical systems.1–3 Despite recent advances in exact quantum solu-
tions,4–6 TCFs are still daunting to calculate exactly for condensed
phase systems. In this regard, the development of semi-classical
methodologies that include quantum statistical information yet
employ classical dynamics show great promise. For single-time
TCFs, which are relevant for understanding the linear response
of systems,7 Matsubara dynamics8 has recently emerged as a
leading theory that combines exact quantum-Boltzmann statistics
with classical dynamics and satisfies detailed balance. Although
not a practical theory due to the presence of a phase factor,
Matsubara dynamics has provided a gateway to physical under-
standing9,10 behind approximate path-integral-based methodolo-
gies such as (thermostatted) ring-polymer molecular dynamics11–13

[(T)RPMD] and centroid molecular dynamics14 (CMD). Moreover,
Matsubara dynamics set the stage for the development of novel
approximations.15–17

We recently developed an extension of Matsubara dynam-
ics for the calculation of multi-time correlation functions,18 which
are implicated in the description of nonlinear spectroscopy19,20

and nonlinear chemical kinetics.21 As in the single-time case, the
method involves a phase factor that makes it impractical, there-
fore, requiring further approximations for the computation of multi-
TCFs in condensed phase systems. Based on the work done for
the single-time case,10,17,22,23 here we provide a formal derivation
of different approximations to the multi-time Matsubara dynamics,
including multi-time (T)RPMD, multi-time CMD, and multi-time
mean-field (MF) Matsubara dynamics. This analysis gives a firm
justification for the use of path-integral-based approximations for
the calculation of multi-TCFs.24,25 We also provide an analysis of
the short-time error between the different multi-time approxima-
tions and Matsubara dynamics showing that the multi-time variants
suffer a general loss in accuracy compared to the traditionally used
single-time counterparts.

This article is organized as follows: the multi-time version
of Matsubara dynamics is briefly described in Sec. II. Then, we
introduce the derivation of RPMD, TRPMD, CMD, and a MF
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approximation of Matsubara dynamics in Secs. III–VI, respectively.
Numerical results showing the performance of each approxima-
tion for simple models are presented in Sec. VII. Final remarks are
discussed in Sec. VIII.

II. MULTI-TIME MATSUBARA DYNAMICS
We consider a one-dimensional system of mass m with the

Hamiltonian Ĥ =
p̂2

2m + V(q̂) in which the observables Âi are
assumed to be functions of position only. The generalization to
multi-dimensional systems is straightforward.

We start by defining the fully symmetrized (imaginary-time
ordered) nth order Kubo-transformed multi-time correlation func-
tion as18,24

Ksym
(t) ≡

1
βn ∫

β

0
dλ0 ∫

β

0
dλ1⋯∫

β

0
dλn−1

×⟨T̂βÂ0(−ih̵λ0)Â1(−ih̵λ1 + t1)⋯

× Ân−1(−ih̵λn−1 + tn−1)Ân(tn)⟩, (1)

where Ô(τ) = eiĤτ /̵hÔe−iĤτ /̵h, β = 1/kBT is the inverse temperature,
T̂β is an imaginary-time ordering operator that guarantees λ0 ≥ λ1
≥ ⋯ ≥ λn−1 inside the integrals, and t = [t1, t2, . . ., tn−1, tn] repre-
sents n independent time variables. The ensemble average in Eq. (1)
is given by ⟨⋅⟩ = Tr[ e

−βĤ
Z ⋅] with Z = Tr[e−βĤ] being the partition

function. The fully symmetrized Kubo transform is a real function
of all time variables and shares many formal properties and symme-
tries with classical multi-TCFs.18,25 When n = 1, Eq. (1) reduces to
the single-time Kubo transform7 that can be related through linear
response theory to transport coefficients, reaction rates, and linear
spectroscopy.2,3,26–28 When n = 2, Eq. (1) gives the two-time sym-
metrized double Kubo transform18,25 that has recently been related
to second-order spectroscopy.25

