Linker Rectifiers for Covalent Attachment of Transition Metal Catalysts to Metal-Oxide Surfaces

Wendu Ding ${ }^{[a, b]}$, Christian F. A. Negre ${ }^{[a, b]}$, Julio L. Palma ${ }^{[a]}$, Alec C. Durrell ${ }^{[a, b]}$, Laura J. Allen ${ }^{[a]}$, Karin J. Young ${ }^{[a]}$, Rebecca L. Milot ${ }^{[a]}$, Charles A. Schmuttenmaer ${ }^{[\mathrm{a}, \mathrm{b}]_{*}}$, Gary W. Brudvig ${ }^{[\mathrm{a}, \mathrm{b}]_{\star}}$, Robert H. Crabtree ${ }^{[\mathrm{a}, \mathrm{b}]_{*}}$, and Victor S. Batista ${ }^{[\mathrm{a}, \mathrm{b}] \text { * }}$

The authors are grateful to Prof. Michael Graetzel who has been an inspirational figure in solar energy research.

Abstract

Linkers that favor rectification of interfacial electron transfer are likely to be required for efficient photo-driven catalysis of multi-electron reactions at electrode surfaces. Design principles are discussed, together with the synthesis and characterization of a specific pair of molecular linkers, related by inversion of the direction of an amide bond in the heart of the molecule. The linkers have a terpyridyl group that can covalently bind Mn as in a well-known water oxidation

Introduction

The development of inexpensive and resilient photocatalytic solar cells for water splitting into H_{2} and O_{2} could offer a viable solution to the renewable energy challenge. ${ }^{[1-3]}$ In this way, water would be used as a renewable feedstock of protons and electrons for a self-sustaining cycle. The outstanding challenge, however, is achieving efficient coupling of multiple one-electron, one-photon processes with the four-electron water oxidation reaction:

$$
\begin{equation*}
2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{e}^{-}+4 \mathrm{H}^{+} \tag{1}
\end{equation*}
$$

Nature accomplishes such coupling during photosynthesis by rectification of photoinduced electron transfer (ET) through a series of redox cofactors embedded in photosystem II. ${ }^{[4,5]}$ The resulting kinetically favored ET pathway leads to long-lived reduction of plastoquinone, which prevails over back ET (i.e., recombination) that is thermodynamically favored. Therefore, it is reasonable to expect that biomimetic photo-driven catalysis of multi-electron reactions at electrode surfaces will likely require rectification of interfacial electron transfer (IET). ${ }^{[6-8]}$ This paper analyzes molecular linkers for covalent attachment of catalysts to metal-oxide electrode surfaces, ${ }^{[9-12]}$ with emphasis on the structural features necessary to induce directionality of IET.

Titanium dioxide $\left(\mathrm{TiO}_{2}\right)$ is an attractive material for light-driven water splitting because the valence and conduction band edges
catalyst and an acetylacetonate group that allows attachment to TiO_{2} surfaces. The appropriate choice of the sense of the amide linkage yields directionality of interfacial electron transfer, essential to enhance electron injection and slow back-electron transfer. Support comes from electron paramagnetic resonance and terahertz spectroscopic measurements, as well as computational modeling characterizing the asymmetry of electron transfer properties.
bracket the water redox potentials, ${ }^{[13, ~}{ }^{14]}$ although the valence band is just barely negative of $\mathrm{H}+$ reduction. Direct valence to conduction band transitions, however, require UV light, comprising $>4 \%$ of the solar spectrum. ${ }^{[15]}$ To shift the absorbance into the visible region, TiO_{2} nanoparticles may be doped ${ }^{[16,17]}$ or otherwise functionalized via surface modification by covalent attachment of molecular chromophores. These adsorbates can be used as molecular linkers to immobilize catalysts to the electrode surface. ${ }^{[6]}$ Upon photooxidation by IET, the linkers can activate the attached molecular catalysts through multiple one electron, one photon, oxidative processes. However, undesired pathways might limit the overall efficiency of photoconversion and catalyst activation by IET. In particular, rapid decay of the excited state chromophore and recombination of the injected electron by reduction of the photooxidized sensitizer, or redox species in close contact with the surface, are typically competitive. $\left.{ }^{[18,} 19\right]$ Therefore, it is essential to develop molecular linkers that induce directionality of IET and disfavor recombination.
[a] W. Ding, Dr. C. F. A. Negre, Dr. J. L. Palma, Dr. A. C. Durrell, Dr. L. J. Allen, Dr. K. J. Young, R. L. Milot, Prof. C. A. Schmuttenmaer, Prof. G. W. Brudvig, Prof. R. H. Crabtree, Prof. V. S. Batista Chemistry Department, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, USA, Fax: (+) 1-203-432-6144 E-mail: victor.batista@yale.edu
[b] Energy Sciences Institute, Yale University, Yale University, P.O. Box 27394, West Haven, Connecticut, 06516-7394, USA

Supporting information for this article is available on the WWW under http://www.chemphyschem.org, including NMR spectra of 2acetylpyridine pyridinium iodide (4), nitrophenyl-terpyridine (5), aminophenyl-terpyridine (6), L1-acac, nitrophenyl-acac (8), aminophenyl-acac (9), and L2-acac, as well as .cif files for the X-ray structure determination of L1-acac, and L2-acac, and data for calculations of I-V characteristics.

Molecular rectification has been extensively explored in the field of molecular electronics, ${ }^{[20-22]}$ and has been typically assessed in terms of the asymmetry of the forward and reverse currents upon changing the external voltage polarity applied to a molecular junction. Aviram and Ratner ${ }^{[20]}$ first introduced the concept of unimolecular rectifiers in 1974 with a molecule that consisted of electron donor and electron acceptor rings bridged by σ-bonds. Since then, significant progress has been reported due to experimental breakthroughs in synthesis using selfassembly techniques, advanced micro-fabrication, ${ }^{[23-26]}$ and electronic conductivity measurements performed by scanning probe microscopy ${ }^{[27]}$ and break junction techniques. ${ }^{[28]}$ However, applications of molecular rectifiers as linker-chromophores in dyesensitized and photocatalytic cells have yet to be reported.

Extending our previous studies of molecular linkers for covalently attaching Mn complexes to TiO_{2} surfaces, ${ }^{[6,9]}$ we now explore structure/function relations responsible for inducing rectification. Comparison of our light-absorbing linkers, Mn-terpy-L1-acac and Mn-terpy-L2-acac, which differ only in the direction of the amide bond (Figure 1), suggest that Mn-terpy-L2-acac exhibits rectification and preferentially allows electrons to flow from the phenyl-acac moiety towards the Mn-terpy core, preventing photooxidation of Mn (II) to Mn (III). ${ }^{[29]}$ We analyze the role of the amide bridge linkage and its influence on electronic and structural features that provide a directionality to IET, and which is essential to enhance electron injection into the TiO_{2} conduction band and prevent recombination.

Figure 1. Schematic of a functionalized TiO_{2} nanoparticle (A), TiO_{2} nanoparticle functionalized with Mn-terpy-L1-acac (B) and Mn-terpy-L2-acac (C). The key difference between L1 and L2 is the direction of the Ph-amide-Ph bridge as indicated with the green and red rectangles.

Our findings are supported by calculated current-voltage (I-V) curves, based on a combination of DFT and NEGF techniques. ${ }^{[30-}$ ${ }^{32]}$ Analysis of these calculated I-V curves suggests that rectification in Mn-terpy-L2-acac results from the asymmetric shifting of the LUMO energy level under the influence of negative versus positive bias voltages. ${ }^{[33]}$ We find that the LUMO dominates the overall molecular conductance since it is the state closest to the Fermi level. It is shifted towards (or away from) the Fermi level under negative (or positive) applied voltage bias, favoring reverse versus forward currents. Therefore, we anticipate molecular linkers with similar structural features should also exhibit rectification useful for photocatalysis of multi-electron reactions at metal-oxide surfaces functionalized with transition metal catalysts.

Results and Discussion

Our previous work on Mn-terpy-L1-acac has demonstrated electron injection and reversible photooxidation of Mn (II) to Mn (III) when covalently attached to TiO_{2} surfaces. ${ }^{[29,34]}$ The system was specifically designed to include: (i) an acac anchoring group for robust adsorption to semiconductor surfaces, (ii) a conjugated light-absorbing unit consisting of two phenyl rings linked by an amide bond, and (iii) a terpyridine ligand for binding a metal center such as manganese. We report here an additional terpyridine-acac analog expected to have similar properties.

Specifically, Terpy-L1-acac was synthesized according to novel synthetic pathways using more efficient coupling reactions and milder conditions than previously reported. The synthesis of terpy-L2-acac benefited from the incorporation of well-known terpyridine-phenyl-carboxylic acid (1) and was prepared in sufficient purity to produce a crystal for X-ray structural study, a goal not achieved with prior preparative methods (See Supporting Information). The absorbance spectra of terpy-L1-acac and terpy-L2-acac on nanoparticulate TiO_{2} are shown in Figure 2a. These spectra demonstrate that the optical properties of the two compounds are very similar, consistent with the very small structural difference between the two species. In addition, the THz spectra reported in Figure 2b, show that both systems inject electrons into the TiO_{2} conduction band with approximately the same efficiency.

Figure 2. (a) Absorbance spectra of TiO_{2} nanoparticles functionalized with L1acac (red) or L2-acac (blue). Coordination of manganese by the terpyridine functionality (solid lines) shifts absorbance to lower wavelengths compared to compounds in the absence of manganese (dashed lines). Spectra were collected on TiO_{2} films in diffuse reflectance mode and were normalized at 550 nm to correct for scattering. (b) THz spectroscopy for functionalized TiO_{2} nanoparticles with L1-acac (red line) and L2-acac (blue line) shows that upon photoexcitation both systems undergo electron injection on a sub-ps time scale into TiO_{2} nanoparticles.

Figure 2 b shows the decrease in peak time-domain THz transmission as a function of the delay between the 400 nm pump pulse and the THz probe pulse. The transmission of THz radiation is affected by mobile electrons in the TiO_{2} conduction band, and therefore a decrease in THz transmission is indicative of an increased electron density in the TiO_{2} nanoparticles. When electron injection from two different sensitizers on the same semiconductor material is compared, the magnitude of the change in THz amplitude is a measure of the IET efficiency. Since IET is not strongly influenced by the direction of the amide bond, these results indicate that the photoexcitation-injection pathway originates from the phenyl-acac anchor moiety. That is, upon photoexcitation an electron is transferred on an ultrafast (fs) timescale from the phenyl group through the acac anchor. Electron transfer from Mn (II) occurs on a much longer timescale and is, therefore, undetectable using this method. Although the THz measurements do not give any direct information about electron transfer through the amide bond, they do confirm that electron injection can occur from both L1- and L2-acac to TiO_{2} and suggest that this initial electron injection is not the determining factor in rectification.

Figure 3. Calculated low bias I-V curves for Mn-terpy-L1 (A) and Mn-terpy-L2 (B). The red and blue lines represent the current under negative and positive bias, respectively. Mn-terpy-L2 shows significant rectification while Mn-terpyL1 shows only a slight asymmetry.

To compare the electron transport properties of L1 and L2, the I-V characteristics of Au-L1-Au and Au-L2-Au junctions were calculated for an applied bias ranging from -0.25 V to 0.25 V . We focus on the range of low bias voltages, most relevant to dyesensitized solar cells (DSSCs) as determined by the difference between the energy of the photoinjected carrier and the edge of the semiconductor conduction band. Rectification properties at higher bias potentials are beyond the scope of our study since they are not particularly relevant to the energy range of interest for IET in DSSCs. Figure 3 shows that Mn-terpy-L2 exhibits significant rectification, favoring the reverse current at low bias
potentials. In contrast, the I-V curve of Mn-terpy-L1 has only a slight asymmetry.

As the main difference between $\mathbf{L 1}$ and $\mathbf{L 2}$ is the extent of conjugation due to the direction of the amide bond relative to the terpyridine ligand, we attribute the difference in transport properties to the effect of conjugation and therefore electronic delocalization on the level alignment relative to the Fermi level, as discussed below in Figures 6-8. This difference makes the more delocalized LUMO of the Mn-terpy-L2 molecule closer to the Fermi level and therefore more sensitive to the influence of the bias potential. For both Mn-terpy-L1 and Mn-terpy-L2, the positive bias potential shifts the LUMO away from the Fermi level while the negative bias brings the LUMO closer to the Fermi level, favoring the reverse current over the forward current. While this effect is only slightly noticeable in the asymmetry of the I-V curve at low bias potentials for Mn-terpy-L1, it is much more pronounced for Mn-terpy-L2. These results suggest that both systems could undergo IET to TiO_{2} nanoparticles, but Mn-terpyL2 will enhance recombination.

Figure 4. EPR spectroscopy of functionalized TiO_{2} nanoparticles with Mn-terpy-L1-acac (A) and Mn-terpy-L2-acac (B) shows that under steady-state illumination (red line) a change in the oxidation state from $\mathrm{Mn}(\mathrm{II})$ to $\mathrm{Mn}(\mathrm{III})$ is detected for Mn-terpy-L1 and not for Mn-terpy-L2 in comparison with the signal in the dark (black line). The insets show time-dependent results for the light-induced change of the Mn(II) EPR signal measured at the maximum of the first-derivative EPR signal. Arrows denote times when the illumination started (up arrow) and ended (down arrow).

