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ABSTRACT
Many biological processes are regulated by allosteric mechanisms that communicate with distant sites in the protein responsible for func-
tionality. The binding of a small molecule at an allosteric site typically induces conformational changes that propagate through the protein
along allosteric pathways regulating enzymatic activity. Elucidating those communication pathways from allosteric sites to orthosteric sites is,
therefore, essential to gain insights into biochemical processes. Targeting the allosteric pathways by mutagenesis can allow the engineering of
proteins with desired functions. Furthermore, binding small molecule modulators along the allosteric pathways is a viable approach to target
reactions using allosteric inhibitors/activators with temporal and spatial selectivity. Methods based on network theory can elucidate protein
communication networks through the analysis of pairwise correlations observed in molecular dynamics (MD) simulations using molecular
descriptors that serve as proxies for allosteric information. Typically, single atomic descriptors such as α-carbon displacements are used as
proxies for allosteric information. Therefore, allosteric networks are based on correlations revealed by that descriptor. Here, we introduce a
Python software package that provides a comprehensive toolkit for studying allostery from MD simulations of biochemical systems. MDiGest
offers the ability to describe protein dynamics by combining different approaches, such as correlations of atomic displacements or dihedral
angles, as well as a novel approach based on the correlation of Kabsch–Sander electrostatic couplings. MDiGest allows for comparisons of net-
works and community structures that capture physical information relevant to allostery. Multiple complementary tools for studying essential
dynamics include principal component analysis, root mean square fluctuation, as well as secondary structure-based analyses.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0140453

I. INTRODUCTION

Allostery is a regulatory process of biomolecules that propa-
gates the effect of an event at an allosteric site and causes a change in
conformation or activity at a distant site. Allosteric mechanisms are
ubiquitous in proteins and protein-nucleic acid complexes, where
cooperativity leads to conformational changes spanning multiple
domains.1 Understanding allosteric regulation in biomolecules is
challenging since the nature and scope of allosteric interactions are
extremely varied. Structural and/or dynamic changes are transferred
across the macromolecule through conformational changes often
described by a complex interplay of local contacts and collective
motions occurring over multiple timescales. Therefore, elucidating
allosteric mechanisms often requires a combination of experimen-
tal and computational methodologies. Here, we introduce a Python
software package that provides a comprehensive toolkit for studying

allostery from molecular dynamics (MD) simulations of biochemical
systems.

Many allostery-related studies are based on conformational
ensembles obtained from molecular dynamics (MD) simulations
combined with experimental data from nuclear magnetic resonance
(NMR) spectroscopy enabling atomic-level characterizations of pro-
tein motions. Correlated motions are typically inferred from the
statistical analysis of thermal nuclear fluctuations and from the NMR
spectroscopic analysis, assisted by mutagenesis and kinetic assays.

The statistical analysis of correlations often includes the use
of mutual information (MI)-based correlation metrics2,3 as well as
variance-covariance-based approaches,4,5 providing access to both
local perturbations and collective motions that can reveal a detailed
picture of allosteric communications in proteins. Such method-
ologies have been shown to provide valuable insights into experi-
mental data for various allosteric enzymes.6,7 Efficient and flexible

J. Chem. Phys. 158, 215103 (2023); doi: 10.1063/5.0140453 158, 215103-1

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0140453/17939620/215103_1_5.0140453.pdf

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0140453
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0140453
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0140453&domain=pdf&date_stamp=2023-June-5
https://doi.org/10.1063/5.0140453
https://orcid.org/0000-0002-5995-2765
https://orcid.org/0000-0002-5512-1892
https://orcid.org/0000-0002-0095-8548
https://orcid.org/0000-0002-3262-1237
mailto:federica.maschietto@yale.edu
mailto:victor.batista@yale.edu
https://doi.org/10.1063/5.0140453


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

computational tools are highly desired to gain fundamental insights
about the residues involved in allosteric regulation and their influ-
ence on dynamics and protein function, prompting many recent
developments devoted to such a purpose.8–18 Such tools are essen-
tial for the analysis of long-time simulations of large systems
involving the motion of large domains, making it difficult to
identify suitable descriptors to describe the underlying allosteric
pathways.19

One of the most important considerations is the frame of refer-
ence for extracting the motion. If cartesian coordinates are chosen,
the first difficulty is choosing the alignment frame, as it has been
shown that a poor choice of reference frame can lead to artifac-
tual conclusions.21 The choice of internal coordinates is natural for
proteins because they are the rotational and translational invari-
ants.22 Relative distances, dihedrals, and structural alphabets are
examples of popular metrics to investigate allosteric control in bio-
logical macromolecules,23–26 although they are not exempt from
limitations. Dihedrals, for instance, can characterize protein con-
formational changes through dihedral PCA (dPCA),23,27 but they
require careful selection of the dihedral space and can be diffi-
cult to analyze in proteins with several secondary structure ele-
ments. The difficulties are related to the so-called “loop closure
problem,” since adjacent backbone dihedral angles are necessarily
correlated in proteins with relatively rigid secondary structures.28

As a result, nonlinear correlations may render an inefficient rep-
resentation of the dynamics of dihedral angles, particularly when
the large-amplitude functional motions of proteins are considered.
In these cases, other choices of internal coordinates, such as con-
tacts or pairwise distances,26,29 might be advantageous. The for-
mer, however, requires careful selection of optimal parameters. For
example, a contact-persistency cutoff defines contact interactions as

determined by the percentage of configurations where two atoms are
found closer than a distance cutoff.

The challenging aspect of such approaches remains the choice
of the parameters so that the results are stable and have a valu-
able physical meaning. Recently, we introduced a new metric
based on electrostatic interactions,30 which has the advantage of
being independent of the choice of alignment frame while still
being defined by pairwise distances that determine the strength
of coupling interactions. As such, the electrostatic metric is com-
plementary to other descriptors, especially in the context of mul-
tidomain complexes where the predicted couplings are strongly
dependent on the choice of reference structure or contact map
parameters.

Here, we introduce the Python package MDiGest to analyze
MD simulations and identify key amino acid residues involved in
allosteric pathways. MDiGest is built upon MDAnalysis,31 which is
a widely used trajectory handler package, allowing users to analyze
MD results in popular formats such as DCD, TRR, or CRD with
no pre-processing. We focus on extending the applicability of the
network analysis methodology through the MDiGest interface and
its implementation, analyzing the reproducibility of results using
replicas of targeted systems, and ultimately improving our ability to
interpret results from the vast amount of raw data gathered from
MD simulations.

MDiGest offers capabilities beyond those of previously dis-
tributed packages where correlations are calculated according to
specific “features,” with the atom selection often being restricted
to backbone coordinates or torsion angles. MDiGest offers multi-
ple options, including not only backbone coordinates and torsion
angles but also the analysis of correlations based on electrostatic cou-
plings. Moreover, MDiGest includes several correlation measures so

FIG. 1. Biomolecular model systems
used to demonstrate the capabilities
of the MDiGest software package as
applied to modeling allostery. (a) Struc-
ture of the MptpA enzyme with three
catalytic loops, including the P-loop (yel-
low cartoon) with the catalytic cysteine
11 (C11), surrounded by the acid loop
(green), and the W-loop (orange). The
distance between W48 and Y128, Y129
(in sticks) distinguishes the open and
closed states of the enzyme. The Q75
residue is shown in purple. (b) Structure
of yeast IGPS, including the glutaminase
and cyclase enzymatic domains sepa-
rated by a dashed line. (c) Structure of
the Cas9 complex, with the protein and
nucleic acid structures shown in new
cartoon representations, while ligands
are shown with sphere representations.
Images were rendered using PyMOL.20
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that different metrics can be analyzed comparatively through their
respective allosteric networks.

MDiGest is offered in terms of Jupyter tutorial notebooks and
Python modules, making it easy and practical to use. Addition-
ally, MDiGest prepares input scripts for PyMOL,20 allowing for the
practical rendering of biomolecular images.