The multi-time Matsubara approximation8 to the fully sym-
metrized nth order Kubo transform TCF [Eq. (1)] is given by the
M →∞ limit of18

Ksym
Mats(t) =

1
(2πh̵)MZM

∫ dQ∫ dP e−β[HM(Q,P)−iθM(Q,P)]

×A0(Q)
n

∏
k=1

eLM(Q,P)tkAk(Q) (2)

with the partition function

ZM =
1

(2πh̵)M ∫
dQ∫ dP e−β[HM(Q,P)−iθM(Q,P)], (3)

the Matsubara Hamiltonian

HM(Q,P) =
P2

2m
+ UM(Q), (4)

the Matsubara phase

θM(Q,P) =
M̄

∑
j=−M̄

PjωjQ−j, (5)

and the Matsubara Liouvillian given by

LM(Q,P) =
M̄

∑
j=−M̄

Pj
m

∂

∂Qj
−
∂UM(Q)

∂Qj

∂

∂Pj
. (6)

In the previous equations, the coordinates Q = {Qj}, with j = −M̄,
. . . , M̄ and M̄ ≡ (M − 1)/2, are the positions of the M Matsub-
ara modes8 with frequency ωj = 2πj/βh̵ (with similar definitions for
momenta P = {Pj}). Additionally, the smoothed Matsubara potential
is given by

UM(Q) =
1
βh̵ ∫

β̵h

0
dτ V(q(τ)) (7)

with the smoothed distribution of positions q(τ) constructed from
the Matsubara modes as

q(τ) = Q0 +
√

2
M̄

∑
j=1

sin(ωjτ)Qj + cos(ωjτ)Q−j. (8)

Analogous definitions hold for the observables Ak(Q).
The significance of Eq. (2) is that the dynamics generated by

LM is classical. Moreover, the Matsubara phase factor eiβθM converts
the classical Boltzmann distribution e−βHM into the (exact) quantum
Boltzmann distribution. Notice that since LMHM = LMθM = 0,8

the quantum Boltzmann distribution is conserved during the classi-
cal evolution of the Matsubara modes and, therefore, the Matsubara
multi-time correlation function obeys detailed balance.

Unfortunately, the presence of the phase factor in the Boltz-
mann distribution makes the convergence of the time correlation
function very difficult, making Matsubara dynamics unpractical for
simulations of large systems. For this reason, it is desirable to obtain
practical approximations to Matsubara dynamics that allow for the
inclusion of nuclear quantum effects in the simulation of condensed
phase systems.

To avoid the difficulties associated with the complex Matsubara
distribution, it is possible to perform the variable substitution9,10,22,23

Pj → P̃j + imωjQ−j (9)

for each Matsubara mode to obtain

e−β[HM(Q,P)−iθM(Q,P)]
→ e−βRM(Q,P̃) (10)

where the ring-polymer Hamiltonian is given by

RM(Q, P̃) =
P̃2

2m
+ SM(Q) + UM(Q) (11)

with the polymer spring potential defined as

SM(Q) =
M̄

∑
j=−M̄

1
2
mω2

jQ
2
j . (12)

Additionally, the change of variables allows one to rewrite the
Liouvillian as LM(Q,P) → L̃M(Q, P̃), where

L̃M(Q, P̃) ≡ LRP(Q, P̃) + iLI(Q, P̃) (13)

with

LRP(Q, P̃) =
M̄

∑
j=−M̄

P̃j
m

∂

∂Qj
− [

∂UM(Q)
∂Qj

+ mω2
jQj]

∂

∂P̃j
(14)
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and

LI(Q, P̃) =
M̄

∑
j=−M̄

ωj(P̃j
∂

∂P̃−j
−Qj

∂

∂Q−j
). (15)