To probe the electron transport through the amide linker in the ms time-scale, we have measured the change in Mn (II) signal by using EPR spectroscopy (Figure 4). For Mn-terpy-L1-acac, the EPR signal from $\mathrm{Mn}(\mathrm{II})$ is detected before illumination. Upon illumination, Mn (II) is photooxidized to EPR-silent Mn (III), and the signal amplitude decreases (Figure 4a). The signal of Mn (II) returns to the initial intensity when the lamp is blocked, indicated by up and down arrows in the inset of Figure 4, and in agreement with the previously reported measurements. ${ }^{[29,34]}$ For Mn-terpy-L2-acac, the EPR signal from $\mathrm{Mn}(\mathrm{II})$ is detected before illumination, similar to Mn-terpy-L1-acac. However, a decrease of the $\mathrm{Mn}(\mathrm{II}) \mathrm{EPR}$ signal is not detected during steady-state illumination (Fig 4b). In the time-dependent measurement, some baseline drift is observed due to fluctuation in temperature, but the change in amplitude is independent of illumination (Fig 4b, inset). Given that the rate of injection into TiO_{2} is shown by terahertz spectroscopy to be very similar for Mn-terpy-L1-acac and Mn-terpy-L2-acac, the observation of steady-state oxidation of Mn (II) for Mn-terpy-L1-acac suggests that the recombination for Mn-terpy-L2-acac is faster than for Mn-terpy-L1-acac,
consistent with computational predictions of rectification behavior (Figure 3). This indicates that the steady-state light-induced population of Mn (III) is very small for Mn-terpy-L2-acac and, therefore, that recombination processes are faster than Mn (III) generation processes $\left(k^{b}>k^{f}\right)$.

Figure 5. Kinetics of light-induced charge separation for Mn-terpy-L1-acac bound to TiO_{2} as monitored by EPR. After the initial pre-equilibrium established by ultrafast photoinduced electron injection into TiO_{2}, the hole is transferred to the terpyridine ligand before oxidizing Mn (II) to $\mathrm{Mn}(\mathrm{III})$.

The observed photochemical properties of Mn-terpy-L1-acac may be explained by a simple kinetic model, (Figure 5 and SI). ${ }^{[34]}$ In such a kinetic model, the initial IET event is represented by a fast pre-equilibrium between the initial state and the first electron transfer state in which an electron is injected into the TiO_{2} conduction band, leaving a hole on the phenyl-acac moiety. This hole may be filled by electron transfer from the terpyridine group through the amide bond in the critical rectification step ($k_{12}{ }^{f}$ and $\mathrm{K}_{21}{ }^{\mathrm{b}}$). Finally, $\mathrm{Mn}(\mathrm{II})$ is oxidized to $\mathrm{Mn}(\mathrm{III})$ in a third step $\left(\mathrm{K}_{23}{ }^{\mathrm{f}}\right.$ and $\mathrm{k}_{32}{ }^{r}$). Each step in this model is considered to be reversible, and the contributions from direct charge separation between Mn (III) and TiO_{2} are assumed to be small.

Figure 6. Electronic density for the HOMO and LUMO states and energies (in eV) for Mn-terpy-L1 (left panel) and Mn-terpy-L2 (right panel). The contour of electronic density is taken at 1% of its maximum value. For both molecules, the LUMO is the state closest to the Fermi level and provides the most significant contribution to calculated current. While for both molecules, the LUMO is localized on the left half of the junction, for Mn-terpy-L2, the electronic density is more delocalized across the entire device region and closer to the Fermi level.

The EPR measurements are performed at 6 K , under low light intensity to avoid changes in temperature that might produce thermal spectral fluctuations. Under these conditions, the timedependent EPR signal decays by approximately 10% upon photoexcitation of Mn-terpy-L1-acac. Under steady-state illumination, the extent of the reaction is dependent on the relative rates for forward and backward electron transfer. In this experiment, $\mathrm{K}_{1}=\mathrm{k}_{12} / \mathrm{k}_{21} \approx 5$ (see SI), consistent with the observed asymmetry in the calculated I-V curve (Fig. 3). It is thus expected that systems with similar k_{23} / k_{32} and $k_{\text {inj }} / k_{\text {rec }}$ but with $k_{12} \leq k_{21}$, would show a much smaller decay of the EPR signal as for Mn-terpy-L2-acac. A detailed description of the kinetic parameters and estimates for the rate constants based on the EPR data is included in the Supporting Information.

To investigate the origin of rectification at the molecular/electronic level, we compare the LDOS for energy channels close to the Fermi level in Mn-terpy-L1 and Mn-terpyL2 (Figure 6). These channels provide the most significant contributions to the transport properties at low bias voltages, as determined by their contributions to the transmission function in the integration range close to the Fermi level. ${ }^{[35]}$ At the Fermi level, there is no significant electronic density delocalized in the molecular junction between the left and right leads. The closest channel to the Fermi level corresponds to the molecular LUMOs at 180 meV for Mn-terpy-L2 and 284 meV for Mn-terpy-L1 above the Fermi level. The LUMO of Mn-terpy-L2 is more stable and therefore closer to the Fermi level since it is more delocalized in the phenyl-terpyridine-amide ligand, as determined by the conjugation of the carbonyl group with the aromatic electronic structure of the phenyl-terpyridine ligand (Figure 7).

Figure 7. Schematic representation of the LUMO state responsible for electron transport (top) and alignment relative to the Fermi level at equilibrium ($\mathrm{V}=0$, top bottom), positive bias ($\mathrm{V}>0$, middle bottom) and negative bias ($\mathrm{V}<0$, bottom panel). Due to the localization of the electronic density on the left half of the molecular junction, the LUMO becomes closer to the Fermi level for $\mathrm{V}<0$ while farther away for $\mathrm{V}>0$ (as shown in Fig. 8), giving rise to an asymmetric $\mathrm{I}-\mathrm{V}$ curve.

In contrast, the LDOS for Mn-terpy-L1 is about 100 mV farther away from the Fermi level and more localized on the phenyl-terpyridine region (Figure 6). For both molecules, the

LUMO is localized asymmetrically mostly on the Mn-terpyridine half of the molecular junction. Therefore, it approaches the Fermi level under the influence of negative bias potentials that stabilize the phenyl-terpy half of the molecule relative to the phenyl-acac region. Alternately, a positive bias shifts the LUMO farther away from the Fermi level (Figures 7 and 8). Therefore, when comparing Mn-terpy-L molecules influenced by low voltage potentials of the same magnitude but opposite signs (e.g., +250 mV vs -250 mV), it is clear that the reverse current must be higher that the forward current since the LUMO contribution to the amplitude of the transmission function at the Fermi level is increased by a negative potential and reduced by a positive applied voltage.

We note that the rectification mechanism observed at low bias potentials is determined by a single state (i.e., the LUMO) that dominates the electron transport across the molecular junction. Therefore, the rectification process is quite different from mechanisms based on donor-acceptor dyads where donor and acceptor states in the molecule participate in the transport mechanism, as originally proposed by Ratner and co-workers. ${ }^{[20]}$

Figure 8. Calculated transmission functions for A) Mn-terpy-L1 and B) Mn-terpy-L2 at zero bias ($\mathrm{V}=0$, black), positive bias ($\mathrm{V}=250 \mathrm{mV}$, blue), and negative bias $(V=-250 \mathrm{mV}$, red). For both systems, the LUMO dominates the overall conductance since is the closest state to the Fermi level. Due to the LUMO asymmetry in charge distribution, the LUMO state becomes closer to the Fermi level for $\mathrm{V}<0$ and farther away for $\mathrm{V}>0$, giving rise to the asymmetric $\mathrm{I}-\mathrm{V}$ characteristic curve.

These results show that a suitable choice in the orientation of a single amide bond can enhance or suppress rectification, even for molecular linkers where forward and reverse charge transport is dominated by a single channel. Therefore, as shown by various groups, ${ }^{[35-37]}$ we observe that small structural changes can produce remarkable differences in the molecular transport properties.

Conclusion

We have reported the synthesis, spectroscopy, and electron transport calculations characterizing two molecular assemblies relevant to solar energy technology that provide fundamental insight on the molecular origin of current rectification. Our results show that assemblies based on Mn-terpy-L1 and Mn-terpy-L2, induce photoconversion by IET. Remarkably, the directional orientation of a single amide bond leads to dramatic differences in the transport properties of the two assemblies. While Mn-terpyL1 is characterized by a nearly symmetric I-V curve, Mn-terpy-L2 exhibits significant rectification thereby preventing photooxidation of the Mn center by favoring reverse current over forward electron transport. Our findings are supported by NEGF-DFT calculations and measurements of electron transfer processes probed by THz and EPR spectroscopies.

We have found that the underlying rectification mechanism, observed for Mn-terpy-L2 at low bias voltages, can be traced to the distinct response of the LUMO towards positive and negative potentials. Contrary to mechanisms based on donor-acceptor dyads where donor and acceptor states in the molecule participate in the transport mechanism, rectification in Mn-terpyL2 is determined by the asymmetric distribution of charge in the LUMO giving the resulting stabilization (or destabilization) relative to the Fermi level, as influenced by negative (or positive) potentials. The elucidated rectification mechanism thus complements other possible rectification processes, including schemes based on donor-acceptor dyads, ${ }^{[20]}$ and rectification based on controlled molecular orientation as reported by Tao and co-workers. ${ }^{[38]}$

The comparative analysis of Mn-terpy-L1 and Mn-terpy-L2 shows that the extent of conjugation is critical to level alignment and therefore can be exploited in the design of molecular linkers with suitable rectification properties. Ongoing work is exploring the application of this concept to the design of TiO_{2} photoanodes functionalized with oxo-manganese adsorbates and porphyrin dyes for light-driven water oxidation. ${ }^{[34,39]}$

Experimental Section

Synthesis

Syntheses were performed using standard Schlenk techniques under N_{2} atmosphere unless otherwise noted. Proton and carbon NMR spectra were obtained using Bruker spectrometers operating at 400 and 500 MHz , respectively. Chemical shifts are reported in ppm (δ) with residual solvent used as the internal reference. 4-(4'phenyl-2,2':6',2"-terpyridyl)benzoic acid ${ }^{[40]}$ (1), 3-(4-nitrophenyl)-1-(pyridin-2-yl)prop-2-en-1-one ${ }^{[41]}$ (2), and 4-(2-hydroxy-4-oxopent-2-en-3-yl)benzoic acid ${ }^{[42]}(3)$ were synthesized according to literature procedures. Copper (I) iodide was purified using potassium iodide and activated carbon. ${ }^{[43]}$ Dichloromethane and tetrahydrofuran were dried with a solvent purification system using a 1 m column containing activated alumina. All other reagents and solvents were commercially available and used as received.

The synthesis of 2-acetylpyridine pyridinium iodide (4) (Scheme 1) was carried out according to published procedures. ${ }^{[44]}$ Minor modifications were performed as follows: 2-acetylpyridine ($24.76 \mathrm{mmol}, 3.0 \mathrm{~g}, 2.83 \mathrm{~mL}$) and freshly sublimed iodine (24.76
mmol, 6.28 g) were dissolved in 12.0 mL of pyridine and refluxed under N_{2} for 10 min . The solvent was then removed in vacuo and the resulting black solid was purified by silica flash column chromatography using acetonitrile as an eluent. The crude product was obtained as a cream-colored solid which was recrystallized from hot ethanol to give 4.312 g (54% yield) of 4 as a tan crystalline solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.88-8.77$ (m, 1H), 8.77-8.70 (m, 2H), 8.71-8.59 (m, 1H), 8.14 (t, J = 7.1 $\mathrm{Hz}, 2 \mathrm{H}$), 8.07 (ddd, $\mathrm{J}=8.8,4.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.74 (ddd, $\mathrm{J}=7.1$, $4.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.41$ (s, 2H).

(4)

Scheme 1. Synthesis of 2-acetylpyridinium iodide (4)
Nitrophenyl-terpyridine 5 (Scheme 2) was synthesized according to a published procedure ${ }^{[45]}$ with minor modifications. Pyridinium iodide (4) ($6.72 \mathrm{mmol}, 2.193 \mathrm{~g}$), 3-(4-nitrophenyl)-1-(pyridin-2-yl)prop-2-en-1-one (2) ($6.72 \mathrm{mmol}, 1.708 \mathrm{~g}$), and dry ammonium acetate (6.0 eq., $40.3 \mathrm{mmol}, 3.11 \mathrm{~g}$) were dissolved in methanol (100 mL) and refluxed for 5 hours during which time a white solid precipitated. The solid was collected by vacuum filtration and washed with cold methanol to give $1.93 \mathrm{~g}(81 \%$ yield) of 5 as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.75$ (s, 2 H), 8.75-8.72 (m, 2H), 8.69 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 8.37 ($\mathrm{d}, \mathrm{J}=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.91$ (td, J = 7.7, $1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39 (ddd, J = 7.4, 4.8, 1.1 Hz, 2H). ${ }^{[40]}$

Scheme 2. Synthesis of nitrophenyl-terpyridine (5)
Amino-phenyl-terpyridine 6 (Scheme 3) was synthesized according to literature procedure ${ }^{[46]}$ from 5 using hydrazine hydrate (55% soln.) and palladium on carbon in refluxing ethanol to give a white solid. The ${ }^{1} \mathrm{H}$ NMR spectrum matches previously reported data. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.74-8.71(\mathrm{~m}, 1 \mathrm{H})$, $8.69(\mathrm{~s}, 1 \mathrm{H}), 8.66$ (dd, J = $8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87$ (td, J = 7.7, 1.8 $\mathrm{Hz}, 1 \mathrm{H}), 7.82-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.34$ (ddd, J=7.5, 4.8, 1.2 Hz, 1H), 6.83-6.77(m, 1H), 3.87 (s, 1H).