The capabilities of MDiGest are demonstrated as applied to
the analysis of allostery in three representative biological systems
(Fig. 1), including the protein tyrosine phosphatase (PTP) enzyme
(MptpA), the imidazole glycerol phosphate synthase (IGPS) enzyme,
and the Clustered Regularly Interspaced Short Palindromic Repeats
associated protein 9 (CRISPR-Cas9) enzyme, a multi-subunit dual
RNA-guided DNA endonuclease enzyme.

A. Protein-tyrosine phosphatase enzyme (MptpA)
MptpA is ideally suited for illustrating the analysis of

allostery provided by MDiGest. Protein-tyrosine phosphatases
(PTPs) and protein-tyrosine kinases co-regulate cellular processes.
In pathogenic bacteria, PTPs are frequently involved as key vir-
ulence factors for human diseases.32 For example, the Mycobac-
terium tuberculosis organism responsible for tuberculosis secretes
the low molecular weight enzyme protein-tyrosine phosphatase
MptpA, which is required for survival upon infection of host
macrophages. Its phosphate-binding loop (P-loop) CX5R and the
loop containing a critical aspartic acid residue (D-loop) required
for the catalytic activity are conserved, although there is other-
wise no sequence similarity between this enzyme and other classes
of PTPs.

In most high molecular weight PTPs, as well as in MptpA, 30
ligand binding to the P-loop triggers a large conformational reori-
entation of the D-loop, changing from an “open” to a “closed”
conformation upon displacement by about 10 Å. The section Test
Case 1, SI, of the mdigest-tutorial-notebook.ipynb includes the anal-
ysis of the allosteric regulation of such conformational change based
on three independent MD trajectories of WT MptpA and the Q75L
mutant. The nature of the allosteric mechanism provides an under-
standing of the enhanced catalytic activity in the Q75L mutant at the
molecular level.30

The closed form of MptpA is stabilized by strong electrostatic
interactions between the W-loop and the adjacent Q-loop. The
mutant Q75L has been found to enhance its catalytic activity, reveal-
ing Q75 to be an allosteric modulator.30 Recently,30 we have shown
that MD simulations support the experimental evidence of increased
catalytic activity for the Q75L mutant.

B. Imidazole glycerol phosphatase
synthase (IGPS) enzyme

IGPS is another benchmark model that serves to demonstrate
the capabilities of MDiGest. IGPS is a key metabolic enzyme of
the amidotransferase family that links amino acid and nucleotide
biosynthesis in bacteria, plants, and fungi but is absent in mam-
mals. Because of its metabolic role, IGPS is also a potential tar-
get for herbicides and antifungal agents.33 The IGPS from S.
cerevisiae (yIGPS) consists of a single 124 kDa subunit (His7)
with two enzymatic subunits, including the glutaminase (residues

1–235) and cyclase (residues 239–552) domains [Fig. 1(b)].34

yIGPS catalyzes glutamine (Gln) hydrolysis at the active site of
the glutaminase domain, where there is a conserved catalytic
triad (C83, H193, and E195) that produces ammonia (NH3)
and glutamate. The generated NH3 travels from the glutaminase
active site to the cyclase effector site more than 25 Å away and
reacts to break down the N′-[(5′-phosphoribulosyl)formimino]-
5-aminoimidazole-4-carboxamide ribonucleotide (PRFAR) effec-
tor into two products [imidazole glycerol phosphate (IGP) and
5-aminoimidazole-4-carboxamide ribonucleoside (AICAR)], essen-
tial precursors for the histidine and purine biosynthetic pathways,
respectively.35–37 The glutaminase half-reaction of yIGPS exhibits
V-type allosteric modulation, with the Gln binding affinity being
minimally altered by the presence of PRFAR, while a ∼5000-fold
increase in reaction rate is observed for the PRFAR-bound com-
plex over the basal glutaminase activity of yIGPS.36,37 Here, we show
the capabilities of MDiGest to perform a community network anal-
ysis revealing how the binding of the effector PRFAR alters the early
allosteric dynamics.

C. CRISPR-Cas9 complex
Here, we focus on the prokaryotic Clustered Regularly-

Interspaced Short Palindromic Repeats associated protein 9
(CRISPR-Cas9) complex (with 1362 residues) as a model system
that serves to test the capabilities of MDiGest as applied to a large
and truly complex allosteric enzyme. The analysis of allostery is
focused on understanding the precise mode of communication from
the alpha-helical recognition (REC) domain to the HNH nucle-
ase domain, an important aspect that is critical for specificity. The
CRISPR-Cas9 system has been adapted as a powerful and versatile
DNA-targeting platform that enables the engineering of genomes
with unprecedented functionality.38,39 The most widely used Cas9
from Streptococcus pyogenes (Cas9 hereafter) is a dual RNA-guided,
multidomain endonuclease [Fig. 1(c)].40,41 Cas9 is complexed with a
chimeric single guide RNA [Fig. 1(c)] to perform its double-stranded
DNA targeting and cleavage function. It can be programmed with
the corresponding 20-nucleotide guide sequence at the 5′ end of
sgRNA to target any genomic site flanked by a short protospacer
adjacent motif (PAM).42–44 The apo-Cas9 structure adopts a bi-
lobed architecture and comprises an alpha-helical recognition (REC)
lobe and a nuclease (NUC) lobe connected by an arginine-rich
bridge helix (BH) [Fig. 1(c)]. The REC lobe is further divided into
three domains (REC1, REC2, and REC3), and the NUC lobe con-
sists of a PAM-interacting (PI) domain and two Mg2+-dependent
nuclease domains (HNH and RuvC). HNH and RuvC function as
molecular scissors, cutting the target strand complementary to the
sgRNA 5′ end and the nontarget strand of a dsDNA target, respec-
tively. Therefore, Cas9 is a complex allosteric enzyme that undergoes
a sequence of precise conformational rearrangements necessary for
DNA target recognition and cleavage.44–46 These processes involve
multiple layers of allosteric regulation to ensure targeting precision
and functional activity.39,44,46,47

II. THEORY
Graph theory is the study of mathematical structures called

graphs consisting of nodes and edges used to model pairwise
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relations between objects. The origins of graph theory date back
to the eighteenth century, when Euler solved the dilemma of the
Seven Bridges of Königsberg. Since then, network models have been
widely applied to questions in a variety of fields, including the phys-
ical and biological sciences. Here, we focus on graphs of proteins
where the nodes correspond to amino acid residues and the edges
are defined according to the strength of pairwise correlations estab-
lished among interacting residues.48 Protein networks have been
traditionally generated using a variety of models, including protein
correlation networks (PCNs),2 protein structure networks,49 protein
contact networks,50 residue interaction graphs,9,51 and residue net-
works.52 In PCNs, the network is constructed from the correlation of
time-dependent variables from MD simulations. The entries of the
correlation matrix become the edges of undirected networks, with
the nodes corresponding to the elements for which the correlation is
computed.

A. Node-level descriptors
We focus on allosteric communication in proteins, which is

analyzed using correlation networks obtained from MD simulations

of atomic displacements, torsion angles, and electrostatic energies
(Fig. 2). To construct these networks, F snapshots of protein config-
urations (frames) are sampled at equidistant time steps, each includ-
ing N nodes representative of the protein structure. Section II A
outlines the structure of the modules that perform the correlation
analysis for different features in MDiGest and details the size of
the matrices/tensors involved in the calculation of each descriptor.
When built from electrostatic energy couplings or torsion angles,
protein networks preserve 1:1 node-to-residue mapping. Instead, the
network constructed from atomic displacements may, in principle,
exceed the number of residues in the system, depending on the user’s
selection. However, user selections describing each residue as a sin-
gle tridimensional vector are more easily interpretable and should
be the preferred choice. For the sake of clarity, in the following,
we assume that the number of nodes in the network equates to the
number of residues in the system.