Note that with the change of variables [Eq. (9)], the integrals over
momenta {P̃j} in Eq. (2) should be evaluated in the complex plane.
However, provided the integrand remains analytic (i.e., free of singu-
larities) in the complex plane,9 one can perform a standard contour-
integration using a rectangular contour extending from the real axis
to lower half of the imaginary axis (see the supplementary material),
giving29

Ksym
Mats(t) =

1
(2πh̵)MZM

∫ dQ∫ dP̃ e−βRM(Q,P̃)

×A0(Q)
n

∏
k=1

eL̃M(Q,P̃)tkAk(Q). (16)

Notice that the combined effect of the transformation [Eq. (9)] and
analytic continuation is to effectively transfer a complex Matsubara
distribution with real dynamics into a real ring-polymer distribution
but with complex dynamics generated by LRP + iLI , resulting in a
problem that is equally difficult to evaluate.30,31 However, Eq. (16)
has provided a starting point to introduce approximations to the
dynamics for the single-time case9,16,17 and will be generalized to the
multi-time realm in what follows.

III. MULTI-TIME RPMD
The first approximation consists on discarding the imaginary

part of the Liouvillian L̃M(Q, P̃) in Eq. (16) to obtain a time cor-
relation function with real distribution and real dynamics given
by

Ksym
RPMD(t) =

1
(2πh̵)MZM

∫ dQ∫ dP̃ e−βRM(Q,P̃)

×A0(Q)
n

∏
k=1

eLRP(Q,P̃)tkAk(Q), (17)

which represents a multi-time extension of ring-polymer molecular
dynamics with Matsubara frequencies.25 Note that since LRPRM = 0,
the (classical) dynamics generated by LRP conserves the ring-
polymer Boltzmann distribution and, therefore, satisfies detailed
balance. Moreover, at time t = 0, the RPMD function reduces to the
exact result since in this limit approximations to the Liouvillian are
irrelevant. Furthermore, since LI does not affect the dynamics of the
centroid (namely, LIQ0 = 0), the RPMD approximation is also exact
for operators that only depend on the centroid (i.e., linear opera-
tors) moving in a harmonic potential, where the dynamics of the
Matsubara modes is fully decoupled from one another. Notice that
the multi-time RPMD was first proposed based on heuristic argu-
ments in Ref. 25 for the calculation of two-time symmetrized double
Kubo-transformed correlation functions. The derivation presented
in this paper provides a rigorous justification of the methodology
and corroborates the results obtained in Ref. 25.

The similarity of Eqs. (16) and (17) allows for an analysis of the
short-time error produced by neglecting the imaginary Liouvillian in
the propagation. We emphasize that this analysis provides a formal
short-time limit and is not necessarily indicative of the long-time

accuracy of the method.34 To this end, we closely follow Ref. 32 and
expand the time-evolution operators as

eLtkAk =
∞

∑
l=0

tlk
l!
LlAk. (18)

Performing the exponential expansion in Eqs. (16) and (17) and
noticing that the Boltzmann distributions are the same in both the
equations, the TCF can be written as a sum of terms of the form

⟨A0(tl11 L
l1A1)(tl22 L

l2A2)(tl33 L
l3A3)⋯⟩

RP
, (19)

where ⟨⋯⟩RP represents the thermal average with respect to the dis-
tribution generated by RM (we have omitted constant factors l! for
simplicity). Armed with Eq. (19), the short-time error of RPMD can
be determined by looking for the first term in which L̃l

MAk ≠ Ll
RPAk.