Scheme 3. Synthesis of aminophenyl-terpyridine (6)

Although terpy-L1-acac has been previously synthesized, ${ }^{[29]}$ a new route is reported below (Scheme 4). 4-(2-hydroxy-4-oxopent-2-en-3-yl)benzoic acid (3) ($500 \mathrm{mg}, 2.272 \mathrm{mmol}, 1.5 \mathrm{eq}$), 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC-HCI, $508 \mathrm{mg}, \quad 2.65 \mathrm{mmol}, 1.75$ eq.), 4dimethylaminopyridine on polystyrene beads (loading 3.0 mmol DMAP/g, $1.77 \mathrm{~g}, 5.3 \mathrm{mmol}, 3.5 \mathrm{eq}$.$) , and dry dichloromethane$ (DCM, 3 mL) were loaded into a 100 mL round bottom flask wrapped in aluminum foil and placed under N_{2} atmosphere. A separate flask was loaded with 4 -([2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridin]-4'yl)aniline (6) ($491 \mathrm{mg}, 1.515 \mathrm{mmol}, 1.0 \mathrm{eq}$) and dry DCM (10 mL), placed under N_{2}, and cannulated into the first flask. After stirring at room temperature for 20 hours, the mixture was diluted with DCM, filtered to remove the polystyrene beads, and transferred to a separatory funnel. The organic layer was washed with distilled water and brine, dried over sodium sulfate, and then concentrated in vacuo to give a cream-colored solid in 50% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס $16.72(\mathrm{~s}, 1 \mathrm{H}), 8.77-8.73(\mathrm{~m}, 4 \mathrm{H}), 8.68(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{dd}, \mathrm{J}=9.8,8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.89$ (td, $\mathrm{J}=7.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 4 \mathrm{H})$, 1.91 ($\mathrm{s}, 6 \mathrm{H}$). Crystals suitable for X-ray analysis were grown by slow evaporation of benzene (see Supporting Information).

Scheme 4. Synthesis of L1-acac
The synthesis of 8 (Scheme 5) was carried out in an analogous manner to the preparation used by Jiang et al. ${ }^{[42]}$ to synthesize 3 -(3-nitrophenyl)pentane-2,4-dione. A mixture of 1 -iodo-4-nitrobenzene (2.0 mmol), 2,4-pentanedione (6.0 mmol), cesium carbonate (8.0 mmol), freshly recrystallized copper (I) iodide (0.20 mmol), and L-proline (0.40 mmol) in dry dimethylsulfoxide (DMSO, 10 mL) was charged in a flask wrapped in aluminum foil to protect from light and heated at $70^{\circ} \mathrm{C}$ under nitrogen atmosphere for 24 hours.

(8)

Scheme 5. Synthesis of nitrophenyl-acac (8).

The cooled solution was poured into 1 M HCl and extracted with ethyl acetate. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent removed in vacuo. The crude residue was purified on a flash silica gel column using a mixture of hexanes:ethyl acetate (7:3) as eluent to afford 292 mg (64% yield) of 8 as a yellow solid. The product was then recrystallized with hexanes to give a slightly yellow crystalline solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.78$ (s, 1H), 8.27 (dd, J = 2.1, 8.9, 2H),
7.39 (dd, J = 2.1, 8.9, 2H), $1.90(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 500 MHz): $\delta 190.5,147.3,144.0,132.1,124.0,113.6,24.2$. HRMS calcd (found) for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{M}+: 222.076084$ (222.07611).

A mixture of $8(3.14 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} . \%, 104 \mathrm{mg})$ was stirred in a $1: 1 \mathrm{DCM}$:ethanol mixture $(40 \mathrm{~mL})$ and degassed thoroughly with N_{2} at room temperature for 20 min (Scheme 6). Hydrogen gas $\left(\mathrm{H}_{2}\right)$ was then bubbled into the reaction vessel using a balloon and was allowed to stir under H_{2} atmosphere for 2 h. The resulting solution was then purged with N_{2}, filtered through Celite, and washed with ethanol and DCM. The solvent was then removed in vacuo and the crude product was purified on a silica gel column (80:20 hexanes : ethyl acetate) and recrystallized in hexanes to give off-white needles to yield $420 \mathrm{mg}(2.20 \mathrm{mmol}$, 70% yield) of $9 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.61(\mathrm{~s}, 1 \mathrm{H}), 6.93$ (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.71$ (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.89(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 190.3,144.6,130.9,125.9,125.7,114.2$, 23.1. ESI molecular ion calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{H}^{+}$: 192.10, found: 192.04.

Scheme 6. Synthesis of aminophenyl-acac (9).
Terpy phenyl acid (1) (100 mg, 0.28 mmol) and thionyl chloride $\left(\mathrm{SOCl}_{2}, 10.0 \mathrm{eq}, 3.5 \mathrm{mmol}, 0.25 \mathrm{~mL}\right)$ were refluxed under nitrogen in DCM (10 mL) for 2 h (Scheme 7). The remaining SOCl_{2} was removed by short-path distillation and dried for 2 hours. DCM (10 mL), N,N-diisopropylethylamine ($3.0 \mathrm{eq}$. . 0.75 mmol, 0.13 mL) and a solution of $9(1.1 \mathrm{eq})$ in 4 mL of DCM were added to the flask and the mixture was refluxed under N_{2} for 16 hours. The resulting mixture was evaporated in vacuo and purified by flash column chromatography on silica gel.

Scheme 7. Synthesis of L2-acac.
Gradient elution with 20% to 100% ethyl acetate in hexanes afforded L2-acac ($50 \mathrm{mg}, 0.10 \mathrm{mmol}, 40 \%$ yield) as colorless crystals suitable for X-ray analysis (see Supporting Information). $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (calc: $\mathrm{C} 75.27 ; \mathrm{H}: 4.98 ; \mathrm{N}$: 14.70; found: C 72.78; H 3.76; N 14.78) ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-D6) $\delta 16.82$ (s, $1 \mathrm{H}), 10.50(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~d}, \mathrm{~J}=2.5,4 \mathrm{H}), 8.72(\mathrm{~d}, \mathrm{~J}=7.9,2 \mathrm{H})$,
8.16 (dd, J = 8.5, 26.8, 4H), 8.08 (td, J = 1.7, 7.8, 2H), 7.91-7.85 (m, 2H), 7.63-7.52 (m, 2H), 7.33-7.23(m, 2H), $1.90(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, DMSO-D6) ס190.83, 165.01, 155.77, 154.77, 149.32, 148.45, 140.28, 138.23, 137.25, 135.44, 131.51, 131.24, $128.72,126.98,124.58,120.95,120.44,118.06,114.40,23.90$.

TiO_{2} Functionalization with Mn-terpy-L-Acac

The samples for time-resolved EPR studies were prepared by stirring Degussa P25 TiO_{2} nanoparticles (30 mg) with complex L1-acac or L2-acac ($3.0 \mathrm{mg}, 0.0056 \mathrm{mmol}$) in dry DCM (2 mL) at reflux for 2 h . The suspension was cooled and filtered, and the light yellow solid was washed with DCM (10 mL) and vacuum dried. The powder was then transferred to a 5 mL round bottom flask containing $\mathrm{Mn}(\mathrm{OAc})_{2}$ tetrahydrate $(5 \mathrm{mg})$ and water (3 mL). The suspension was stirred at room temperature for 12 h , filtered, washed with excess water, and vacuum dried. The powdered samples were then loaded into melting point capillary tubes; mass and sample height were then measured to verify sample-tosample uniformity. The capillary tube was then flame-sealed before being loaded into an EPR tube.

EPR Spectroscopy

Perpendicular-mode EPR data were collected on an X-band Bruker Biospin/ELEXSYS E500 spectrometer equipped with an SHQ cavity and an Oxford ESR-900 liquid helium cryostat. All spectra were collected at 7 K on powered samples sealed in capillary tubes placed in $5-\mathrm{mm}$ o.d. quartz EPR tubes containing 60/40 (V/V) toluene/acetone. This solvent mixture forms a transparent glass for efficient illumination of the sample and allows efficient heat transfer to prevent heating of the sample during illumination. Samples were illuminated in the cryostat at 7 K with white light from a Fiber-Lite Series 180 illuminator (DolanJennings Industries, Inc.) passed through 425 nm long-pass and water filters. Spectra were recorded with the following settings: modulation amplitude $=10 \mathrm{G}$, modulation frequency $=100 \mathrm{kHz}$, microwave power $=0.05 \mathrm{~mW}$, and microwave frequency $=9.357$ GHz.

Time-Resolved Terahertz Spectroscopy

The samples for time-resolved terahertz spectroscopy consist of thin mesoporous films (~ 20 microns) of Degussa P25 TiO nanoparticles. The nanoparticles were doctor bladed from aqueous solution onto a glass cover slip and annealed at $360^{\circ} \mathrm{C}$ for 30 min . Degussa P25 consists of 25 nm particles that are 70% anatase and 30% rutile. The TiO_{2} thin films are sensitized by soaking them overnight in 2 mM solution of either L1-acac or L2acac in dichloromethane and then rinsing the slide with copious amounts of dichloromethane. An amplified Ti:Sapphire laser (Tsunami/Spitfire from Spectra Physics) generated 800 mW of pulsed near-IR light at a 1 kHz repetition rate. The pulse width was 150 fs , and the center wavelength was 800 nm . Approximately two-thirds of the power was frequency doubled to produce 40 mW of $400 \mathrm{~nm}(3.10 \mathrm{eV})$ light for the pump beam. The remainder of the near-IR light was used to generate THz radiation using optical rectification in a $\mathrm{ZnTe}(110)$ crystal and detect it via free space electron-optic sampling in an additional $\mathrm{ZnTe}(110)$ crystal. Terahertz data were taken at room temperature, and the average of two samples was taken for each data set. More details about the THz spectroscopy apparatus can be found in previously published reports. ${ }^{[29, ~ 47, ~ 48]}$

Theoretical and Computational Methods

Geometries were optimized at the DFT B3LYP level using a combination of basis sets ($6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ for non-metal elements and LANL2DZ for Mn atom) as implemented in Gaussian $09{ }^{[49]}$ Current-voltage characteristic curves were obtained by using the NEGF-DFT approaches implemented in the TranSIESTA computational package. ${ }^{[50]}$ The molecular models were designed in the usual three-system model (extended molecule), including the left electrode lead, central device region, and right electrode lead. The transport properties were calculated using an electronic structure calculation for the leads treating them as semi-infinite periodic nanowires which were later connected to the scattering (central) region. The coordinates for the extended molecules as well as sample input files for transport calculations used in this work are provided in the Supporting Information (SI).

The electrode leads are modeled based on the $\mathrm{Au}(1,1,1)$ crystal lattice. The molecules are connected to the gold electrodes via thiol anchoring groups. A polarized single- ζ basis set was used for gold atoms and polarized double- ζ basis set ${ }^{[51]}$ for all non-gold atoms in all transport calculations, which is sufficient to describe the dominant energy levels involved in electron transport. For exchange correlation functional, we used the generalized gradient approximation ${ }^{[52]}$ (GGA). To sample the Brillouin zone, we used a $10 \times 10 \times 80$ Monkhorst k-grids ${ }^{[53,54]}$ for the leads and $10 \times 10 \times 1$ Monkhorst type k-grid for the device region. The energy cutoff for the real space grid Is 250 Ry .

From the DFT density ρ, one can obtain the Hamiltonian and overlap matrices

$$
H_{J K}^{\alpha \beta}=\left\langle\psi_{J}^{\alpha \beta}\right| H(\rho)\left|\psi_{K}^{\alpha \beta}\right\rangle
$$

and

$$
S_{J K}^{\alpha \beta}=\left\langle\psi_{J}^{\alpha \beta} \mid \psi_{K}^{\alpha \beta}\right\rangle
$$

where J and K are either L, R or M, labeling the left lead, right lead or the molecule respectively; α and β represent orbitals inside the respective regions.

This information is used to obtain the Green's function of the molecule

$$
G_{M}=\frac{1}{\varepsilon S-H-\Sigma_{L}-\Sigma_{R}}
$$

where ε is the energy plus an infinitesimal positive imaginary part ($E+i \bar{\delta}$), and the $\sum_{L / R}$ functions are the self-energy terms of the left and right leads.