1. Atomic displacements
Cartesian atomic displacements of residue i are computed for

each frame of the MD simulation as follows:

FIG. 2. The modular structure of the
MDiGest software. The trajectory is pro-
cessed through the parsetrajectory mod-
ule. Three correlation modules can be
used to compute several correlation met-
rics and related metrics from the atomic
displacements, torsion angles (denoted
with the prefix d), and electrostatic
energy couplings (denoted with the pre-
fix ks), respectively, as reported in the
diagram. The acronyms are described in
Sec. II. The resulting correlation matri-
ces can be used as input for the visu-
alization and community modules. The
visualization module produces PyMol20

scripts for visualizing the projected prop-
erties onto the protein structure. In addi-
tion, the correlation matrices can be
passed to the community module to par-
tition the protein graphs into community
structures.
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ri = qi − 1
F∑

F
j q j , (1)

resulting in a matrix of size F × 3N called the atomic displacement
matrix 1 (adm1), with N the number of atoms included in the cor-
relation analysis and qi = {xi, yi, zi,} the coordinates of each node
i (e.g., alpha carbon of each amino acid residue). The displacement
magnitudes are computed as follows:

∥ri∥ =
√
(xi − x)2 + (yi − y)2 + (zi − z)2, (2)

resulting in a matrix of size F ×N, called atomic displacement matrix
2 (adm2), where each element corresponds to the atomic displace-
ment of a given amino acid residue for each frame of the MD
simulation.

2. Torsion angles
Four torsional coordinates, including sine and cosine backbone

torsions and dihedrals, are recorded for each amino acid residue
along the MD simulation in the matrix torsion angle matrix 1 (tam1)
of size F × 4N. Each matrix entry corresponds to the sine/cosine
transformed/backbone dihedral for a given residue and snapshot of
the MD simulation,

di = {sin (φi), cos (ψi), sin (φi), cos (ψi)}. (3)

The magnitude of the dihedral displacement is computed as follows:

∥di∥ =
√
∑4

k(di,k − di )2, (4)

resulting in a matrix of size F × N called torsion angle matrix 2
(tam2).

3. Electrostatic energies
The analysis of correlations of electrostatic energies is based

on one descriptor per amino acid residue, corresponding to either
the hydrogen bond donor energy, hydrogen bond acceptor energy,
or the sum of the donor and acceptor energies according to the
Kabsch–Sander formalism.53 We focus on electrostatic interactions
between the CO and NH backbone groups for each frame of the MD
simulation, as follows:

E = 0.42e × 0.20e × 33.2
kcal

mol × nm
× ( 1

rON
+ 1

rCH
− 1

rOH
− 1

rCN
),

(5)
resulting in a 3-mode tensor of size F × N × N, where rows cor-
respond to hydrogen bond acceptor (CO) groups and columns
correspond to hydrogen bond donor (NH) groups. From this matrix,
we can sum across rows to obtain the hydrogen bond donor energy
of each residue, resulting in the Kabsch–Sander donor matrix (ksdm)
of size F × N, where each element is the hydrogen bond donor
energy for a given residue and frame of the MD simulation. Analo-
gously, summing across columns yields the Kabsch–Sander acceptor
matrix (ksam) corresponding with the acceptor energy for a given
residue and frame of the MD simulation. Additionally, we can sum
the donor and acceptor energies for each residue, resulting in the

Kabsch–Sander donor-acceptor matrix (ksdam) of size F′ ×N, where
each element is the sum of hydrogen bond donor and acceptor
energies for each residue and frame of the MD simulation.

B. Pairwise correlations
MDiGest allows for calculations of residue–residue couplings

using four possible measures of correlation. Dynamic cross-
correlation, Pearson correlation, generalized correlation based on
the linearized mutual information, and generalized correlation
obtained from the mutual information are computed from each
of the three descriptors of amino acid residues, including atomic
displacements, torsion angles, and electrostatic energies.

1. Dynamic cross-correlation and Pearson correlation
The dynamic cross-correlations (dcc) between residues i and j

are computed for the F frames of an MD simulation according to the
following equation:

dcci, j = ⟨Δri(t)Δr j(t)⟩t√
⟨∥Δri(t)∥2⟩

t

√
⟨∥Δr j(t)∥2⟩

t

. (6)

The dcc matrices are of size F × cN, where c is either 3 (for atomic
coordinates), 4 (for torsion angles), or 1 (for electrostatic energies) as
provided by matrices adm1, tam1, and ksdam, resulting in matrices
of sizes 3N × 3N, 4N × 4N, and N × N, respectively. The matrices
adm1 and tam1 are then averaged to obtain an N ′ N pairwise dcc
coefficient.

We compute Pearson correlation coefficients (pcc) from adm2,
tam2, and ksdam as follows:

pccx,y = ∑F
i (xi − x)(yi − y)√

∑F
i (xi − x)2∑F

i (yi − y)2
, (7)

where each element is the respective pairwise correlation coefficient.

2. Generalized correlation
Generalized correlation coefficients (gcc) are computed from

either the linearized mutual information or the mutual information,
as follows:

gcci, j =
√

1 − exp(−2
3

Ii, j). (8)

Using a Gaussian estimator, one can approximate the (linearized)
mutual information2 between two variables as follows:

Ii, j = 1
2
[log (det (covi)) + log (det (covj)) − log (det (covi, j))],

(9)
where the covariances are computed from the matrices adm1, tdm1
or ksdm, ksam, ksdam for each pair of descriptors i, j, as follows:

covx,y = ∑
F
i (xi − x)(yi − y)

F
. (10)

The resulting matrix accounts for only linear correlations. There-
fore, the corresponding correlation matrix is referred to as gcc-lmi.
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Additionally, we can compute gcc-mi coefficients from the mutual
information,

Ii, j = Hi +Hj −Hi, j , (11)

that also accounts for nonlinear correlations. Following the deriva-
tion by Kraskov et al.,54 we approximate the mutual information as
follows:

Ii, j ≈ ψl − 1
k
− ⟨ψni + ψnj ⟩ + ψF , (12)

where k is a parameter defining the number of nearest neighbors,
F is the total number of frames in the MD simulation, and are the
numbers of frames in which the positions of nodes i and j are within
a specified distance cutoff. The digamma function introduced by
Eq. (12) is defined as follows:

ψl = Γ−1
l

dΓl

dl
, (13)

where l = k, F, ni, nj. Furthermore, is the ensemble average of the
sum of digamma functions applied to ni, nj, where ni, nj are var-
ied for each calculation of ⟨ψni + ψn j ⟩ according to a distance cutoff,
including k-nearest neighbors for each node x and y in each frame
along the MD simulation.

In the implementation of the method, MDiGest first initializes
an N × N array with each entry corresponding to k and F. To solve
for this, we first define x to be an F × f matrix, where f is 3 for atomic
displacements, 4 for torsion angles, and 1 for electrostatic energies
for each node i. We define y analogously for node j. The concate-
nated [x,y] array of size 2F × f is fed into a nested KDTree object,
utilizing the Chebyshev distance metric, i.e., the maximum abso-
lute distance in one dimension of two n-dimensional points. The
KDTree provides the distances to the k-nearest neighbors for each
point. An additional KDTree object for each node (i and j, individu-
ally) is used to compute the digamma for the points in each of these
two trees at all distance cutoffs defined by the outer KDTree. Once
the average is computed, the mutual information between nodes i
and j is readily obtained.

C. Eigenvector centrality
The eigenvector centrality (ec) measures the relative impor-

tance of nodes in establishing correlations in the network.55–57 From
each set of pairwise correlation coefficients, we can construct a cor-
responding adjacency matrix and obtain the eigenvector centralities
of the nodes in the network as established by that specific correlation
coefficient.

MDiGest allows for the construction of adjacency matrices,
A, of size N × N, for each set of correlation coefficients (dcc,
pcc, gcc-lmi, and gcc-mi) based on one of three atomic descriptors
(atomic displacements, torsion angles, and electrostatic energies).
Each entry of A is a pairwise correlation coefficient representing an
edge between two nodes in the network. From the adjacency matrix,
the eigenvector centrality is computed as follows:

Ac = λc. (14)

According to the Perron–Frobenius theorem, the entries of the
eigenvector corresponding to the largest eigenvalue can be defined

to be all positive real numbers, defining the centrality values for
each node (residue) in the network (protein). Each entry of the
eigenvector c with the maximum eigenvalue thus corresponds to the
eigenvector centrality of the given node. The eigenvector centrality
values, therefore, quantify the importance of each node in the eigen-
vector of maximum eigenvalue, measuring how much each node of
the protein network contributes to the correlation in the network.