We start the analysis by focusing on linear operators for which
Ak = Q0. It is straightforward to show that L̃l

MQ0 = Ll
RPQ0 for

the case l ≤ 3 and that L̃4
MQ0 ≠ L4

RPQ0 (see the supplementary
material).32 Note that since the times tk are independent, these
results can immediately be applied to Eq. (19) indicating that multi-
time RPMD agrees with multi-time Matsubara dynamics up to t3 in
all time variables t, namely, (t3

1 , t3
2 , t3

3 , . . .). For the case of nonlin-
ear operators, the disagreement between the RPMD and Matsubara
Liouvillian occurs at l = 2 (see the supplementary material), revealing
that the multi-time RPMD TCF agrees with multi-time Matsubara
dynamics TCFs up to order t1 in all time variables (t1

1 , t1
2 , t1

3 , . . .).
Quite remarkably, for the case of one-time correlation func-

tions, i.e., correlations in which only one time (say t1) is involved,
one can perform an integration by parts in Eq. (19) (see the
supplementary material) to show that RPMD actually agrees with
Matsubara dynamics up to t6 (t2) for linear (nonlinear) operators,
a well-known result.32–34 The novel insight is that this agreement
also holds for one-time higher-order Kubo-transformed correlation
functions24 that involve all observables Ak but only one time vari-
able. Since the latter type of correlation functions are involved in,
for example, the quadratic response theory of vibrational energy
relaxation for single-mode excitations,35 and given the success of
RPMD for the simulation of a wide range of problems in condensed
phase systems,36 the results obtained in this work postulate RPMD
as a promising methodology to approximate one-time higher-order
Kubo-transformed correlation functions.

IV. MULTI-TIME THERMOSTATTED RPMD
One disadvantage of discarding iLI(Q, P̃) in Eq. (16) is that the

oscillation frequencies of the non-centroid normal modes are artifi-
cially increased,9 an effect that gives rise to the well-known problem
of “spurious resonance contamination” in RPMD.12,13,37 Motivated
by the fact that the addition of a friction term in the dynamics
of a harmonic oscillator reduces the oscillation frequency,2 instead
of discarding iLI(Q, P̃) in the dynamics one can replace it by the
(adjoint) white-noise Fokker–Planck operator38

A†
wn(P̃) = −P̃ ⋅ Γ ⋅ ∇P̃ +

m
β
∇P̃ ⋅ Γ ⋅ ∇P̃, (20)

where the first term represents the “drag” produced by the M × M
positive semi-definite friction matrix Γ and the second term corre-
sponds to the stochastic “kicks.”
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Inserting Eq. (20) into Eq. (16), one obtains the approximation

Ksym
TRPMD(t) =

1
(2πh̵)MZM

∫ dQ∫ dP̃ e−βRM(Q,P̃)

×A0(Q)
n

∏
k=1

eA
†
RP(Q,P̃)tkAk(Q) (21)

with A†
RP ≡ LRP + A†

wn, which represents a multi-time ver-
sion of TRPMD13 with the Matsubara frequencies. Note that since
Awne−βRM = 0 (see the supplementary material), the dynamics
generated by A†

RP conserves the ring-polymer Boltzmann distribu-
tion.13,22 Moreover, by defining the friction matrix as Γij = 2|ωj|δij,
one recovers the correct oscillation frequency of the normal modes
in a harmonic potential,10,13,39 therefore, mitigating the “spurious
contamination” and improving over RPMD. Note that since ω0 = 0,
the friction has no effect on the dynamics of the centroid. For prac-
tical implementations in general anharmonic potentials, a friction
matrix of the form Γij = 2γ|ωj|δij with 0.5 ≤ γ ≤ 1 has shown to pro-
vide reasonable results for single-time correlation functions13,22 and
multi-time correlation functions.25

An analysis of the short-time error produced by replacing the
imaginary Liouvillian with the white-noise Fokker–Planck opera-
tor can also be performed. Noticing that A†

wn involves momentum
derivatives only and does not affect the centroid, it is straightfor-
ward to show that (A†

RP)
lQ0 = Ll

RPQ0 for l = 1, 2, 3. This implies [via
Eq. (19)] that the error of multi-time TRPMD with respect to Mat-
subara dynamics is the same as RPMD, namely, in the case of general
multi-TCFs up to order t3 for linear operators and up to order t1

for nonlinear operators for all times and in the case of one-time
correlation functions up to t6 (t2) for linear (nonlinear) operators.