The electron density ρ is defined as

$$
\frac{1}{2 \pi i} \int G_{M}^{<}(E) d E
$$

The lesser Green's function has the expression

$$
G_{M}^{<}(E)=i G_{M}^{+}(E)\left[\Gamma_{L} f\left(E-\mu_{L}\right)+\Gamma_{R} f\left(E-\mu_{R}\right)\right] G_{M}^{-}(E)
$$

where

$$
\Gamma_{L / R}=i\left(\Sigma_{L / R}^{+}-\Sigma_{L / R}^{-}\right)
$$

and f is the Fermi distribution function based on the shifting of chemical potential of the electrodes according to finite bias V in the non-equilibrium regime:

$$
\mu_{L / R}=E_{F} \pm V / 2
$$

Self-consistency calculations are performed for the electron density until convergence is achieved. The transmission coefficient is obtained with the Fisher-Lee formula,

$$
T=\operatorname{Tr}\left[\Gamma_{L} G_{M}^{-} \Gamma_{R} G_{M}^{+}\right]
$$

while the current is obtained by integrating the transmission,

$$
I=\frac{2 e}{h} \int T(E)\left[f\left(E-\mu_{L}\right)-f\left(E-\mu_{R}\right)\right] d E
$$

To interpret the calculated current-voltage curves, we recalculated the local density of states (LDOS) -i.e., the electronic density distribution for the state with energy ε_{k}, based on the electronic structure of each extended system. The LDOS distributions were obtained by integrating the Green's function in real space:

$$
n(r)=-\frac{1}{\pi} \int_{\varepsilon_{k}-\delta}^{\varepsilon_{k}+\delta} \operatorname{Im}[G(r, \varepsilon)] d \varepsilon
$$

where ε_{k} is the energy of the state of interest and δ is chosen to cover the width of that state.

Acknowledgements

We acknowledge support for the spectroscopic work by the U.S. Department of Energy Grant DE-FG02-07ER15909 (G.W.B. and C.A.S) and for the synthetic work by DE-PSO2-08ER15944 (R.H.C). Computational work was supported as part of the Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001059 (V.S.B). Computer resources were provided by NERSC and by the High performance Computing facilities at Yale University. Philip Coppens and Jiji Tang (SUNY Buffalo) and Nathan D. Schley (Yale University) are gratefully acknowledged for solving the crystal structures of L1-acac and L2-acac, respectively.

Keywords: DSSC •molecular rectifier •electron transport -density functional theory photocatalysis
[1] V. Balzani, A. Credi, M. Venturi Chemsuschem. 2008, 1, 26-58.
[2] I. McConnell, G. H. Li, G. W. Brudvig Chem. Biol. 2010, 17, 434-447.
[3] C. W. Cady, R. H. Crabtree, G. W. Brudvig Coord. Chem. Rev. 2008, 252, 444-455.
[4] E. M. Sproviero, J. A. Gascon, J. P. McEvoy, G. W. Brudvig, V. S. Batista Curr. Opin. Struct. Biol. 2007, 17, 173-180.
[5] E. M. Sproviero, J. A. Gascon, J. P. McEvoy, G. W. Brudvig, V. S. Batista Coord. Chem. Rev. 2008, 252, 395-415.
[6] G. H. Li, E. M. Sproviero, W. R. McNamara, R. C. Snoeberger, R. H. Crabtree, G. W. Brudvig, V. S. Batista J. Phys. Chem. B. 2010, 114, 14214-14222.
[7] G. F. Moore, S. J. Konezny, H. E. Song, R. L. Milot, J. D. Blakemore, M. L. Lee, V. S. Batista, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Brudvig Journal of Physical Chemistry C. 2012, 116, 4892-4902.
[8] D. Q. Xiao, L. A. Martini, R. C. Snoeberger, R. H. Crabtree, V. S. Batista J. Am. Chem. Soc. 2011, 133, 9014-9022.
[9] G. H. Li, E. M. Sproviero, R. C. Snoeberger, N. Iguchi, J. D. Blakemore, R. H. Crabtree, G. W. Brudvig, V. S. Batista Energy \& Environmental Science. 2009, 2, 230-238.
[10] W. R. McNamara, R. L. Milot, H. E. Song, R. C. Snoeberger, V. S. Batista, C. A. Schmuttenmaer, G. W. Brudvig, R. H. Crabtree Energy \& Environmental Science. 2010, 3, 917-923.
[11] W. R. McNamara, R. C. Snoeberger, G. Li, J. M. Schleicher, C. W. Cady, M. Poyatos, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Brudvig, V. S. Batista J. Am. Chem. Soc. 2008, 130, 14329-14338.
[12] W. R. McNamara, R. C. Snoeberger, G. H. Li, C. Richter, L. J. Allen, R. L. Milot, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Brudvig, V. S. Batista Energy \& Environmental Science. 2009, 2, 1173-1175.
[13] K. Rajeshwar J. Appl. Electrochem. 2007, 37, 765-787.
[14] A. L. Linsebigler, G. Q. Lu, J. T. Yates Chem. Rev. 1995, 95, 735-758.
[15] O. Carp, C. L. Huisman, A. Reller Prog. Solid State Chem. 2004, 32, 33177.
[16] Y. C. Nah, I. Paramasivam, P. Schmuki Chemphyschem. 2010, 11, 2698-2713.
[17] X. T. Hong, Z. P. Luo, J. D. Batteas J. Solid State Chem. 2011, 184, 2244-2249.
[18] T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. Van Ryswyk, J. T. Hupp Energy \& Environmental Science. 2008, 1, 66-78.
[19] G. H. Li, C. P. Richter, R. L. Milot, L. Cai, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Brudvig, V. S. Batista Dalton Transactions. 2009, 10078-10085.
[20] A. Aviram, M. A. Ratner Chem. Phys. Lett. 1974, 29, 277-283.
[21] R. M. Metzger Chem. Phys. 2006, 326, 176-187.
[22] R. M. Metzger J. Mater. Chem. 2008, 18, 4364-4396.
[23] W. A. Reinerth, L. Jones, T. P. Burgin, C. W. Zhou, C. J. Muller, M. R. Deshpande, M. A. Reed, J. M. Tour Nanotechnology. 1998, 9, 246-250.
[24] J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour Science. 1999, 286, 1550-1552.
[25] J. Chen, M. A. Reed Chem. Phys. 2002, 281, 127-145.
[26] M. Petty, M. R. Bryce, D. Bloor, An Introduction to Molecular Electronics, Oxford University Press, New York, 1995.
[27] L. A. Bumm, J. J. Arnold, M. T. Cygan, T. D. Dunbar, T. P. Burgin, L. Jones, D. L. Allara, J. M. Tour, P. S. Weiss Science. 1996, 271, 17051707.
[28] J. He, O. Sankey, M. Lee, N. J. Tao, X. L. Li, S. Lindsay Faraday Discuss. 2006, 131, 145-154.
[29] W. R. McNamara, R. C. Snoeberger, G. Li, J. M. Schleicher, C. W. Cady, M. Poyatos, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Brudvig, V. S. Batista J. Am. Chem. Soc. 2008, 130, 14329-14338.
[30] L. V. Keldysh Soviet Physics Jetp-Ussr. 1965, 20, 1018-1026.
[31] S. Datta in Electronic Transport in Mesoscopic Systems, Vol., Cambridge University Press, Cambridge, UK, 1997.
[32] S. Datta, Quantum Transport, Cambridge University Press, Cambridge, UK, 2005.
[33] Y. Tsuji, K. Yoshizawa J. Phys. Chem. C. 2012, 116, 26625-26635.
[34] A. C. Durrell, G. Li, M. Koepf, K. J. Young, C. F. A. Negre, L. J. Allen, W. R. McNamara, H.-e. Song, V. S. Batista, R. H. Crabtree, G. W. Brudvig J. Catal. 2014, 310, 37-44.
[35] J. L. Palma, C. Cao, X. G. Zhang, P. S. Krstic, J. L. Krause, H. P. Cheng J. Phys. Chem. C. 2010, 114, 1655-1662.
[36] J. Huang, Q. Li, H. Ren, H. Su, Q. W. Shi, J. Yang J. Chem. Phys. 2007, 127, 094705.
[37] X. Y. Xiao, B. Q. Xu, N. J. Tao Nano Lett. 2004, 4, 267-271.
[38] I. Diez-Perez, J. Hihath, Y. Lee, L. P. Yu, L. Adamska, M. A. Kozhushner, Oleynik, II, N. J. Tao Nature Chemistry. 2009, 1, 635-641.
[39] C. F. A. Negre, R. L. Milot, L. A. Martini, W. Ding, R. H. Crabtree, C. A. Schmuttenmaer, V. S. Batista Journal of Phys. Chem. C. 2013, 117, 24462-24470.
[40] E. C. Constable, E. L. Dunphy, C. E. Housecroft, M. Neuburger, S. Schaffner, F. Schaper, S. R. Batten Dalton Transactions. 2007, 43234332.
[41] G. A. Koohmareh, M. Sharifi J. Appl. Polym. Sci. 2010, 116, 179-183.
[42] Y. W. Jiang, N. Wu, H. H. Wu, M. Y. He Synlett. 2005, 2731-2734.
[43] G. B. Kauffman, L. Y. Fang Inorg. Synth. 1983, 22, 101-103.
[44] S. H. Wadman, J. M. Kroon, K. Bakker, R. W. A. Havenith, G. P. M. van Klink, G. van Koten Organometallics. 2010, 29, 1569-1579.
[45] S. Bonnet, J.-P. Collin, J.-P. Sauvage Inorg. Chem. 2007, 46, 1052010533.
[46] P. Laine, F. Bedioui, P. Ochsenbein, V. Marvaud, M. Bonin, E. Amouyal J. Am. Chem. Soc. 2002, 124, 1364-1377.
[47] M. C. Beard, G. M. Turner, C. A. Schmuttenmaer Phys. Rev. B. 2000, 62, 15764-15777.
[48] J. B. Baxter, C. A. Schmuttenmaer J. Phys. Chem. B. 2006, 110, 2522925239.
[49] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. H. Li, H. P., A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox in Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT, 2009.
[50] M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro Phys. Rev. B. 2002, 65, 165401.
[51] J. Junquera, O. Paz, D. Sanchez-Portal, E. Artacho Phys. Rev. B. 2001, 64, 235111.
[52] J. P. Perdew, K. Burke, M. Ernzerhof Phys. Rev. Lett. 1996, 77, 38653868.
[53] H. J. Monkhorst, J. D. Pack Phys. Rev. B. 1976, 13, 5188-5192.
[54] J. D. Pack, H. J. Monkhorst Phys. Rev. B. 1977, 16, 1748-1749.

Received: ((will be filled in by the editorial staff))
Published online: ((will be filled in by the editorial staff))

ARTICLES

Linkers rectifiers induce directionality of interfacial electron transfer suitable for multi-electron reactions at electrode surfaces. The linkers have a terpyridyl group that can covalently bind Mn as in a well-known water oxidation catalyst and an acetylacetonate group that allows attachment to TiO_{2} surfaces. The appropriate choice of the sense of the amide linkage suppresses backelectron transfer by shifting the transport channel away from the Fermi level.

W. Ding, C. F. A. Negre, J. L. Palma, A.
C. Durrell, L. J. Allen, K. J. Young, R.
L. Milot, C. A. Schmuttenmaer, ${ }^{*}$ G.
W. Brudvig, * R. H. Crabtree, * V. S.

Batista*
Page No. - Page No.
Linker Rectifiers for Covalent
Attachment of Transition Metal Catalysts to Metal-Oxide Surfaces

Electronic Supporting Information

Linker Rectifiers for Covalent Attachment of Transition Metal Catalysts to Metal-Oxide Surfaces

Wendu Ding, Christian F. A. Negre, Julio L. Palma, Alec C. Durrell, Laura J. Allen, Karin J. Young, Rebecca L. Milot, Charles A. Schmuttenmaer ${ }^{*}$,Gary W. Brudvig*, Robert H. Crabtree ${ }^{*}$, and Victor S. Batista*

Yale University, Chemistry Department, P.O. Box 208107, New Haven, CT 06520-8107, USA
Energy Sciences Institute, Yale University, Yale University, P.O. Box 27394, West Haven, CT 06516-7394, USA

1/20/14

Table of Contents:

Figure S1: 1H NMR of 2-acetylpyridine pyridinium iodide S-2
Figure S2: ${ }^{1} \mathrm{H}$ NMR of nitrophenyl-terpyridine (5) S-3
Figure S3: ${ }^{1} \mathrm{H}$ NMR of aminophenyl-terpyridine (6) S-4
Figure S4: ${ }^{1}$ H NMR of L1-acac S-5
Figure S5: ${ }^{1} \mathrm{H}$ NMR of nitrophenyl-acac (8) S-6
Figure S6: ${ }^{1} \mathrm{H}$ NMR of aminophenyl-acac (9) S-7
Figure S7: ${ }^{1}$ H NMR L2-acac. S-8
Figure S8: ${ }^{13}$ C NMR of L2-acac S-9
Figure S9: ORTEP diagram of L1-acac \quad S-10
Table S1: Crystallograpic parameters for L1-acac S-11
Figure S10: ORTEP diagram of L2-acac S-12
Table S2: Crystallographic parameters for L2-acac S-13
Figure S11: Atominc structure of the leads used for IV curves simulations S-14
Figure S12: Schematic diagram of light-induced charge separation kinetics S-15
Figure S13: Schematic of slow recombination kinetics S-16
Table S3: Parameters of biexponetial fit to EPR kinetic data S-17
Figure S14: Biexponential fit to EPR kinetic data \quad S-18

Figure S1: ${ }^{1} \mathrm{H}$ NMR of 2-acetylpyridine pyridinium iodide 4

Figure S2: ${ }^{1} \mathrm{H}$ NMR of nitrophenyl-terpyridine (5)

Figure S3: ${ }^{1} \mathrm{H}$ NMR of aminophenyl-terpyridine (6)

Figure S4: ${ }^{1} \mathrm{H}$ NMR of L1-acac

Figure S5: ${ }^{1} \mathrm{H}$ NMR of nitrophenyl-acac $\mathbf{8}$

Figure S6: ${ }^{1} \mathrm{H}$ NMR of aminophenyl-acac 9.