When the adjacency matrix to be diagonalized corresponds
to the covariance matrix (cov) of atomic displacement atoms, the
resulting set of transformed coordinates is usually referred to as
the principal components (pc) of motion. The eigenvectors, or pcs,
describe the motions of the system, and the corresponding eigenval-
ues report on the relative contribution of each motion to the global
dynamics.

D. Networks obtained with MdiGest
MDiGest allows the building of a variety of protein corre-

lation networks for a comprehensive analysis of allostery in the
system. As described in Sec. II A, correlations can be quantified by
the covariance of atomic displacements, dynamic cross-correlation,
Pearson correlation, the generalized correlation from linearized
mutual information, and the generalized correlation from mutual
information using various node-level descriptors, including atomic
displacements, torsion angles, and electrostatic energies. As recently
shown,30 the electrostatic eigenvector centrality (EEC) measure
yields improved correspondence with the experimental analysis of
allostery based on NMR data. The information provided by EEC
generally resembles that obtained from correlations of backbone
dihedrals, confirming that correlated electrostatic couplings account
for both localized motions and overall conformational changes.22

Furthermore, the decomposition between donor and acceptor ener-
gies provides an additional layer for an in-depth interpretation of the
underlying dynamics.

III. MDiGest MODULES AND FEATURES
MDiGest is a Python 3 package that can be executed on Linux,

Mac OS, and Windows operating systems. The installation may be
accomplished directly using Conda or through pip, as described
in https://github.com/fmaschietto/mdigest#readme. It is efficiently
built using high-end and actively-maintained Python packages such
as NumPy,58 SciPy,59 scikit-learn,60 NetworkX,61 dynetan,18 and
MDAnalysis,31 The trajectory parsing in MDiGest is handled by
MDAnalysis,31 which is among the most popular packages for such
purposes, providing a reliable platform for a broad audience, includ-
ing both the computational and experimental structural biology
communities.

MDiGest is an object-oriented package consisting of differ-
ent modules, each performing a specific function related to the
processing/analysis of MD trajectories and the characterization of
allosteric behavior. MD trajectory parsing is handled by the mdi-
gest.core.parsetrajectory module, which allows customized parsing
of trajectories, including slicing and frame selection across one or
more replicates for a given system. Additionally, basic analyses are
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allowed, such as root-mean-square deviation (RMSD), root-mean-
square fluctuation (RMSF), and calculation of secondary struc-
ture elements using the dictionary of protein secondary structure
provided by MDTraj.62

Upon digestion by mdigest.core.parsetrajectory, the MD trajec-
tories are stored in an object that allows easy access to MDAnalysis
attributes as well as custom properties related to the replicates and
slicing parameters. The modular structure (Fig. 2) allows for a pro-
gressive inheritance of relevant parent object instances that are used
for subsequent analyses.

A. Correlation modules and associated networks
Atomic displacements. The network constructed from pairwise

correlations of atomic displacements enables the identification of
the “hubs” in the protein network that play a major role in the
dynamics of the system of interest. Different correlation matrices
are used, including simple covariance, direct correlation coeffi-
cients, and linear (lmi)/non-linear (mi)-based correlations, each
having different properties and, therefore, providing useful insights
to individuate nodes (residues/atoms) that play a crucial role in
the allosteric dynamics of the system. The mdigest.core.correlation
module accounts for those procedures.

Internal coordinates (i) Dihedral-based correlation network. A
complementary approach to atomic displacements utilizes dihedral
angles to build the correlation network. Dihedral angles are advan-
tageous in some instances because internal coordinates naturally
provide a correct separation of internal and overall motions, which
is crucial for the construction and interpretation of the pseudo-
free energy landscape22 of a biomolecule undergoing large structural
rearrangements. The mdigest.core.dcorrelation module allows one to
generate a protein correlation network from dihedral fluctuations.
To account for the circular statistics of angular variables, we trans-
form the space of dihedral angles {φn} to the metric coordinate space
{xn = cosφn, yn = sinφn}. As such, each residue is described by four
coordinates corresponding to the sine and cosine projections of the
φ and backbone angles.

Internal coordinates (ii) Electrostatic-based correlation network.
Pairwise electrostatic energies allow for decoupling the contribu-
tions of backbone donor (amide) and backbone acceptor (car-
bonyl) groups, providing valuable insights for the interpretation of
dynamics. Electrostatic networks are computed through the mdi-
gest.core.kscorrelation module. Each correlation module allows for
the computation of the associated centrality metric.

A collection of pre-compiled plots in mdigest.core.plots can
be used to generate heatmaps of the different PCNs, including
plots corresponding to the difference network relative to two dis-
tinct states of a given system (i.e., ligand-bound vs ligand-unbound,
wild-type vs mutant, etc.).

The mdigest.core.savedata module can be used to save the
attributes of each class as binary files. The instances from
each correlation analysis can be loaded back into a com-
mon object, which facilitates handling and post-processing anal-
ysis. Relevant examples are provided in the sections Test
Case 1 of the notebook mdigest-tutorial-notebook.ipynb (available
at https://github.com/fmaschietto/mdigest/tree/master/notebooks),
which shows the basic functionalities of the correlation related
modules.

B. Dimensionality reduction module
Eigenvector centrality belongs to the broader category of

dimensionality reduction methodologies to extract “essential” infor-
mation from MD trajectories. Computing centrality values based
on eigenvector decompositions of similarity matrices reduces the
dimensionality. When the decomposition involves the covariance
matrix of a time series, the methodology is usually referred to as
PCA. However, PCA differs from eigenvector centrality in that it
is bound to linear correlations as a similarity metric. Given a set
of mean-centered coordinates observed along an MD simulation,
PCA sorts the trajectory into 3N directions of descending vari-
ance, with N being the number of atoms. These directions are
called the principal components (pcs). The dimensions to be ana-
lyzed are reduced by only looking at a few projections of the first
principal components. When the simulations are sufficiently long,
the principal components with a multimodal probability distribu-
tion often correspond to distinct metastable conformational states,
whereas unimodal probability distributions report on fluctuations
rather than conformational transitions.22,63

Different correlation matrices and their corresponding protein
networks and communities can be compared for a single replica as
well as across multiple replicas.

The mdigest.core.dimreduction module can be used to perform
such an analysis. Upon providing an MD trajectory (or, more gener-
ally, a time series of any variable), the linear transformation can be
carried out using different methods, such as those provided through
sklearn.decomposition.PCA60 and pyemma.coordinates.PCA.64 The
resulting principal components are sorted in order of descending
variance. Since the first few components usually capture the essential
molecular motions of the MD simulation, it can be useful to project
the original (centered) data onto the eigenvectors, allowing visual-
ization of the essential motions along a given MD trajectory. The
procedure is detailed in the associated notebook section (Test Case 4
in mdigest-tutorial-notebook.ipynb).

C. Network visualization module
MDiGest includes a composite module (mdi-

gest.core.networkcanvas) for generating visual representations
of the resulting networks. Visualization is essential for studies of
allostery with network models and for the interpretation of the
underlying allosteric mechanisms.

Within the ProcCorr class, the user can load different cor-
relation matrices and assign custom filters such that only entries
falling within the desired threshold are selected. The generated sub-
set of edges can be visualized on the protein secondary structure
using a PyMOL20 script that is automatically generated by the class.
More customized analyses and comparisons of different networks
are provided by the standalone draw_networks_pymol.py module.
Examples of how to load different correlation networks and repre-
sent them on the protein are provided in the section Test Case 3 of
mdigest-tutorial-notebook.ipynb.

D. Community partitioning module
A dynamic network has a community structure if the nodes

of the network can be grouped into clusters that are internally
well-connected. This topological analysis of PCNs can be used to
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partition the graph into communities and identify the significance of
groups of residues with respect to the overall allosteric mechanism.