V. MULTI-TIME CMD
For correlation functions involving observables that only

depend on the centroid, namely, Ak(Q) = Ak(Q0), an alternative
approximation to Matsubara dynamics can be performed if one
replaces the Matsubara Liouvillian by a centroid mean-field average
of the form

LC(Q0,P0) =
1

(2πh̵)M−1Z0
∫ dQ′ ∫ dP′

× e−β[HM(Q,P)−iθM(Q,P)]LM(Q,P), (22)

where the primes denote integration over all Matsubara modes
except the centroid modes Q0 and P0. In the previous equation,
Z0 ≡ Z0(Q0, P0) is defined by

Z0(Q0,P0) =
1

(2πh̵)M−1 ∫ dQ′ ∫ dP′e−β[HM(Q,P)−iθM(Q,P)]

= e−β
P2

0
2m e−βW0(Q0), (23)

where in the last line we have introduced the centroid potential of
mean force defined by

W0(Q0) = −
1
β

ln
⎡
⎢
⎢
⎢
⎢
⎣

(
m

2πβh̵2 )

(M−1)
2

∫ dQ′ e−β[UM(Q)+SM(Q)]
⎤
⎥
⎥
⎥
⎥
⎦

. (24)

An explicit evaluation of the mean-field average in Eq. (22)
gives (see the supplementary material)9,17

LC(Q0,P0) =
P0

m
∂

∂Q0
−
∂W0(Q0)

∂Q0

∂

∂P0
. (25)

By replacing the Matsubara Liouvillian with the centroid Liouvillian
in Eq. (2) [or Eq. (16)], a multi-time extension of centroid molecular
dynamics with the Matsubara frequencies can be obtained (see the
supplementary material),

Ksym
CMD(t) =

1
(2πh̵)MZM

∫ dQ∫ dP̃ e−βRM(Q,P̃)

×A0(Q0)
n

∏
k=1

eLc(Q0 ,P0)tkAk(Q0) (26)

=
1

2πh̵ZM
∫ dQ0 ∫ dP0 e

−β[
P2

0
2m +W0(Q0)]

×A0(Q0)
n

∏
k=1

eLc(Q0 ,P0)tkAk(Q0). (27)

CMD is exact in the t = 0 limit for linear operators, and the centroid
Boltzmann distribution is preserved by the dynamics generated by
LC. Notice that the multi-time CMD was first introduced in Ref. 24
as a way of computing one-time correlation functions of non-linear
operators and has been related to a path-integral expression of the
vibrational energy relaxation for single-mode excitations.35

Comparing Eq. (26) with Eq. (16), we perform an analysis of
the short-time error introduced by replacing the Matsubara Liouvil-
lian with the centroid Liouvillian. Following a similar procedure as
in Secs. III–IV, we expand the time-evolution operators to express
the centroid TCF as sums of terms of the form (19) and look for
the first term for which Ll

CAk ≠ L̃
l
MAk. A direct analysis shows that

LCQ0 = L̃MQ0, but L2
CQ0 ≠ L̃2

MQ0. For a general multi-time cor-
relation function, this result indicates that multi-time CMD agrees
with multi-time Matsubara dynamics in all time variables up to
order t1, namely, (t1

1 , t1
2 , t1

3 , . . .). However, for the case of one-time
correlation functions, a deeper analysis reveals that since only one
Matsubara Liouvillian is involved in Eq. (19), the integrals over the
non-centroid modes can be integrated out (see the supplementary
material) to show that CMD actually agrees to order t3 with Matsub-
ara dynamics, indicating an increase in accuracy for one-time single
and higher-order Kubo-transformed correlation functions.