Figure S7: ${ }^{1} \mathrm{H}$ NMR L2-acac

Figure S8: ${ }^{13} \mathrm{C}$ NMR of L2-acac

Figure S9: ORTEP diagram of L1-acac

Table S1: Crystallographic parameters for L1-acac• $2\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$
Empirical formula
Fw
Radiation, $\lambda,(\AA)$
T(K)
Unit cell dimensions

$a(\AA)$	13.9169(8)
$b(\AA)$	27.9498(15)
$c(\AA)$	9.7140 (5)
$\alpha\left({ }^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	102.455(2)
$\gamma\left({ }^{\circ}\right)$	90.00
$V\left(\AA^{3}\right)$	3689.6(3)
Z	4
$\mathrm{D}_{\text {calc }}(\mathrm{g} \mathrm{cm}-3)$	1.229
$\mu(\mathrm{MoK} \alpha)\left(\mathrm{mm}^{-1}\right)$	0.078
Total, unique no. of refl.	61656, 7557
$\mathrm{R}_{\text {int }}$	0.1543
No of param., restraints	472, 0
$\mathrm{R}^{\mathrm{a}}, \mathrm{R}^{\text {b }}{ }^{\text {b }}$	0.0617, 0.1530
G.O.F.	1.008
Resid. Density (e \AA^{-3})	+ 0.554, -0.335

Figure S10: ORTEP diagram of L2-acac

Color, shape	Colorless, prism
Empirical formula	$\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~N}_{4}$
Fw	544.61
Radiation, λ, \AA A	$\mathrm{CuK} \alpha(\lambda=1.54187 \AA$)
T $\left({ }^{\circ} \mathrm{C}\right)$	-180 ± 1
Crystal system	monoclinic
Space group	P2 $1^{\prime} \mathrm{C}$
Unit cell dimensions	
$a(\AA)$	17.1790(12)
b (\AA)	10.51148(19)
$c(\AA)$	16.7461(3)
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	111.207(8)
$\gamma\left({ }^{\circ}\right)$	90
$V\left(\AA^{3}\right)$	2819.2(2)
Z	4
Dcalc ($\mathrm{g} \mathrm{cm}-3$)	1.283
$\mu(\mathrm{CuK} \alpha)\left(\mathrm{cm}^{-1}\right)$	6.953
Crystal size	$0.50 \times 0.44 \times 0.30 \mathrm{~mm}$
Total, unique no. of refl.	18706, 5011
$\mathrm{R}_{\text {int }}$	0.034
No of param., restraints	387, 0
$\mathrm{R}^{\mathrm{a}}, \mathrm{R}_{\mathrm{w}}{ }^{\text {b }}$	0.0505, 0.1674
G.O.F.	1.132
Resid. Density ($\mathrm{e} \AA^{-3}$)	+0.27, -0.30

Figure S11: Scheme of the Leads used for building the extended molecule. We employed the Au lattice constant of $4.088 \AA$ in an hcp lattice. The face of the leads is corresponds to a (111) surface.

Kinetic Model

As discussed in the SI of Ref. [34], we consider photoexcitation of an adsorbate molecule covalently bound to a semiconductor surface, a process that promotes an electron in the adsorbate from the ground to the excited state. We assume that the photoexcited state is isoenergetic with an electronic state in the semiconductor conduction band, inducing IET (see Fig. 5 of the manuscript).

The effective rate constant for electron injection is $\mathrm{k}_{\mathrm{inj}}=[\mathrm{p}] \mathrm{k}_{\mathrm{inj}}{ }^{*}$, where $[\mathrm{p}]$ is the effective concentration of photons as determined by the light intensity. The injection is typically ultrafast and is followed by forward electron transfer from terpyridine (T) to phenylacac (A), evolving the system from [1] to [2] with rate constant k_{12} and backward, from [2] to [1], with rate constant k_{21}. In addition, we assume that the hole left in the terpyridine ligand oxidizes Mn^{2+} to Mn^{3+} with an oxidation rate constant k_{23} and recombination k_{32}. Furthermore, [3] could recombine into [0] directly with rate constant k_{r}. We assume $k_{23} \gg k_{32}$ to ensure a chemically sensible model, where Mn is rapidly oxidized by a hole localized in the phenylterpyridine ligand.

2. Quantitative Analysis of the EPR Signal

We find the rate constants k_{12} and k_{21} by considering the slow kinetics, monitored by EPR, after the initial pre-equilibrium of $\mathrm{Mn}^{\mathrm{II}}-\mathrm{T}-\mathrm{A}-\mathrm{TiO}_{2}$ and $\mathrm{Mn}^{\mathrm{II}}-\mathrm{T}-\mathrm{A}^{\mathrm{h}+}-\mathrm{TiO}_{2}{ }^{\mathrm{e}-}$ established by ultrafast injection and recombination:

Figure S12. Schematic of the slow kinetics monitored by EPR, after the initial pre-equilibrium established, by ultrafast injection and recombination upon turning the light on.

According to Fig. S7, the kinetics equations are:

$$
\begin{align*}
& \frac{d[1]}{d t}=-k_{12}[1]+k_{21}[2]+k_{r}[3] \\
& \frac{d[2]}{d t}=k_{12}[1]-k_{21}[2]-k_{23}[2]+k_{32}[3] \tag{3}\\
& \frac{d[3]}{d t}=k_{23}[2]-\left(k_{32}+k_{r}\right)[3]
\end{align*}
$$

When $p(0)=[1]+[2]+[3]$, we obtain:

$$
\begin{align*}
& \frac{d[1]}{d t}=-k_{12}[1]+k_{21}(p(0)-[1]-[3])+k_{r}[3] \\
& \frac{d[3]}{d t}=k_{23}(p(0)-[1]-[3])-\left(k_{32}+k_{r}\right)[3] \tag{4}
\end{align*}
$$

with

$$
\begin{align*}
& \frac{d[1]}{d t}=-k_{11}[1]+k_{13}[3]+k_{21} p(0) \\
& \frac{d[3]}{d t}=-k_{33}[3]+k_{31}[1]+k_{23} p(0) \tag{5}
\end{align*}
$$

where $\mathrm{k}_{11}=\mathrm{k}_{21}+\mathrm{k}_{12}, \mathrm{k}_{13}=\mathrm{k}_{\mathrm{r}}-\mathrm{k}_{21}, \mathrm{k}_{33}=\mathrm{k}_{\mathrm{r}}+\mathrm{k}_{32}+\mathrm{k}_{23}$, and $\mathrm{k}_{31}=-\mathrm{k}_{23}$.
Solving for [1], from Eq. (5), we obtain:

$$
\begin{align*}
{[1] } & =k_{31}^{-1} \frac{d[3]}{d t}+k_{31}^{-1} k_{33}[3]-k_{31}^{-1} k_{23} p(0) \\
\frac{d[1]}{d t} & =k_{31}^{-1} \frac{d^{2}[3]}{d t^{2}}+k_{31}^{-1} k_{33} \frac{d[3]}{d t} \tag{6}\\
& =-k_{11} k_{31}^{-1} \frac{d[3]}{d t}+\left(k_{13}-k_{11} k_{31}^{-1} k_{33}\right)[3]+\left(k_{21}+k_{11} k_{31}^{-1} k_{23}\right) p(0)
\end{align*}
$$

Associating terms, we obtain:

$$
\begin{equation*}
\frac{d^{2}[3]}{d t^{2}}+\left(k_{33}+k_{11}\right) \frac{d[3]}{d t}+\left(k_{11} k_{33}-k_{13} k_{31}\right)[3]-\left(k_{31} k_{21}+k_{11} k_{23}\right) p(0)=0 \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d^{2}[3]}{d t^{2}}+A \frac{d[3]}{d t}+B[3]-C=0 \tag{8}
\end{equation*}
$$

with $\mathrm{A}=\mathrm{k}_{33}+\mathrm{k}_{11}, \mathrm{~B}=\mathrm{k}_{33} \mathrm{k}_{11}-\mathrm{k}_{13} \mathrm{k}_{31}$ and $\mathrm{C}=\left(\mathrm{k}_{11} \mathrm{k}_{23}+\mathrm{k}_{31} \mathrm{k}_{21}\right) \mathrm{p}(0)$, with solution

$$
\begin{equation*}
[3]=A_{1} e^{-k^{(+)} t}+A_{2} e^{-k^{(-)} t}+\frac{C}{B} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
k^{(\pm)}=\frac{A \pm \sqrt{A^{2}-4 B}}{2} \tag{10}
\end{equation*}
$$

with $\mathrm{A}=\mathrm{k}^{(-)}+\mathrm{k}^{(+)}$and $\mathrm{B}=\mathrm{k}^{(-)} \mathrm{k}^{(+)}$.
We note that for the case of light OFF, $\mathrm{k}_{\mathrm{inj}}=0$ since $[\mathrm{p}]=0$. In addition, $\left[\mathrm{Mn}^{\mathrm{II}}-\mathrm{T}-\mathrm{A}^{\mathrm{h}+}-\right.$ $\left.\mathrm{TiO}_{2}{ }^{\mathrm{e}}\right]=0$, since the transition from $\left[\mathrm{Mn}^{\mathrm{II}}-\mathrm{T}-\mathrm{A}^{\mathrm{h}+}-\mathrm{TiO}_{2}{ }^{\mathrm{e}}\right]$ to $\left[\mathrm{Mn}^{\mathrm{II}} \mathrm{TATiO}_{2}\right]$ is ultrafast. Therefore, the resulting kinetic model is analogous to the light-on model but with an effective kinetic constant $\mathrm{k}_{12}=0$:

Figure S13. Schematics of the slow recombination kinetics monitored by EPR after turning the light off.

For the case of light OFF $\left(\mathrm{k}_{12}=0\right), \mathrm{k}^{(-) \text {OFF }}=(42.16 \mathrm{~s})^{-1}$ and $\mathrm{k}^{(+) \text {OFF }}=(9.18 \mathrm{~s})^{-1}$, while for light ON , we obtain $\mathrm{k}^{(-) \text {OFF }}=(14.1 \mathrm{~s})^{-1}$ and $\mathrm{k}^{(-) \mathrm{OFF}}=(3.0 \mathrm{~s})^{-1}$.
Assuming that $k_{23} \gg k_{32} \approx 0$, we solve for k_{r} and k_{23}, giving:

$$
\begin{align*}
& \mathrm{k}_{23}=\frac{\left(k^{(-) \text {OFF }}+k^{(+) O F F}\right) \mathrm{k}_{21}-\mathrm{k}_{21}^{2}-k^{(-) O F F} k^{(+) O F F}}{\mathrm{k}_{21}} \tag{11}\\
& \mathrm{k}_{r}=\frac{k^{(-) O F F} k^{(+) O F F}}{\mathrm{k}_{21}}
\end{align*}
$$

For the case of light-on, we have $\mathrm{k}^{(-) \mathrm{ON}}=(14.11 \mathrm{~s})^{-1}$ and $\mathrm{k}^{(+) \mathrm{ON}}=(3.04 \mathrm{~s})^{-1}$, and solving for k_{12} and k_{21}, we obtain:

$$
\begin{align*}
& \mathrm{k}_{12}=\left(k^{(-) O N}+k^{(+) O N}\right)-\left(k^{(-) O F F}+k^{(+) O F F}\right) \\
& \mathrm{k}_{21}=\frac{\left(k^{(-) O F F}\right)^{2}+\left(k^{(-) O F F}+k^{(+) O F F}\right)\left(k^{(+) O F F}-k^{(+) O N}-k^{(-) O N}\right)+k^{(-) O N} k^{(+) O N}}{k^{(-) O F F}+k^{(+) O F F}-k^{(-) O N}-k^{(+) O N}} \tag{12}
\end{align*}
$$

giving $\mathrm{k}_{12}=0.272 \mathrm{~s}^{-1}$ and $\mathrm{k}_{21}=0.0546 \mathrm{~s}^{-1}$ (i.e., $\mathrm{K}_{1} \approx 5$, as indicated in Sec. 1). Substituting these values into Eq. (11) we obtain, $\mathrm{k}_{23}=0.0307 \mathrm{~s}^{-1}$ and $\mathrm{k}_{\mathrm{r}}=0.0472 \mathrm{~s}^{-1}$.

We obtain [3] as a function of time by using Eq. (9), with parameters given in Table 1, with A_{1} and A_{2} obtained by making [3]=[2]=0 at $\mathrm{t}=0$. We solve for [2], as a function of [3], from Eq. (3), and for [1] as a function of [3] from $p(0)=[1]+[2]+[3]$. Figure 5 of the text shows [1], [2] and [3] as a function of time.

Table S3: Parameters of the bi-exponential fits to the experimental EPR signal, modeled as $E P R=A_{1} e^{-k^{(+)} t}+A_{2} e^{-k^{(-)} t}+A_{0}$

	Light-On	Light-Off
A_{0}	241.8	-189.0
$k^{(+)}$	$(14.1 \mathrm{~s})^{-1}$	$(42.2 \mathrm{~s})^{-1}$
$\mathrm{~A}_{2}$	328.4	-456.2
$k^{(-)}$	$(3.0 \mathrm{~s})^{-1}$	$(9.2 \mathrm{~s})^{-1}$
$\mathrm{~A}_{4}$	5220.9	5794.5
Corr. Coeff.	0.998	0.999
EMS rel. error	0.210	7.263

Figure S14: EPR signal and biexponential fit for light-on (red) and light-off (blue).
Figure S14 shows that the relaxation dynamics upon turning the light ON/OFF can be properly described by a bi-exponential function, as predicted by the kinetic model with parameters listed in Table 1. From the parameters of the biexponential fit, the remaining rate constants suggested by the model shown in Fig. 1 may be calculated.