Community detection starts with a distance network, which
can be constructed from a PCN using the equation d = −log(C),
with C being the elements of the correlation matrix that con-
stitute the edges of the network. MDiGest allows computa-
tion of the community structure of a PCN through the fast-
performing Louvain heuristic scheme65 and the less efficient but
more traditional Girvan–Newman (GN)66 algorithm (both in the
mdigest.core.networkcommunities module). The Louvain heuristic
outperforms the GN method when accounting for speed and
accuracy,18,67 so it is the preferred choice. The quality of the par-
titioning is measured by modularity, where networks with high
modularity have dense connections between the nodes within com-
munities but sparse connections between nodes in different com-
munities. The convergence can be analyzed across multiple runs or
even across different correlation schemes. As described for the cor-
relation analysis, the resulting community structures can be saved
to file for later analysis. Relevant functionalities implemented in the
community module are showcased in the section Test Case 4 of
mdigest-tutorial-notebook.ipynb.

IV. CASE STUDIES
The three systems introduced in Sec. I, including different levels

of size and complexity, are discussed to demonstrate the capabilities
of the MDiGest software. The section Test Case 1 of the notebook
introduces MptpA as a tutorial system for showcasing the calculation
of correlations and relative networks. The small size of this enzyme
and the experimental evidence that a specific mutant in a catalyti-
cally relevant loop perturbs its enzymatic activity render MptpA a
great example for those who want to learn how to use network anal-
ysis tools to study allostery from MD data. Additionally, we apply a
comprehensive repertoire of analyses to the yeast IGPS enzyme to
demonstrate further capabilities of the MDiGest package, including
the community network analysis. Cas9 allows demonstration of the
use of the MDiGest package as applied to a complex system involving
large displacements of multiple domains.

A. Correlation networks in MptpA
MD simulations are particularly valuable for studies of allostery

since they provide the history of atomic motions in terms of a time
series of molecular configurations. Irrespective of the type of input
coordinates or features that characterize each time step, only a sub-
set of them are typically most involved in a specific biomolecular
process. A general approach to identifying the coordinates most
relevant to a process is to consider their mutual relations as quan-
tified by a measure of correlation. Differences in the correlation
profiles between two different states (i.e., wild-type and mutant)
reveal the effect of that specific perturbation (mutation) on the over-
all dynamics of the system. MDiGest allows for efficient computation
and comparison of different correlation metrics through correlation
heatmaps and the visualization of correlation networks. Different
measures of correlation, however, may provide different yet com-
plementary types of information. To give a sense of the extent of
such variations, we compare different metrics for three independent
200 ns replicas of two states of MptpA, including wild-type (WT)

and the Q75L mutant. Through this analysis, we rationalize the effect
of the mutation and, in turn, illustrate the reasons for the observed
improved catalytic activity of Q75L.

Figure 3(a) shows the averaged gcc matrices computed from
Cα displacement sampled from MD trajectories of WT and Q75L
MptpA. In the first row, the pairwise couplings (gcc-mi) are esti-
mated using a non-parametric k-nearest neighbor density estimator
(with k = 5), which accounts for non-linear correlations. In the sec-
ond row, the correlation (gcc-lmi) is computed assuming the special
case of a Gaussian joint probability distribution that only captures
the linear regime. The latter approach drastically reduces the com-
putational effort, however, at the cost of neglecting non-linear terms.
The difference correlation matrix (Q75L-minus-WT) appears to
overestimate the overall gain in correlation due to mutation. Panel
(b) compares different correlations computed from dihedral fluctu-
ations (dgcc-mi and dgcc-lmi). Notably, using dihedrals in place of
Cα atoms reduces the differences between the non-linear and linear
metrics.

The difference Q75L-minus-WT dihedral correlations are com-
pared to those derived from electrostatic energies (referred to as
ksgcc and obtained using the Kabsch–Sander formalism described
in Sec. II). The ks-picture compares very well with the correla-
tions obtained from dihedral distributions. The difference between
dgcc and ksgcc shows that the delta-correlation patterns associ-
ated with the mutation are conserved regardless of the inclusion of
non-linearities. A quantitative comparison of the correlation distri-
butions obtained from different metrics is shown in Fig. 3(c). Here,
we express the correlations in terms of “distances” by transforming
the correlations (C) into D = −log(C).

Smaller distances correspond to larger correlations. The curves
in panel (c) represent the cumulative probability of each distance
distribution. The left panel shows the distance distribution com-
puted from Cα displacements using gcc-mi, gcc-lmi, and dcc (time-
averaged Pearson correlation introduced in Sec. II) for WT and
Q75L. The two linear metrics (dcc and gcc-lmi) behave rather dif-
ferently, with the former having more than 90% of the values lying
below 0.01. gcc-lmi is also steeply distributed, but toward larger val-
ues. gcc-mi accounts for small and high correlations, so it should
be the preferred choice among the three-correlation metrics. The
right panel shows a similar analysis, where the correlation metrics
are computed from dihedral displacements (shown as dashed lines).
In addition, these distributions are compared to those obtained by
applying the mi and lmi metrics to the time-evolution of electrostatic
energies (denoted as ksgcc-mi and ksgcc-lmi). Again, for dihedrals,
mi-based metrics are more evenly distributed across the [0,1] inter-
val and are comparable to the ksgcc-lmi distributions. To create a
consensus picture, we overlay the networks obtained with differ-
ent metrics that have the largest overlap [Fig. 3(d)]. The different
edge colors reflect the binning of each distribution, making it easier
to single out the edges that are more significantly perturbed upon
mutation.

Remarkably, the overlay between the different metrics
[Fig. 3(d1)] captures all the relevant features at once, where the W-
loop, Q-loop, and D-loop exhibit the largest change in correlation.
Upon mutation of Q75 to L, the missing Q sidechain breaks a hydro-
gen bond between T45 and Q75, which is accompanied by a decrease
in correlation in the neighboring region [blue lines around Q75 in
Fig. 3(d2.2)]. In the electrostatic network, this change increases the
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FIG. 3. Correlation networks from different metrics. (a) Heatmaps of lmi- and mi-gcc correlations computed from Cα-displacements from simulated trajectories of WT and
Q75L and their differences. (b) Heatmaps of difference ∆WT-Q75L correlations computed from dihedral distributions and electrostatic energies using mi- and lmi-based
correlation metrics. (c) Cumulative distributions of the log distributions of various similarity measures D = −log(C). (d1) Several difference networks from Q75L minus WT
linearized mutual information-based correlation of electrostatic energies (ksgcc-lmi), dynamics cross-correlation of dihedral fluctuation (ddcc), and mutual information-based
generalized correlation coefficients from Cα-displacements (gcc-mi). Each network is filtered according to the average distance matrix computed from the Q75L and WT
trajectories. Only edges corresponding to Cα-pairs lying at a distance lower than or equal to 5 Å are retained. Moreover, the edges are distributed in five equally spaced bins
ranging from 0 to 1 and colored accordingly. A consensus network obtained by overlaying the gcc-mi, ddcc, and ksgcc-lmi networks is also shown. (d2) 1: MptpA enzyme
with the three catalytic loops. Color key: P-loop (yellow) with the catalytic C11 shown in sticks; D-loop (green) featuring Y128 and Y129 in sticks; and W-loop with W48 in
sticks (orange). The Q75 residue in the Q-loop is shown in a magenta sphere. 2: Difference networks (Q75L minus WT): gcc-mi and ksgcc-lmi colored by sign. Edges that
experience an increase in correlation upon mutation are shown in red, while edges experiencing a decrease in correlation are shown in blue.

electrostatic coupling (red lines) due to the formation of intermittent
hydrogen bonds between the backbone of G44 and Q75.30 Over-
all, the Q-loop and W-loop remain coupled, but with a decrease
in cross-loop electrostatic interactions in favor of increased inter-
actions within the Q-loop [Fig. 3(d2.3)]. These motions promote
a conformational change that brings the D-loop in close proxim-
ity to the W-loop, stabilizing the closed conformation essential for
catalysis.30

B. Community detection in yeast IGPS
Another common way of analyzing dynamic networks is by

looking at the communities formed by the network nodes. In molec-
ular systems, such analysis can identify protein domains that are
functionally connected and elucidate key amino acid residues that
establish the interactions between communities. Qualitatively, a
community is defined as a subset of nodes that are more intercon-
nected among themselves than with other nodes in the network.
Therefore, pairs of nodes are more likely to be correlated if they
are both members of the same community. Identifying such com-
munities provides a detailed characterization of complex patterns of
relationships between different regions of the protein.