VI. MEAN-FIELD MATSUBARA
In Sec. V, we have shown that CMD is less accurate than RPMD

regardless of the number of time variables. However, CMD has the
advantage over RPMD that it can be systematically improved upon.
There is no need to perform the mean-field average over all the non-
centroid modes in Eq. (22). In particular, one can mean-field over
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a subset of only the most highly oscillatory modes to define differ-
ent mean-field approximations. To be more precise, let us denote by
QN = {Q0,Q±1, . . . ,Q

±N̄} the subsets of N < + M Matsubara modes
[with N̄ = (N − 1)/2] that will be included in the dynamics. One
can therefore define a mean-field (MF) Matsubara Liouvillian of the
form

LMF(QN ,PN) =
1

(2πh̵)M−NZMF
∫ dQ′ ∫ dP′

× e−β[HM(Q,P)−iθM(Q,P)]LM(Q,P), (28)

where the primes now denote integration over the M − N high fre-
quency Matsubara modes. In the previous equation, ZMF is defined
by

ZMF(QN ,PN) =
1

(2πh̵)M−N ∫
dQ′ ∫ dP′e−β[HM(Q,P)−iθM(Q,P)]

= e−β
P2
N

2m eiβθM(QN ,PN)e−βWMF(QN), (29)

where the potential of mean force is given by

WMF(QN) = −
1
β

ln
⎡
⎢
⎢
⎢
⎢
⎣

(
m

2πβh̵2 )

(M−N)
2

∫ dQ′

× e−β[UM(Q)+SM(Q)−SM(QN)]

⎤
⎥
⎥
⎥
⎥
⎦

. (30)

An explicit evaluation of the mean-field average in Eq. (28)
gives (see the supplementary material)9,17

LMF(QN ,PN) =
N̄

∑
j=−N̄

Pj
m

∂

∂Qj
−
∂WMF(QN)

∂Qj

∂

∂Pj
. (31)

By making the replacement of the Matsubara Liouvillian by the
mean-field Liouvillian in Eq. (2), and assuming that the observables
only depend on the QN modes, the multi-TCF can be approximated
by (see the supplementary material)

Ksym
MF (t) =

1
(2πh̵)NZM

∫ dQN ∫ dPN

× e
−β[

P2
N

2m +WMF(QN)]

eiβθM(QN ,PN)

×A0(QN)
n

∏
k=1

eLMF(QN ,PN)tkAk(QN), (32)

which represents a multi-time extension of mean-field Matsubara
dynamics.17 It is straightforward to show that the dynamics gener-

ated by LMF conserves the Boltzmann distribution e
−β[

P2
N

2m +WMF−iθM]

(see the supplementary material). Note that for N = 1, Eq. (32) is
equivalent to CMD. However, for N > 1, N − 1 non-centroid fluc-
tuation modes are included in the dynamics, therefore, improving
upon CMD.17 In the limit N = M, Matsubara dynamics is recovered.

It is worth noticing that Eq. (32) contains a phase factor and,
therefore, suffers from the same sign problem as Matsubara dynam-
ics [Eq. (2)]. This fact raises the question of the utility of the
mean-field TCF for practical applications. Note, however, that since
Eq. (32) only involves the N Matsubara modes with the lowest

frequency, the phase factor θM(QN , PN) will be less oscillatory than
the full Matsubara phase factor θM(Q, P) in Eq. (2). Moreover, for
practical applications, including only the first fluctuation modes Q±1
has been shown to produce great improvements over CMD (vide
infra),17 demonstrating the utility of the mean-field approximation.

VII. NUMERICAL RESULTS
To illustrate the different methodologies introduced in Secs. II

–VI, we present comparisons for the calculation of two-time cor-
relation functions in simple one-dimensional model potentials. We
consider a particle with mass m = 1 in a quartic potential V(q) = 1

4q
4

and evaluate the symmetrized double Kubo-transformed correlation
⟨q̂2q̂(t1)q̂(t2)⟩ and ⟨q̂2q̂2

(t1)q̂2
(t2)⟩ for a temperature β = 2 (atomic

units are used throughout). Additionally, we evaluate the correla-
tion ⟨q̂2q̂2

(t1)q̂2
(t2)⟩ for a particle in a harmonic potential at a lower

temperature of β = 4. All simulations were performed in the (Mat-
subara) normal mode representation using an analytical form for
polynomial potentials, as described in the supplemental information
of Ref. 8.