For the case of light OFF $\left(\mathrm{k}_{12}=0\right)$, $\mathrm{k}^{(-) \mathrm{OFF}}=(42.16 \mathrm{~s})^{-1}$ and $\mathrm{k}^{(+) \text {OFF }}=(9.18 \mathrm{~s})^{-1}$, while for light ON, we obtain $\mathrm{k}^{(-) \mathrm{OFF}}=(14.1 \mathrm{~s})^{-1}$ and $\mathrm{k}^{(-) \mathrm{OFF}}=(3.0 \mathrm{~s})^{-1}$. Assuming that kr can be neglected, we solve for k23 and k32, giving:

$$
\begin{align*}
& \mathrm{k}_{23}=\frac{\left(k^{(-) \text {OFF }}+k^{(+) O F F}\right) \mathrm{k}_{21}-\mathrm{k}_{21}^{2}-k^{(-) O F F} k^{(+) \text {OFF }}}{\mathrm{k}_{21}} \tag{11}\\
& \mathrm{k}_{32}=\frac{k^{(-) O F F} k^{(+) \text {OFF }}}{\mathrm{k}_{21}}
\end{align*}
$$

For the case of light-on, we have $\mathrm{k}^{(-) \mathrm{ON}}=(14.11 \mathrm{~s})^{-1}$ and $\mathrm{k}^{(+) O \mathrm{~N}}=(3.04 \mathrm{~s})^{-1}$, and solving for k_{12} and k_{21}, we obtain:

$$
\begin{align*}
& \mathrm{k}_{12}=\left(k^{(-) O N}+k^{(+) O N}\right)-\left(k^{(-) O F F}+k^{(+) O F F}\right) \\
& \mathrm{k}_{21}=\frac{\left(k^{(-) O F F}\right)^{2}+\left(k^{(-) O F F}+k^{(+) O F F}\right)\left(k^{(+) O F F}-k^{(+) O N}-k^{(-) O N}\right)+k^{(-) O N} k^{(+) O N}}{k^{(-) O F F}+k^{(+) O F F}-k^{(-) O N}-k^{(+) O N}} \tag{12}
\end{align*}
$$

giving $\mathrm{k}_{12}=0.272 \mathrm{~s}^{-1}$ and $\mathrm{k}_{21}=0.0546 \mathrm{~s}^{-1}$ (i.e., $\mathrm{K}_{1}=5$). Substituting these values into Eq. (11) we obtain, $\mathrm{k}_{23}=0.0307 \mathrm{~s}^{-1}$ and $\mathrm{k}_{32}=0.0472 \mathrm{~s}^{-1}$.

Coordinates for extended systems used in this study:

Au-Mn-terpy-L1-Au

Au	0.00000000	-4.99573000	0.00000000
Au	2.88429000	-4.99573000	0.00000000
Au	5.76858000	-4.99573000	0.00000000
Au	8.65286000	-4.99573000	0.00000000
Au	-1.44214000	-2.49786000	0.0000000
Au	1.44214000	-2.49786000	0.00000000
Au	4.32643000	-2.49786000	0.00000000
Au	7.21072000	-2.49786000	0.00000000
Au	-2.88429000	0.00000000	0.00000000
Au	0.0000000	0.00000000	0.00000000
Au	2.88428000	0.00000000	0.00000000
Au	5.76858000	0.00001000	0.00000000
Au	-4.32644000	2.49786000	0.00000000
Au	-1.44215000	2.49786000	0.00000000
Au	1.44214000	2.49786000	0.00000000
Au	4.32643000	2.49787000	0.00000000
Au	-0.00001000	-3.33049000	2.35502000
Au	2.88429000	-3.33049000	2.35502000
Au	5.76857000	-3.33049000	2.35502000
Au	8.65287000	-3.33048000	2.35502000
Au	-1.44215000	-0.83262000	2.35502000
Au	1.44214000	-0.83262000	2.35502000
Au	4.32643000	-0.83262000	2.35502000
Au	7.21072000	-0.83262000	2.35502000
Au	-2.88429000	1.66524000	2.35502000
Au	-0.00001000	1.66524000	2.35502000
Au	2.88429000	1.66525000	2.35502000
Au	5.76857000	1.66525000	2.35502000
Au	-4.32645000	4.16311000	2.35502000
Au	-1.44215000	4.16311000	2.35502000
Au	1.44213000	4.16311000	2.35502000
Au	4.32643000	4.16312000	2.35502000
Au	-1.44214000	-4.16312000	4.71004000
Au	1.44214000	-4.16312000	4.71004000
Au	4.32643000	-4.16310000	4.71004000
Au	7.21072000	-4.16310000	4.71004000
Au	-2.88429000	-1.66525000	4.71004000
Au	0.00000000	-1.66525000	4.71004000
Au	2.88429000	-1.66524000	4.71004000
Au	5.76857000	-1.66524000	4.71004000
Au	-4.32644000	0.83262000	4.71004000
Au	-1.44215000	0.83262000	4.71004000
Au	1.44214000	0.83263000	4.71004000
Au	4.32643000	0.83263000	4.71004000
Au	-5.76858000	3.33048000	4.71004000
Au	-2.88429000	3.33049000	4.71004000
Au	-0.00001000	3.33050000	4.71004000
Au	2.88428000	3.33050000	4.71004000
Au	0.00000000	-4.99573000	7.06505000
Au	2.88429000	-4.99573000	7.06505000
Au	5.76858000	-4.99573000	7.06505000
Au	-1.44214000	-2.49786000	7.06505000
103600			

Au	1.44214000	-2.49786000	7.06505000
u	4.32643000	-2.49786000	7.06505000
Au	7.21072000	-2.49786000	7.06505000
Au	-2.88429000	0.00000000	7.06505000
A	0.00000000	0.00000000	7.06505000
A	2.88428000	0.00000000	7.06505000
Au	5.76858000	0.00001000	7.06505000
Au	-4.32644000	2.49786000	7.06505000
Au	-1.44215000	2.49786000	7.06505000
Au	1.44214000	2.49786000	7.06505000
A	4.32643000	2.49787000	7.06505000
A	-0.00001000	-3.33049000	9.42006000
A	2.88429000	-3.33049000	9.42006000
Au	5.76857000	-3.33049000	9.42006000
A	8.65287000	-3.33048000	9.42006000
Au	-1.44215000	-0.83262000	9.42006000
A	1.44214000	-0.83262000	9.42006000
A	4.32643000	-0.83262000	9.42006000
A	7.21072000	-0.83262000	9.42006000
Au	-2.88429000	1.66524000	9.42006000
Au	-0.00001000	1.66524000	9.42006000
Au	2.88429000	1.66525000	9.42006000
A	5.76857000	1.66525000	9.42006000
A	-4.32645000	4.16311000	9.42006000
Au	-1.44215000	4.16311000	9.42006000
Au	1.44213000	4.16311000	9.42006000
Au	4.32643000	4.16312000	9.42006000
Au	-1.44214000	-4.16312000	11.77507000
A	1.44214000	-4.16312000	11.77507000
Au	4.32643000	-4.16310000	11.77507000
A	7.21072000	-4.16310000	11.77507000
Au	-2.88429000	-1.66525000	11.77507000
Au	0.00000000	-1.66525000	11.77507000
Au	2.88429000	-1.66524000	11.77507000
Au	5.76857000	-1.66524000	11.77507000
Au	-4.32644000	0.83262000	11.77507000
Au	-1.44215000	0.83262000	11.77507000
Au	1.44214000	0.83263000	11.77507000
Au	4.32643000	0.83263000	11.77507000
Au	-5.76858000	3.33048000	11.77507000
Au	-2.88429000	3.33049000	11.77507000
Au	-0.00001000	3.33050000	11.77507000
A	2.88428000	3.33050000	11.77507000
Au	0.00000000	0.00000000	14.13008000
Au	-1.44215000	2.49786000	14.13008000
Au	1.44214000	2.49786000	14.13008000
S	0.00284399	-1.88530461	15.48212233
H	2.64416995	-3.38431680	16.27177722
H	-2.40415828	-0.14095483	16.54282704
O	1.42900999	0.21584230	16.78704089
H	2.39500799	0.28109205	16.81482011
H	1.09518082	1.12223862	16.85978664
H	4.74075818	-4.55701004	16.94355415
C	2.97885795	-3.37351213	17.30558258
H	-4.29248000	1.22187034	17.43546506
C	-2.45469884	0.11203463	17.59848394
O	-0.97045798	-3.54049940	17.59875926
Mn	0.29283574	-1.60012343	17.66769299

C	4.14876409	-4.02751189	17.68182636
H	-0.59803136	-4.41022607	17.80609396
H	-1.89252442	-3.56406504	17.89442521
C	-3.50827779	0.87264652	18.09801371
N	2.20251586	-2.69953785	18.17530710
N	-1.45276306	-0.35047313	18.37046803
C	4.52704715	-3.97724285	19.02433000
H	5.43211728	-4.47183623	19.36266147
C	-3.51878312	1.16518430	19.46263974
C	2.56365717	-2.64721102	19.48580598
C	-1.45523027	-0.06840933	19.70131164
N	0.58029299	-1.33386458	19.77826363
H	-4.32074823	1.75449659	19.89599200
C	3.72799916	-3.28233081	19.93217583
C	-2.48414900	0.69129238	20.26920417
C	1.65163415	-1.88432183	20.38928407
C	-0.31074204	-0.61180136	20.49172506
H	4.01585227	-3.23934152	20.97520926
H	-2.48663715	0.91519468	21.32871132
C	1.86646211	-1.72349800	21.75325806
C	-0.15188451	-0.41667553	21.85840136
H	2.74714210	-2.14237522	22.22126263
H	-0.89126452	0.13638531	22.42149688
C	0.95863598	-0.97274720	22.53874217
C	1.15409998	-0.77767957	23.97319520
H	0.08420813	1.10899671	24.07958014
H	2.29015875	-2.60491627	24.30344881
C	0.61717136	0.34677008	24.63969341
C	1.88573300	-1.70328583	24.75309850
C	0.78938444	0.55509365	25.99843478
C	2.05448033	-1.51841441	26.11316993
H	0.37819761	1.42983200	26.48118650
H	2.59979893	-2.26114595	26.68923381
C	1.51351724	-0.38572915	26.76695406
N	1.73557973	-0.25615310	28.12765383
H	2.27369613	-0.99695980	28.55669990
O	0.44125671	1.57324385	28.62658464
C	1.23438644	0.72222822	29.00421738
H	3.57607369	-0.45028934	30.03406330
C	1.72099125	0.62877313	30.41133080
C	2.91760671	-0.01186162	30.77979028
H	0.02553574	1.75410035	31.10317673
C	0.93773442	1.24781123	31.39996554
C	3.31349945	-0.04394983	32.11731624
H	4.24521745	-0.52800907	32.39300929
C	1.33204445	1.20569637	32.73584086
C	2.51833011	0.55816659	33.09717326
H	0.71708650	1.67872319	33.49506109
S	3.02425236	0.51110683	34.80311231
Au	1.44214000	-4.16312000	35.56499000
Au	4.32643000	-4.16312000	35.56499000
Au	2.88428000	-1.66525000	35.56499000
Au	0.00000000	-4.99574000	37.92000000
Au	2.88429000	-4.99574000	37.92000000
Au	5.76858000	-4.99574000	37.92000000
Au	8.65287000	-4.99574000	37.92000000
Au	-1.44215000	-2.49788000	37.92000000
Au	1.44214000	-2.49788000	37.92000000