The community detection module in MDiGest applies the
Louvain heuristic,65 which is an unsupervised algorithm based on

modularity optimization and community aggregation that allows
for the efficient detection of communities. Despite efficiently solv-
ing the community problem, even for large systems, the Louvain
algorithm has a major drawback: it often yields arbitrarily weakly
connected communities. In some cases, communities may even be
disconnected, especially when running the algorithm iteratively. To
solve this issue, MDiGest includes an additional aggregation step
where the nodes assigned to partitions smaller than a given threshold
are iteratively reassigned to the community that yields the highest
modularity.

Figure 4 shows the results of community detection for the yeast
IGPS enzyme as applied to studying how the effector (PRFAR) per-
turbs the correlations in the system. To do so, we analyze MD
simulations of six independent trajectories 200 ns long of apo
and PRFAR-bound IGPS. We computed various correlation met-
rics using MDiGest, including gcc from Cα and dihedrals and dcc
(respectively denoted as gcca/dgcca for apo and gcch/dgcch for holo
states). Figure 4(a) shows the correlation between gcc and ∣dcc∣, as
well as dgcc, and ∣dcc∣ for the apo and holo states computed from the
average distributions over six independent replicas. The resulting
contour plot reveals a clear relationship between the two corre-
lation measures. Quite similar results are found for both the apo
and holo Cα-based distributions (Spearman ρ = 0.55), suggesting
that the two metrics are rather interchangeable. The correlation is
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slightly lower (Spearman ρ = 0.37) when computed from dihedral
fluctuations, implying that the two metrics characterize some of the
correlations differently. Indeed, the values for gcc extend over the full
range from 0 to 1, while the values for dcc are very small compared
to those of gcc. This effect is shown in more detail in Fig. 4(b), where
the cumulative probability distributions obtained from the different
metrics are shown, confirming that over 90% of the values computed
for dihedral-based dcc lie below 0.01. The dcc distributions, how-
ever, seem to discriminate better between the apo and holo states.
This analysis clearly demonstrates that different metrics can provide
different information. Therefore, it is important to verify the con-
sistency of the communities as obtained from different measures of
correlation.

Figure 4(c) shows the projection of the communities computed
from different metrics onto the protein structure. Despite the dif-
ferences discussed previously, the partitions are rather consistent
regardless of the chosen metric. Remarkably, all metrics show that
upon the addition of PRFAR, the loop1-f α2-f α3-Ω-loop forms a
single community, which is consistent with the functional role of
such residues detailed in previous experimental findings.34,68 The
addition of PRFAR promotes changes in interactions that propa-
gate from the effector site to the Ω-loop and affect the inter-domain
interface, initiating the rearrangement of the active site that culmi-
nates with catalytic activation.69 The signal transmission is assisted
by the motion of loop 1. PRFAR increases the internal correlations
in the protein, resulting in reduced fragmentation of the partitions.
The analysis of shortest pathways (based on the Floyd–Warshall70

algorithm applied to the dgcca and dgcch networks) confirms that
upon the addition of PRFAR, the allosteric signal transmission from
PRFAR to the active site involves f α3, loop1, and the Ω-loop.

C. Community detection in Cas9
The analysis of the Clustered Regularly Interspaced Short Palin-

dromic Repeats-associated 9 (Cas9) enzyme demonstrates the utility
of different analyses provided by the MDiGest software package.
Specifically, the analysis shows how to use MDiGest to elucidate
the allosteric pathways in Cas9 and how they change upon DNA
binding. The eigenvector centrality values obtained from the gcc-lmi
correlation coefficients of KS energies describe the level of participa-
tion of each node during the propagation of electrostatic interactions
along the network. This protocol allows for the identification of
the nodes that are crucial for transferring electrostatic interactions
through the network. The comparison of the allosteric network
of Cas9 with and without bound DNA provides insight into the
allosteric mechanism of Cas9 with DNA. HNH is identified as a hub
for signal transmission, with strong edges that connect HNH radially
to the neighboring domains (RuvC), PI, and REC.

The difference (DNA-bound minus apo) in electrostatic eigen-
vector centrality [Fig. 5(c)] identifies residues whose centrality in
the electrostatic network is significantly enhanced and thus becomes
more important in the allosteric pathway upon DNA binding. Addi-
tionally, we can create a network representation of Cas9 where nodes
correspond to secondary structure clusters (i.e., adjacent residues
with the same secondary structure during most of the MD sim-
ulation), and edges between nodes are defined by pairwise gccs
computed from KS energies throughout the trajectory. Since we are
interested in describing the effects of DNA binding on the Cas9

allosteric mechanisms, we use the difference in correlation coeffi-
cients between DNA-bound and apo Cas9 as the edges, where the
width of the edge is proportional to the magnitude of the change and
the color (green = increase, red = decrease) denotes the directionality
of the change [Fig. 5(b)].

Figure 5 shows that the HNH domain, for example, becomes
more central to the electrostatic network upon DNA binding, as
characterized by both the electrostatic eigenvector centrality and
electrostatic network analyses. Zooming into the HNH domain, we
compare wild-type HNH with a mutant that has had an allosteric
hotspot (residue 848) mutated from lysine to alanine (K848A). The
eigenvector centrality from correlations of Cα displacements of the
two states (wild-type and mutant) reports on the change in allosteric
communication upon the point mutation. These results identify
the residues whose centrality to the network changes significantly
[Fig. 5(e)], as well as the changes in pairwise correlations [Fig. 5(f)],
consistent with previous studies.6,71,72

V. PERFORMANCE
Figure 6 reports the timings for different correlation calcula-

tions using the different modules available in MDiGest, providing
a reference for how computation scales depending on the num-
ber of nodes/frames included. Generally, for an equal number of
frames (F) and nodes (N) considered, the calculation of Pear-
son correlation coefficient (pcc) and dynamical cross-correlation
(dcc) matrices is comparable to that of covariances (cov) for dihe-
dral and atomic-displacements and slightly faster than computing
linearized-generalized correlation coefficients (gcc-lmi). For exam-
ple, the time taken for calculating cov, pcc, dcc, and gcc-lmi for
atomic-displacement networks built from 163 atoms (MptpA) and
15 000 trajectory frames is 6.02, 5.26, 5.67, and 19.2 s, respectively.
The linear scaling of the time consumption associated with these
networks evaluated for MptpA is shown in Fig. 6(a).

The apparent increased time cost for computing cov and gcc-
lmi networks based on the electrostatic coupling is due to the
implicit computation of four N ×N × F distance matrices (dCiHj,
dCiOj, dCiN j, dOiN j) between the backbone atoms of each pair of
residues i,j = 1, . . ., N that underpins the estimation of correlations.
While the computation of these distance matrices is performed in
parallel, electrostatic couplings networks are by far the most compu-
tationally demanding option available in MDiGest. However, once
these distance matrices are computed, the calculation of mutual
information-based correlation is faster on electrostatic couplings
than on atomic displacements due to the three-fold reduction of
dimensionality in the value arrays obtained when the per-frame elec-
trostatic couplings are averaged over columns or rows to obtain the
corresponding donor/acceptor time series.