Matsubara dynamics was performed employing the velocity-
Verlet algorithm with a time step of 0.1 a.u. Momenta were sampled
from a classical Boltzmann distribution every 20 a.u. The integration
over the Matsubara phase was done by evaluating the ratio

Ksym
Mats(t1, t2) =

⟨eiβθM(Q,P)A0(Q)eLM t1A1(Q)eLM t2A2(Q)⟩M
⟨eiβθM(Q,P)⟩M

, (33)

where ⟨⋅⟩M denotes sampling from the distribution e−βHM(Q,P). A
total of circa 108 configurations were necessary to converge the
results forM = 5. Including additional modes or performing the sim-
ulations at a lower temperature makes the computation extremely
challenging, highlighting the impractically of Matsubara dynamics.
We remark that since Matsubara dynamics is exact for a harmonic
oscillator, simulations for this potential were not performed.

CMD and mean-field Matsubara dynamics were performed by
computing the mean-field force on the fly employing an adapta-
tion for M modes of the partially adiabatic framework introduced in
Ref. 40. In brief, the dynamical masses of the (N − M) high-
est modes are re-scaled as mn = m(ωn/Γ)2, ensuring an adia-
batic decoupling with the lowest N modes. Additionally, a Langevin
thermostat with the friction coefficient γ = 2Γ is attached to the
mean-fielded modes to ensure proper sampling. An adiabatic sep-
aration of Γ = 32M/β and a time step of 0.001 a.u. were employed.17

The phase was integrated as

Ksym
MF (t1, t2) =

⟨eiβθM(QN ,PN)A0(QN)e
LMF t1A1(QN)e

LMF t2A2(QN)⟩MF

⟨eiβθM(QN ,PN)⟩MF
,

(34)

where ⟨⋅⟩MF denotes sampling from the distribution e
−β[

P2
N

2m +WMF(QN)]

.
Simulations were performed with M = 5 and N = 1 or N = 3 for CMD
and mean-field Matsubara dynamics, respectively, and a total of 105

trajectories were needed to converge the results.
TRPMD simulations were performed employing a time step

of 0.1 a.u. and attaching a Langevin thermostat with the friction
coefficient γ = 2ωn to each of the normal modes. A total of M = 5
and M = 15 were employed for simulations at β = 2 and β = 4,
respectively.
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In Fig. 1, we present cuts along selected slices of the two-time
correlation ⟨q̂2q̂(t1)q̂(t2)⟩ for the quartic potential at β = 2 obtained
with the different methodologies. We have also included the exact
result for comparison. (See the supplementary material for contour
plots of the full 2D TCF.) For this relatively high temperature, all
methodologies are very accurate at short-times, although the accu-
racy decreases as either t1 or t2 increases, with CMD and TRPMD
approximations worsening at earlier times than Matsubara dynam-
ics. Note that at zero time (t1 = t2 = 0) both TRPMD and Matsubara
dynamics are exact, whereas CMD (as expected for a nonlinear TCF)
is slightly incorrect. However, by including the first non-centroid
modes in the dynamics (mean-field results), the zero time limit of
CMD can be corrected and even the longer time accuracy increases
significantly (see, for example, the bottom panel of Fig. 1). The rea-
son for this is twofold: (i) At time zero, the inclusion of non-centroid
modes in the evaluation of the nonlinear operator makes the t = 0
value closer to the exact result; (ii) for t > 0, the inclusion of addi-
tional Matsubara modes makes the dynamics more accurate. These
results demonstrate the efficiency and advantage of the mean-field
approximation.17

A more severe test of the performance of the different meth-
ods is provided by the evaluation of the nonlinear correlation
⟨q̂2q̂2

(t1)q̂2
(t2)⟩, as presented in Fig. 2. At time t = 0, CMD devi-

ates significantly from the exact quantum result; including addi-
tional non-centroid modes appreciably improves the short-time
limit, bringing the dynamics in close agreement with the Matsub-
ara result. Note also that while TRPMD captures the zero-time limit
correctly, it fails to reproduce the intensity of the first oscillation,
likely due to the neglect of phase coherences.11,25 In this regard,
Matsubara dynamics correctly reproduces the short-time limit (first
two oscillations) before decorrelating.