Au	4.32643000	-2.49788000	37.92000000
Au	7.21072000	-2.49788000	37.92000000
Au	-2.88429000	-0.00001000	37.92000000
Au	0.00000000	-0.00001000	37.92000000
Au	2.88429000	-0.00001000	37.92000000
Au	5.76858000	-0.00001000	37.92000000
A	-4.32644000	2.49786000	37.92000000
Au	-1.44215000	2.49786000	37.92000000
Au	1.44214000	2.49786000	37.92000000
Au	4.32643000	2.49786000	37.92000000
Au	0.00000000	-3.33050000	40.27501000
Au	2.88429000	-3.33050000	40.27501000
Au	5.76857000	-3.33050000	40.27501000
Au	8.65286000	-3.33050000	40.27501000
A	-1.44214000	-0.83263000	40.27501000
Au	1.44215000	-0.83263000	40.27501000
Au	4.32644000	-0.83263000	40.27501000
Au	7.21071000	-0.83263000	40.27501000
Au	-2.88429000	1.66523000	40.27501000
Au	0.00000000	1.66523000	40.27501000
Au	2.88429000	1.66523000	40.27501000
Au	5.76858000	1.66523000	40.27501000
Au	-4.32644000	4.16310000	40.27501000
Au	-1.44215000	4.16310000	40.27501000
Au	1.44214000	4.16310000	40.27501000
Au	4.32643000	4.16310000	40.27501000
Au	-1.44215000	-4.16312000	42.63002000
Au	1.44214000	-4.16312000	42.63002000
Au	4.32643000	-4.16312000	42.63002000
Au	7.21072000	-4.16312000	42.63002000
Au	-2.88428000	-1.66526000	42.63002000
Au	-0.00001000	-1.66525000	42.63002000
Au	2.88428000	-1.66525000	42.63002000
Au	5.76857000	-1.66525000	42.63002000
Au	-4.32643000	0.83261000	42.63002000
A	-1.44214000	0.83261000	42.63002000
A	1.44214000	0.83262000	42.63002000
A	4.32643000	0.83262000	42.63002000
A	-5.76858000	3.33048000	42.63002000
Au	-2.88429000	3.33048000	42.63002000
Au	0.00000000	3.33048000	42.63002000
A	2.88428000	3.33048000	42.63002000
Au	0.00000000	-4.99574000	44.98504000
A	2.88429000	-4.99574000	44.98504000
A	5.76858000	-4.99574000	44.98504000
Au	8.65287000	-4.99574000	44.98504000
Au	-1.44215000	-2.49788000	44.98504000
A	1.44214000	-2.49788000	44.98504000
A	4.32643000	-2.49788000	44.98504000
Au	7.21072000	-2.49788000	44.98504000
Au	-2.88429000	-0.00001000	44.98504000
Au	0.00000000	-0.00001000	44.98504000
Au	2.88429000	-0.00001000	44.98504000
Au	5.76858000	-0.00001000	44.98504000
Au	-4.32644000	2.49786000	44.98504000
Au	-1.44215000	2.49786000	44.98504000
Au	1.44214000	2.49786000	44.98504000
Au	4.32643000	2.49786000	44.98504000

Au	0.00000000	-3.33050000	47.34005000
Au	2.88429000	-3.33050000	47.34005000
Au	5.76857000	-3.33050000	47.34005000
Au	8.65286000	-3.33050000	47.34005000
Au	-1.44214000	-0.83263000	47.34005000
Au	1.44215000	-0.83263000	47.34005000
Au	4.32644000	-0.83263000	47.34005000
Au	7.21071000	-0.83263000	47.34005000
Au	-2.88429000	1.66523000	47.34005000
Au	0.00000000	1.66523000	47.34005000
Au	2.88429000	1.66523000	47.34005000
Au	5.76858000	1.66523000	47.34005000
Au	-4.32644000	4.16310000	47.34005000
Au	-1.44215000	4.16310000	47.34005000
Au	1.44214000	4.16310000	47.34005000
Au	4.32643000	4.16310000	47.34005000
Au	-1.44215000	-4.16312000	49.69506000
Au	1.44214000	-4.16312000	49.69506000
Au	4.32643000	-4.16312000	49.69506000
Au	7.21072000	-4.16312000	49.69506000
Au	-2.88428000	-1.66526000	49.69506000
Au	-0.00001000	-1.66525000	49.69506000
Au	2.88428000	-1.66525000	49.69506000
Au	5.76857000	-1.66525000	49.69506000
Au	-4.32643000	0.83261000	49.69506000
Au	-1.44214000	0.83261000	49.69506000
Au	1.44214000	0.83262000	49.69506000
Au	4.32643000	0.83262000	49.69506000
Au	-5.76858000	3.33048000	49.69506000
Au	-2.88429000	3.33048000	49.69506000
Au	0.00000000	3.33048000	49.69506000
Au	2.88428000	3.33048000	49.69506000

Au-Mn-terpy-L2-Au

$\mathrm{Au} 0.00000000-4.99573000 \quad 0.00000000$
Au $2.88429000-4.99573000 \quad 0.00000000$
$\mathrm{Au} 5.76858000-4.99573000 \quad 0.00000000$
Au $8.65286000-4.99573000 \quad 0.00000000$
$\mathrm{Au}-1.44214000-2.49786000 \quad 0.00000000$
$\mathrm{Au} 1.44214000-2.49786000 \quad 0.00000000$
$\mathrm{Au} 4.32643000-2.49786000 \quad 0.00000000$
$\mathrm{Au} 7.21072000-2.49786000 \quad 0.00000000$
$\mathrm{Au}-2.88429000 \quad 0.00000000 \quad 0.00000000$
$\mathrm{Au} 0.00000000 \quad 0.00000000 \quad 0.00000000$
Au $2.88428000 \quad 0.00000000 \quad 0.00000000$
Au $5.76858000 \quad 0.00001000 \quad 0.00000000$
$\mathrm{Au}-4.326440002 .49786000 \quad 0.00000000$
$\mathrm{Au}-1.442150002 .49786000 \quad 0.00000000$
Au $1.44214000 \quad 2.49786000 \quad 0.00000000$
$\begin{array}{llll}\mathrm{Au} & 4.32643000 & 2.49787000 & 0.00000000\end{array}$
$\mathrm{Au}-0.00001000-3.33049000 \quad 2.35502000$
Au $2.88429000-3.33049000 \quad 2.35502000$
$\mathrm{Au} 5.76857000-3.33049000 \quad 2.35502000$
$\mathrm{Au} 8.65287000-3.33048000 \quad 2.35502000$
$\mathrm{Au}-1.44215000-0.83262000 \quad 2.35502000$
$\mathrm{Au} 1.44214000-0.83262000 \quad 2.35502000$
$\mathrm{Au} 4.32643000-0.83262000 \quad 2.35502000$

	7.21072000	-0.83262000	2.35502000
	-2.88429000	1.66524000	2.
	. 00001000	1.66524000	2.35502000
	2.88429000	1.66525000	2.35502000
	000	1.66525000	2.35502000
	-4.32645000	4.16311000	
	1500	4.16311000	000
	0	0	2.
Au	0	4.16312000	2.3
	-1.44214000	-4	4.
Au	1.44214000	-4.16312000	4.71004000
Au	32643000	-4.16310000	4.71004000
	7.21072000	-4.16310000	
	-2.88429000	-1.66525000	4.71004000
Au	0.00000000	-1	4.71004000
	2.88429000	-1.66524000	4.71004000
Au	5.76857000	-1.66524000	4.71004000
	-4.32644000	0.83262000	4.71004000
Au	00	0.83262000	-
	0	00	0
	543000	0.83263000	. 1100400
	-5.76858000	3.3	4
	-2.88429000	3.33049000	4.71004000
Au	-0.00001000	3.33050000	4.71004000
Au	2.88428000	3.33050000	4.71004000
	0.00000000	-4.99573000	7.06505000
	2.8842900	-4.9957300	0
	5.76858000	,	
	8.65286000	-4.99573000	7.06505000
Au	-1.44214000	-2.49786000	7.06505000
Au	44214000	-2.49786000	7.06505000
	32643000	-2.49786000	7.0
		.	7.06505000
	-2.88429000	0.00000000	7.06505000
	00000000	0.00000000	7.06505000
	28000	. 00000000	. 06505000
	5.76858000	0.00001000	7.06505000
	-4.32644000	2.49786000	7.06505000
	-1.44215000	2.49786000	7.06505000
	1.44214000	2.49786000	7.06505000
	. 32643000	2.49787000	7.06505000
Au	-0.00001000	-3.33049000	9.42006000
	2.88429000	-3.33049000	9.42006000
Au	5.76857000	-3.33049000	9.42006000
Au	8.65287000	-3.33048000	9.42006
	-1.44215000	-0.83262000	9.42006000
A	4214000	-0.83262000	42006000
	32643000	-0.83262000	9.42006000
	7.21072000	-0.83262000	9.42006000
	-2.88429000	1.66524000	9.42006000
Au	-0.00001000	1.66524000	9.42006000
,	2.88429000	1.66525000	9.42006000
Au	5.76857000	1.66525000	9.42006000
Au	-4.32645000	4.16311000	9.42006000
Au	-1.44215000	4.16311000	9.42006000
Au	1.44213000	4.16311000	9.42006000
Au	4.32643000	4.16312000	9.42006000
	4214000	12	11.77507000

$\mathrm{Au} 1.44214000-4.1631200011 .77507000$
$\mathrm{Au} 4.32643000-4.16310000 \quad 11.77507000$
Au 7.21072000-4.16310000 11.77507000
Au -2.88429000 -1.66525000 11.77507000
Au $0.00000000-1.6652500011 .77507000$
Au $2.88429000-1.66524000 \quad 11.77507000$
Au $5.76857000-1.66524000 \quad 11.77507000$
$\mathrm{Au}-4.32644000 \quad 0.83262000 \quad 11.77507000$
$\mathrm{Au}-1.44215000 \quad 0.83262000 \quad 11.77507000$
Au $1.44214000 \quad 0.83263000 \quad 11.77507000$
Au $4.32643000 \quad 0.83263000 \quad 11.77507000$
Au -5.76858000 3.3304800011 .77507000
Au -2.88429000 $3.33049000 \quad 11.77507000$
Au -0.00001000 $3.33050000 \quad 11.77507000$
Au $2.884280003 .33050000 \quad 11.77507000$
Au $0.00000000 \quad 0.00000000 \quad 14.13008000$
Au -1.44215000 $2.49786000 \quad 14.13008000$
Au $1.44214000 \quad 2.49786000 \quad 14.13008000$
S 0.00706955-1.96323379 15.36622849
$\begin{array}{lllll}\mathrm{H} & -2.19287477 & -0.28949822 & 16.16504125\end{array}$
H $\quad 2.94766834-3.38113120 \quad 16.42563428$
H $\quad 1.22420660 \quad 1.10524056 \quad 16.65087401$
O $\quad 1.59234851 \quad 0.2092820416 .65969546$
$\begin{array}{lllll}\mathrm{H} & 2.55320563 & 0.31234323 & 16.72611925\end{array}$
H $\quad-4.17470491 \quad 1.0634810616 .84449429$
C $-2.32308185 \quad 0.0223858417 .19777958$
H $\quad 5.02696806-4.43992546 \quad 17.30527477$
C 3.20888818 -3.29876536 17.47723139
O $\quad-0.75651267-3.5662537317 .51187353$
$\mathrm{Mn} \quad 0.45649857$-1.59762889 17.54743998
C $-3.42937927 \quad 0.77787975 \quad 17.57856760$
H $-1.69933270-3.59942955 \quad 17.73168311$
H $\quad-0.38715453-4.4221225317 .77528352$
C $4.36992602-3.8896827317 .96971793$
$\mathrm{N}-1.36497230-0.3628921218 .06189341$
N 2.35462419 -2.60286419 18.25108682
$\begin{array}{lllll}\text { C } & -3.54329956 & 1.14817467 & 18.91894386\end{array}$
H $\quad-4.389428521 .73583080 \quad 19.26096776$
C $4.65353461-3.7499758319 .32862652$
C $-1.46886624-0.0038514519 .36998875$
C $2.62417502-2.4634071019 .57725730$
N $0.58968147-1.19814472 \quad 19.66539731$
H $\quad 5.54772621 \quad-4.19299010 \quad 19.75568072$
C -2.554576230 .7539230919 .82122076
C $3.77291094-3.03140073$ 20.13802726
C $-0.36813052-0.46433826 \quad 20.26756034$
C $1.63211146-1.6799628720 .37232475$
H $-2.63804185 \quad 1.03745128 \quad 20.86309973$
H $\quad 3.98749779-2.91903165 \quad 21.19354418$
C $-0.30655658-0.1844896821 .63041901$
C $1.74809332-1.43434068 \quad 21.73898073$
H $-1.09192218 \quad 0.38022868 \quad 22.11511141$
H $\quad 2.60113076-1.79882786 \quad 22.29634152$
C $0.76802625-0.6692984422 .40537685$
$\begin{array}{lllll}\text { H } & -0.04172461 & 1.58787212 & 23.70723485\end{array}$
C $0.85622384-0.38431285 \quad 23.84744764$
C $0.36327066 \quad 0.82944072 \quad 24.37081845$
H $\quad 1.75477246-2.28691211 \quad 24.37782572$

```
C 1.41448281 -1.32072802 24.73879049
C 0.42685193 1.09319023 25.73238826
C 1.47270796 -1.05455492 26.10524061
H 0.03979939 2.02050606 26.14098650
C 0.98829150 0.15909189 26.61805381
H 1.85696836 -1.82410226 26.76803296
C 0.95328619 0.51885589 28.08779152
H 2.60295926 -0.62993617 28.38821342
O 0.10533772 1.30926324 28.49289947
N 1.90149055 -0.08248494 28.86686946
H 3.89585872 -1.18267983 30.13509538
C 2.11213840 0.03806834 30.26558543
H 0.39956731 1.27450537 30.70871820
C 3.23424874 -0.62271677 30.79340393
C 1.25990371 0.76146686 31.11393356
C 3.50491732 -0.56430323 32.15826856
C 1.54607238 0.80915307 32.48078086
H 4.37509371 -1.07863248 32.55433430
C 2.65972300 0.15372976 33.01074415
H 0.88488602 1.36940778 33.13492452
S 3.00252486 0.23109514 34.75570876
Au 1.44214000 -4.16312000 36.01499000
Au 4.32643000 -4.16312000 36.01499000
Au 2.88428000 -1.66525000 36.01499000
Au 0.00000000 -4.99574000 38.37000000
Au 2.88429000 -4.99574000 38.37000000
Au 5.76858000 -4.99574000 38.37000000
Au 8.65287000 -4.99574000 38.37000000
Au -1.44215000 -2.49788000 38.37000000
Au 1.44214000 -2.49788000 38.37000000
Au 4.32643000 -2.49788000 38.37000000
Au 7.21072000 -2.49788000 38.37000000
Au -2.88429000 -0.00001000 38.37000000
Au 0.00000000 -0.00001000 38.37000000
Au 2.88429000 -0.00001000 38.37000000
Au 5.76858000 -0.00001000 38.37000000
Au -4.32644000 2.49786000 38.37000000
Au -1.44215000 2.49786000 38.37000000
Au 1.44214000 2.49786000 38.37000000
Au 4.32643000 2.49786000 38.37000000
Au 0.00000000 -3.33050000 40.72501000
Au 2.88429000 -3.33050000 40.72501000
Au 5.76857000 -3.33050000 40.72501000
Au 8.65286000 -3.33050000 40.72501000
Au -1.44214000 -0.83263000 40.72501000
Au 1.44215000 -0.83263000 40.72501000
Au 4.32644000 -0.83263000 40.72501000
Au 7.21071000 -0.83263000 40.72501000
Au -2.88429000 1.66523000 40.72501000
Au 0.00000000 1.66523000 40.72501000
Au 2.88429000 1.66523000 40.72501000
Au 5.76858000 1.66523000 40.72501000
Au -4.32644000 4.16310000 40.72501000
Au -1.44215000 4.16310000 40.72501000
Au 1.44214000 4.16310000 40.72501000
Au 4.32643000 4.16310000 40.72501000
Au -1.44215000 -4.16312000 43.08002000
Au 1.44214000 -4.16312000 43.08002000
```