The starred vs non-starred gcc-mi presented in Fig. 6(b) show-
cases the impact of two options, namely option = 1 vs option
= 2, along with k = 5 (number of neighbors) for the mutual infor-
mation estimator in the gcc-mi calculations. The nearest-neighbor
calculation involves considering k-neighbors for a given node with
two options available: including or excluding the given node itself
in the calculation, where the latter option includes an offset of 1/k.
The scaling effect is observable in MptpA due to the considerable
number of frames in a single replica. However, in cases where fewer
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FIG. 4. Community network analysis of yeast IGPS. (a) Linearized mutual information computed from the Cα and dihedral dynamics (gcc, dgcc) compares well to the
absolute dynamical cross-correlation coefficient, as obtained from both features (∣dcc∣, ∣ddcc∣) for apo (a) and holo (h) states. All distributions are on a log scale. ρ values
denote the Spearman correlation coefficient between each pair of distributions. (b) Cumulative probability distribution for different measures of correlation. (c) Communities
obtained according to the different metrics and for the apo and holo states projected onto the secondary structure of IGPS. (d) Representation of the communities as
a function of the residue index for both apo and holo states obtained with different metrics of correlation. (e) Representation of the shorter pathways interconnecting the
residues that form stable interactions extending from PRFAR to the active site. Pathways obtained from the apo simulations are shown in blue, as opposed to those obtained
from the holo simulations, which are shown in red.

frames are used, such as yIGPS and Cas9-apo, the difference between
options 1 and 2 is less noticeable.

MDiGest has a non-parallel architecture if we exclude the
in-parallel computation of the distances in the KS electrostatic
terms, and few instances include parallel array computation. There-
fore, running MDiGest on Google Colab graphics processing unit
(GPU) platforms will only positively affect those functions that
make explicit use of JIT compilers. Future improvements will
include explicit parallelization of the computation of the mutual-
information-based correlation and computations over multiple
replicas.

VI. MDiGest IN COMPARISON TO OTHER
EXISTING TOOLS

Despite the widespread use of protein correlation networks
(PCNs), there is a lack of standardized use of such methodologies in
terms of the selected correlation metrics and handling of MD trajec-
tories, such that often one metric is selected over another somewhat

arbitrarily. The resulting interpretations can thus become depen-
dent on the choice of metrics. MDiGest allows for comparisons of
analyses based on different metrics to obtain a consensus picture
with respect to the identification of residues central to allosteric
mechanisms.

Although many tools have been published in recent years to
analyze correlations from MD simulations, the lack of standard-
ization can hinder reproducibility. In addition, available tools are
limited with regard to their input formats and supported network
models. For instance, packages such as MDTraj,62 pytraj,15 MDAnal-
ysis,31 and ProDy73 allow for efficient parsing of MD trajectories and
large-scale preliminary general analyses. However, those packages
do not provide PCN analyses available in other Python packages
such as correlationplus,10 MD-TASK,11 MDEntropy,13 dynetan,18

and MoSAIC.74

Correlationplus10 consistsv of a set of Python scripts to com-
pute correlations based on gcc-lmi, dcc, and pcc. It is based on
ProDy73 for processing MD trajectories, while MDiGest is built
on MDAnalysis.31 Correlationplus does not compute (nonlinear)
mi-based correlations while providing access only to the analysis
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FIG. 5. Network analysis of Cas9. (a) Cas9 protein with colored subunits: REC = gray, RuvC = blue, HNH = green, and PI = yellow. (b) Electrostatic network of Cas9, where
nodes correspond to secondary structure clusters and edges are defined by the change in the correlation of KS electrostatic energies induced by DNA binding (green edges
= increase, red edges = decrease). (c) Changes in electrostatic eigenvector centrality values (∆EEC) of Cas9 induced by DNA binding. Residues with ∆EEC greater than
two standard deviations above the mean are shown as circles, indicating the residues that become significantly more central to the propagation of electrostatic information
upon DNA binding. (d) Cas9 HNH K848A mutant colored by RMSF. Residues with RMSF larger than two standard deviations above the mean are shown as spheres. (e)
Change in eigenvector centrality values computed from correlations of α-carbon displacements between wild-type (wt) HNH and HNH mutant K848. (f) Correlation plots for
wt HNH, K848A, and their differences.

of linear correlations and integrates MD-correlation with normal
model-based analysis.75 MD-TASK11 (and the corresponding web
server, MDM-TASK-web) is among the most comprehensive soft-
ware suites for coarse-grained analysis of allosteric proteins. It
provides a variety of non-conventional approaches, such as dynamic
residue network analysis, perturbation-response scanning, dynamic
cross-correlation, essential dynamics, and normal mode analysis,
thereby integrating common approaches to static and all-atom MD-
simulated proteins. However, it lacks the incorporation of MI-based
correlations. Dynetan,18 on the other hand, provides an efficient
implementation for generalized correlation based on mutual infor-
mation and associated network analyses. However, it only allows
network construction from atomic displacements, which makes it
rather limited in terms of feature space. MDEntropy,13 as the name
suggests, is a collection of modules for performing information-
theory-related analyses on MD trajectories. However, it is unclear
whether it is actively maintained. Another package that allows a
systematic comparison of correlated motions from MD simulations
is MoSAIC,74 which uses block-diagonalization of the correlation
matrices to extract relevant collective motions underlying functional
dynamics from uncorrelated motions. This strategy avoids possi-
ble bias due to presumed functional observables and conformational
states or variational principles that maximize variance or timescales.

With simulations growing longer and larger, capturing cor-
related behavior in the presence of large motions is becoming
increasingly important for properly understanding protein dynam-
ics. Those applications require the use of internal coordinates
rather than atomic displacements, where the latter depend on the

reference frame used for trajectory alignment. Different definitions
of coordinate-independent metrics have been proposed, includ-
ing correlation of all rotameric and dynamical states (CARDS),14

protein contact networks (pmdlearn),17,26 and interaction networks
(gRINN).9 These are all complementary approaches that can be used
in conjunction with PCNs, all with their own caveats: the motion
of adjacent backbone dihedral angles is necessarily correlated in a
protein with relatively rigid secondary structures (the “loop closure
problem”).27 Protein interaction and contact networks, on the other
hand, require distance cutoffs to define whether any two residues are
interacting according to threshold hyperparameters that have to be
carefully tuned for optimal results.

To deal with these limitations, we proposed a different
approach based on the construction of protein-correlated elec-
trostatic couplings, which are available in MDiGest in the KS-
correlation module. The interaction energy terms are built through
the KS53 formalism, which accounts for donor-acceptor cross-
residue amide-to-carbonyl backbone Coulombic interaction terms.
In an earlier study,30 we showed that the distribution of correlated
electrostatic couplings is highly correlated with that of predicted
chemical shifts based on the conformational ensemble obtained via
MD simulations. In fact, the average predicted shifts were shown
to be highly correlated with experimental chemical shifts. There-
fore, it was shown that the correlated electrostatic couplings are
predictive of which amino acids may be most sensitive to changes
in a dynamical ensemble and provide improved correspondence to
NMR experiments. A related software, PyInteraph2,16 offers another
tool designed to analyze MD and structural ensembles with an
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FIG. 6. Benchmark of performances. (a) Benchmark calculations measured by calculation time (CPU clock time) in seconds, computed on GoogleColab using TPU
runtime—Intel Xeon CPU @2.30 GHz, 32 GB RAM, and a cloud TPU with 180 teraflops of computational power. (a) Comparison of the calculation time as a function
of the number of frames in the trajectory using the following metrics: the dynamical cross correlation (dcc), Pearson correlation (pcc), covariance (cov), and generalized
correlation coefficient derived from linearized mutual information (gcc-lmi) computed from atomic coordinates (left) and dihedral angles (right) for the MptpA trajectory using a
total of 3000 frames and 15 000 frames. (b) Table summarizing the approximate calculation times for different benchmark systems using the three main modules of MDiGest.
The correlation metrics are the same as defined for Panel (a), with the addition of a generalized correlation coefficient derived from mutual information (gcc-mi). The asterisks
are used to denote the use of two different parameters in the calculation for gcc-mi, where the asterisk in the Atomic Displacements rows reflects the use of knn_5_1 [implying
using k = 5, setting 1/k in Eq. (12) 0 and including in the nearest neighbors count the node for which the KDTee is computed], while those without the asterisk are computed
using knn_5_2 (computed excluding the node relative to which the neighbors search is performed and retaining the 1/k term).