FIG. 1. Cuts along selected time slices for the symmetrized double Kubo-
transformed ⟨q̂2q̂(t1)q̂(t2)⟩ correlation function, for the quartic potential at β = 2,
at different levels of theory.

FIG. 2. Cuts along selected time slices for the symmetrized double Kubo-
transformed ⟨q̂2q̂2(t1)q̂2(t2)⟩ correlation function, for the quartic potential at
β = 2, at different levels of theory.

Similar trends are observed at lower temperatures. In Fig. 3,
we present results for the correlation ⟨q̂2q̂2

(t1)q̂2
(t2)⟩ for a

harmonic oscillator at β = 4. We remark that for the har-
monic oscillator potential, Matsubara dynamics is exact for any

FIG. 3. Cuts along selected time slices for the symmetrized double Kubo-
transformed ⟨q̂2q̂2(t1)q̂2(t2)⟩ correlation function, for the harmonic potential at
β = 4, at different levels of theory.
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correlation function, whereas RPMD is exact for correlations with
Â1 = Â2 = q̂.25 All methodologies correctly reproduce the oscilla-
tions but fail to reproduce the amplitude of the oscillations, though
TRPMD starts at the correct value, whereas CMD is too low. Note
that for this lower temperature, including the first non-centroid
modes improves CMD, but additional modes are needed to converge
the MF Matsubara dynamics even at time zero.

VIII. CONCLUSIONS
In the present work, we provided a formal justification

for different path-integral-based semi-classical multi-time approx-
imations, including (T)RPMD, CMD, and mean-field Matsubara
dynamics, by relating these methods to multi-time Matsubara
dynamics. Ring-polymer-based methods can be obtained by neglect-
ing the imaginary part of the Matsubara Liouvillian (RPMD) or
replacing it by white-noise stochastic dynamics (TRPMD). Mean-
field methods (CMD and MF Matsubara) are obtained by averaging
the Matsubara Liouvillian over a subset of non-centroid modes. All
methodologies are exact at t = 0 (provided some approximations are
fulfilled, i.e., linear operators for CMD) and generate approximate
dynamics that conserve the quantum Boltzmann distribution.

Additionally, we have provided a short-time analysis of each
method to check the agreement with Matsubara dynamics. We
emphasize that this analysis provides a formal short-time limit and is
not necessarily indicative of the long-time accuracy of the methods,
which may depend on the underlying Hamiltonian, temperature,
and type of correlation functions. For general multi-time correla-
tion functions, we found that RPMD and TRPMD agree up to O(t3)
in all times for linear operators and O(t) for nonlinear operators. For
one-time higher-order Kubo-transformed correlation functions, the
agreement between (T)RPMD and Matsubara dynamics increases to
O(t6) [O(t2)] for linear (non-linear) operators, such as in the one-
time single Kubo-transformed TCF case. On the other hand, for lin-
ear operators, we found that CMD agrees with Matsubara dynamics
up to O(t) for multi-TCFs and up to O(t3) for single-TCFs. Numer-
ical results demonstrate that by including additional modes in the
mean-field dynamics a great improvement in the accuracy can be
obtained. Given the connections of multi-time correlation functions
and non-linear response functions,19,25 the present work provides a
firm justification for the use of path-integral-based approximations
for the calculation of non-linear spectroscopy.41

SUPPLEMENTARY MATERIAL

The supplementary material contains detailed derivations of
the main equations in the text and additional figures showing
contour plots of the full 2D TCF.
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