emphasis on pairwise interactions between residues, including
hydrogen bonds, salt bridges, and hydrophobic interactions, but dif-
fers from MDiGest in that it does not calculate correlations. Another
recent tool is AlloViz,12 a wrapper that combines some newly writ-
ten modules aimed at providing a general framework for calculating
residue interaction networks. The benefit of this tool is that it incor-
porates a handful of options for constructing the protein network,
although its capabilities for network analysis are limited. Aside
from Python-based tools, the Bio3D Package provides a wide range
of utilities to analyze, process, organize, and explore biomolecular
structure, sequence, and dynamics data based on R. Bio3D comes
with various correlation analysis and accessory functions allowing
for statistical analysis and visualization of biological sequence and
structural data.76

The description above is inclusive merely of the subset of
allostery-related methodologies that have been included in recently
developed distributed packages while excluding complementary
approaches. Among these, Lake et al.77 proposed the use of a pro-
tein graph Hessian constructed from the residue position covariance
matrix and average structure upon application of a force constant
that is optimized to reproduce pairwise particle variances produced
in the simulated MD ensemble. In contrast to correlation metrics
such as MI-based generalized correlations or Pearson correlation,

Hessian elements are only finite for short-ranged physical interac-
tions, thereby providing direct access to identify those short-ranged
interactions that lead to long-ranged correlations.

The list above is a conspicuous, although non-exhaustive, col-
lection of recent developments related to the study of allosteric
interactions in protein networks, the extent of which is a testi-
mony to the central role played by short-range interactions in the
functional regulation of proteins. This motivates the need for addi-
tional multivariate descriptors that yield an unequivocal measure of
allosteric interactions.

Moreover, the field of allostery is still lacking consensus with
regard to a general procedure to design and implement network
models. Efforts to develop platforms and strong foundations to study
protein networks of highly dynamical biomolecules are still needed.
This is especially relevant because of the potential of protein network
approaches to complement experimental studies of a wide range
of systems. For example, PCNs and interaction networks may help
design catalytically enhanced enzymes, identify selective druggable
allosteric hotspots for selective inhibitors, or even assess the impact
of disease-related variants.

In an effort to contribute to the development of harmo-
nized and reproducible protocols, MDiGest offers a self-contained
and easy-to-use package based on a modular structure, allowing
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straightforward comparison of PCNs. For the same topology and
MD trajectory, one can choose to construct correlation networks
based on atomic or dihedral fluctuations or through the corre-
lation of electrostatic interaction energies. Moreover, for atomic
fluctuation-based correlations, the PCN can be constructed based
on the movement of any combination of atomic selections or the
center of mass of each residue. Implemented correlation metrics for
atomic displacements, torsional fluctuations, and electrostatic-based
networks are covariances, Pearson’s correlation coefficient, dynamic
cross-correlation, Mutual Information (MI), or Linear MI (LMI).
Conveniently, one can save the output of the correlation analysis for
later use.

MDiGest provides various methods that can be analyzed and
compared all at once through inspection of 2D correlation plots and
their corresponding eigendecompositions, including direct visual-
ization of the PCNs at custom correlation thresholds. Investigating
the effect of a given perturbation (mutation or binding of the
effector) on the allosteric dynamics is straightforward through the
construction of difference networks. Finally, the PCNs can be ana-
lyzed through various algorithms for community network analysis,
including the Girvan–Newman algorithm, the Louvain heuristic
algorithm, and a newly proposed approach based on grouping highly
connected secondary structure blocks. Furthermore, MDiGest pro-
vides a visualization module to plot and interactively analyze PCNs
in PyMOL.20

We foresee that the modular structure of MDiGest as a Python
package made freely available through GitHub will contribute to
promoting a community-driven effort focused on boosting repro-
ducibility and establishing standardized protocols in the PCN field.
As developers, we are committed to continually introducing new
functionalities, training new contributors, providing assistance to
users, and maintaining the MDiGest package.

VII. SIMULATION DETAILS
Details related to the MD simulations of MptpA and IGPS are

reported in Refs. 30 and 69, respectively. Detailed descriptions rel-
ative to the Cas9 HNH mutant and full Cas9 MD trajectories are
reported in Ref. 6. A brief description of the simulation protocols
used for each system is reported below.

MptpA. The structural models for the wtMptpA and Q75L
simulations were established on the basis of the 1U2P 1.9 Å res-
olution x-ray structure.78 MD simulations were performed using
the AMBER-ff14SB79 force field for the protein, as included in the
Amber20 software package.80 We executed eight distinct MD simu-
lations, four for each system, for a total simulation span of 0.8 μs,
as previously described in Ref. 30. Refinements such as adjusting
protonation states and adding explicit TIP3 water solvent molecules
(up to density values ≥0.9 mol Å−3) were performed via Amber-
Tools (2020).80 MD simulations were prepared as follows: first, we
minimize the solvent by restraining all atoms but water and ions at
the crystal structure positions. Optimized solvated structures were
then gradually heated to 303 K, performing MD simulations (of 1 ns
at least) in the canonical NVT ensemble using Langevin dynamics.
Unconstrained MD simulations were carried out for 45 ns, result-
ing in a total pre-equilibration simulation time of about 50 ns. The

pre-equilibrated systems were then simulated in the NPT ensemble
at 300 K and 1 atm using Langevin dynamics for 200 ns. All simu-
lations were performed using periodic boundary conditions with a
switching distance cutoff of 10 Å.

yIGPS. The structural models for the apo and PRFAR-bound
yeast IGPS complexes were established on the basis of the bienzyme
complex from Sc-IGPS at a resolution of 2.4 Å (PDB: 1OX6-B),
1OX4-B,81 and 1JVN-A,82 in an effort to reconstruct from crys-
tal models flexible residues that were unresolved in 1OX6-B. To
complete the structure, six different structural models were gener-
ated through the use of different online tools, one via Modeller83

and another via Swiss-Model,84 with four suitable homology mod-
els found on ModBase.85 PRFAR was then bound to each model
by aligning each structure to the effector-bound crystal structure
of yeast IGPS (PDB: 1OX5).81 The 12 created structures (six in the
apo state, six bound to the effector) had an RMSD of less than 5 Å.
To compare the dynamics of IGPS enzymes from Tm- and Sc-
IGPS, the simulation conditions were kept identical to those used for
bacterial IGPS in Ref. 86, using a temperature of 298 K for the simu-
lations. This choice was motivated by recent studies demonstrating
that PRFAR has weaker allosteric activation at growth temperature
than it does at room temperature.87 The simulations were conducted
using the AMBER-ff99SB88 force field for the protein and the Gen-
eralized Amber Force Field89 for the PRFAR ligand, implemented in
the Amber20 software package.80 12 independent MD simulations
were run for a total simulation time of 1.2 ms, each for a different
complex (apo and PRFAR bound). Furthermore, details of the pre-
equilibration procedure and MD production runs are provided in
the original Ref. 69.

Cas9. MD simulations of Cas9 in apo form (apo Cas9) and in
combination with DNA (Cas9:RNA:DNA) were carried out using
the crystallographic coordinates of Streptococcus pyogenes apo Cas9
(4CMQ) and Cas9:RNA:DNA (4UN3), respectively, which were
resolved at 3.09 and 2.58 Å. The simulations utilized the Amber
ff12SB force field with Åqvist parameters for Mg ions, which favor an
octahedral coordination of the Mg ion.90 The TIP3P model 33 was
applied to parameterize the solvent. The Cas9 MD simulations have
been performed with NAMD 2.10.91 under the isothermal–isobaric
(NPT) ensemble and using a time step of 2 fs. The systems were
simulated using a Langevin thermostat at 298 K and a barostat at
1 atm. Periodic boundary conditions were applied. The particle
mesh Ewald (PME)92 method was used to evaluate long-range elec-
trostatic interactions, and a cutoff of 12 Å was used to account for the
van der Waals interactions. The complete description of the para-
meters and protocol applied in the simulations is detailed in the
original publication by Palermo et al.93 The protein representations
throughout the paper were generated using the PyMOL software.20
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