Au $4.32643000-4.1631200043 .08002000$
Au 7.21072000 -4.16312000 43.08002000
$\mathrm{Au}-2.88428000-1.6652600043 .08002000$
Au -0.00001000 -1.66525000 43.08002000
Au $2.88428000-1.6652500043 .08002000$
Au 5.76857000 -1.66525000 43.08002000
Au -4.32643000 0.8326100043 .08002000
$\mathrm{Au}-1.44214000 \quad 0.8326100043 .08002000$
Au $1.44214000 \quad 0.8326200043 .08002000$
Au $4.32643000 \quad 0.8326200043 .08002000$
Au -5.76858000 3.3304800043 .08002000
Au -2.88429000 3.3304800043 .08002000
Au 0.000000003 .3304800043 .08002000
Au 2.884280003 .3304800043 .08002000
Au $0.00000000-4.9957400045 .43504000$
Au 2.88429000 -4.99574000 45.43504000
Au $5.76858000-4.9957400045 .43504000$
Au $8.65287000-4.9957400045 .43504000$
Au -1.44215000 -2.49788000 45.43504000
Au 1.44214000-2.49788000 45.43504000
$\mathrm{Au} 4.32643000-2.4978800045 .43504000$
Au 7.21072000-2.49788000 45.43504000
Au -2.88429000 -0.00001000 45.43504000
Au $0.00000000-0.0000100045 .43504000$
Au 2.88429000-0.00001000 45.43504000
Au $5.76858000-0.0000100045 .43504000$
Au -4.32644000 2.4978600045 .43504000
$\mathrm{Au}-1.442150002 .4978600045 .43504000$
Au $1.44214000 \quad 2.4978600045 .43504000$
Au $4.32643000 \quad 2.4978600045 .43504000$
$\mathrm{Au} 0.00000000-3.3305000047 .79005000$
Au $2.88429000-3.3305000047 .79005000$
$\mathrm{Au} 5.76857000-3.3305000047 .79005000$
Au $8.65286000-3.3305000047 .79005000$
Au -1.44214000 -0.83263000 47.79005000
Au $1.44215000-0.8326300047 .79005000$
Au $4.32644000-0.8326300047 .79005000$
Au 7.21071000-0.83263000 47.79005000
Au -2.88429000 1.66523000 47.79005000
Au $0.00000000 \quad 1.6652300047 .79005000$
Au $2.88429000 \quad 1.6652300047 .79005000$
Au 5.768580001 .6652300047 .79005000
Au -4.32644000 4.1631000047 .79005000
Au -1.44215000 4.1631000047 .79005000
Au 1.442140004 .1631000047 .79005000
Au 4.326430004 .1631000047 .79005000
$\mathrm{Au}-1.44215000-4.1631200050 .14506000$
Au 1.44214000-4.16312000 50.14506000
Au $4.32643000-4.1631200050 .14506000$
Au 7.21072000-4.16312000 50.14506000
Au -2.88428000 -1.66526000 50.14506000
Au -0.00001000 -1.66525000 50.14506000
Au 2.88428000-1.66525000 50.14506000
$\mathrm{Au} 5.76857000-1.6652500050 .14506000$
Au -4.32643000 0.8326100050 .14506000
Au -1.44214000 0.8326100050 .14506000
$\mathrm{Au} \quad 1.44214000 \quad 0.8326200050 .14506000$
Au $4.32643000 \quad 0.8326200050 .14506000$
$\mathrm{Au}-5.768580003 .3304800050 .14506000$
Au -2.88429000 3.3304800050 .14506000
Au 0.000000003 .3304800050 .14506000
Au 2.884280003 .3304800050 .14506000

Sample input for TranSIESTA calculation: 0V calculation for Au-Mn-terpy-L1-Au

\# Calcualtion Method

```
SolutionMethod transiesta
# SPECIES AND BASIS
NumberOfAtoms 259
NumberOfSpecies 7
LatticeConstant 1.0000 Ang
%block LatticeVectors
    11.53716000 0.000 0.00000
    -5.76858000 9.99147365 0.00000
    0.00000 0.00000 52.05007
%endblock LatticeVectors
#--BASIS SET
PAO.BasisType split
PAO.SplitNorm 0.15
%block PAO.BasisSizes
    Au SZP
    S DZP
    H DZP
    O DZP
    C DZP
    Mn DZP
    N DZP
%endblock PAO.BasisSizes
PAO.EnergyShift 0.01 eV
# K-POINTS
%block kgrid_Monkhorst_Pack
        10}000000.
        0}10<000.
        0
%endblock kgrid_Monkhorst_Pack
BandLinesScale ReciprocalLatticeVectors
# GENERAL VARIABLES
#--Exchange-correlation functionals
XC.functional GGA
XC.authors PBE
MeshCutoff 250.0 Ry
```

\# SCF OPTIONS

		0.00000000	1 Au 14
1072	-0.8326	2.35502000	
-2.88429000	1.6		
-0.00001000	1.6652400		
- 326450			
	4.16		
迷	4.16311000	2.35502000	
	4.16312000		
-1.44214000	-4.163		
1.442140	-4.163		
432643000	-4.1	4.71004000	
	-1.6		
	-1.65		
	-1.65		
4.3264	0.832		
1.44215000	0.83262	4.71004000	
21400	0.8326300	71004000	
643000	0.8326300		
	-4.9		
	-4.9		
	-4.9		
1.44214000	-2.4978		
	- 4978		
2643000	- 497860		
	1978		
	0.0000		
	0.0000000		
858000	0.0000100	7.06505000	
4.32644000			
	2.49786000	7.06505000	
		. 0650	
000100	-3.3304900	9.4200600	
崖	-3.33049		
5.76857000	-3.33049		
	-3.330		

4.32643000	-0.83262000	9.42006000	1 Au 71
21072000	-0.83262000	9.42006000	Au 72
-2.88429000	1.66524000	9.42006000	Au 73
-0.00001000	1.66524000	9.42006000	1 Au 74
88429000	1.66525000	9.42006000	1 Au 75
76857000	1.66525000	9.42006000	Au 76
-4.32645000	4.16311000	9.42006000	Au 77
-1.44215000	4.16311000	9.42006000	78
13000	4.16311000	9.42006000	1 Au 79
2643000	4.16312000	9.420060	Au 80
-1.44214000	-4.16312000	11.77507000	1 Au 81
44214000	-4.16312000	11.77507000	1 Au 82
43000	-4.16310000	11.77507000	1 Au 83
7.21072000	-4.16310000	11.77507000	1 Au 84
-2.88429000	-1.66525000	11.77507000	1 Au 85
00000000	-1.66525000	11.77507000	1 Au 86
88429000	-1.66524000	11.77507000	1 Au 87
000	-1.66524000	11.77507000	88
-4.32644000	0.83262000	11.77507000	1 Au 89
-1.44215000	0.83262000	11.77507000	1 Au 90
214000	0.83263000	11.77507000	1 Au
32643000	0.83263000	11.77507000	1 Au 92
-5.76858000	3.33048000	11.77507000	1 Au 93
-2.88429000	3.33049000	11.77507000	1 Au 94
-0.00001000	3.33050000	11.77507000	1 Au
8428000	3.33050000	11.77507000	1 Au 96
0000000	0.00000000	14.13008000	1 Au 97
-1.44215000	2.49786000	14.13008000	1 Au 98
44214000	2.49786000	14.13008000	1 Au 99
. 00284399	-1.88530461	15.48212233	2 S 100
416995	-3.38431680	16.27177722	3 H 101
-2.40415828	-0.14095483	16.54282704	3 H 102
2900999	0.21584230	16.78704089	4 O 103
9500799	0.28109205	16.81482011	3 H 104
9518082	1.12223862	16.85978664	3 H 105
74075818	-4.55701004	16.94355415	3 H 106
97885795	-3.37351213	17.30558258	5 C 107
-4.29248000	1.22187034	17.43546506	3 H 108
-2.45469884	0.11203463	17.59848394	5 C 109
-0.97045798	-3.54049940	17.59875926	4 O 110
29283574	-1.60012343	17.66769299	6 Mn 111
14876409	-4.02751189	17.68182636	5 C 112
-0.59803136	-4.41022607	17.80609396	3 H 113
-1.89252442	-3.56406504	17.89442521	3 H 114
-3.50827779	0.87264652	18.09801371	5 C 115
20251586	-2.69953785	18.17530710	7 N 116
-1.45276306	-0.35047313	18.37046803	7 N 117
52704715	-3.97724285	19.02433000	5 C 118
5.43211728	-4.47183623	19.36266147	3 H 119
-3.51878312	1.16518430	19.46263974	5 C 120
. 56365717	-2.64721102	19.48580598	5 C 121
-1.45523027	-0.06840933	19.70131164	5 C 122
0.58029299	-1.33386458	19.77826363	7 N 123
-4.32074823	1.75449659	19.89599200	3 H 124
3.72799916	-3.28233081	19.93217583	5 C 125
-2.48414900	0.69129238	20.26920417	5 C 126
. 65163415	-1.88432183	20.38928407	5 C 127
-0.31074204	-0.61180136	20.49172506	5 C 128

			3 H 129
			30
	-1.72349800		C
	-0.		5 C 132
2.74714210	-2	22.22126263	3 H 133
-0.89126452	0.13638531		3 H 134
0.95863598	-0.		5 C 135
1.15409998	-0		5 C
208420813	1089967	24.	3 H
9015875	-2		,
717136	0.34677008		5 C 139
. 88573300	-1	24	5 C 140
. 78938444	0.5	25	C
2.05448033	-1.5	26	5 C
761	1.42983200	26.48118650	3 H 143
9979893	-2.26114595	2.68923	,
1351724	-0	26	5 C 145
. 73557973	-0.2		N
27369613	-0.9	28	H
0.44125671	1.57324385	28.	4 O
3864	0.72222822	29.0042173	5 C 149
57607369	-0.4	30.	3 H 150
2099125	0.6	30	5 C 151
91760671	-0.0118616	30.779	5 C 152
255357	1.7541003		3 H
73442			5 C
45	-0.04394983	32.1173162	C
4521745	-0.5280090	32	H
0444	. 20569637	32.	5 C 157
	0.5581665	33.09717326	5 C
		33.49506	3 H 159
	0.51110683	34.8031	2 S 160
14000	-4.16312000	35.56499000	
643000	-4.16312000	35.5649900	
428000	-1.66525000	35.5	
0000000	-4.9	37.9200000	
2.88429000	-4.99574000	37.92000000	
000	-4.99574000	37.92000000	
287000	-4.99574000	37.92000000	
215000	-2.49788000	00000	
214000	-2.49788000	37.9200000	
263000	-2.49788000	37.92000000	
000	-2.49788000	37.92000000	
29000	-0.00001000	37.92000000	
00000	-0.00001000	37.92000000	
429000	-0.00001000	37.92000000	
58000	-0.00001000	37.92000000	
-3264400	2.49786000	37.92000000	
215000	2.49786000	37.92000000	Au 17
214000	2.49786000	37.92000000	
643000	2.49786000	37.92000000	1 Au 179
000000	-3.33050000	40.27501000	
29000	-3.33050000	40.27501000	Au
8857000	-3.33050000	40.27501000	Au 182
55286000	-3.33050000	40.27501000	Au 183
-1.44214000	-0.83263000	40.27501000	Au 184
44215000	-0.83263000	40.27501000	Au 185
32644000	-0.83263000	40.2750100	1 Au 186

	66523000	40.27501000	
4.32644000	16310000	40.27501000	
	4.16310000		
	4.1631000		1 Au 194
	4.16310000	40	
	-4	42.63002000	
1.44214000	-4	002000	
2643000	-4		
72000	-4.1631200		
288428000	-1.	42.63002000	
00	-1.	42.63002000	
28000	-1	42.63002000	
4.32643000	0.83261000		
	0.8326100	42.63002000	
	0.83262000		
	00	42.63002000	
858000	3.33048000	2.63002000	
29000	3.33048000	42.63002000	
	000	42.6300200	
	3.3		
0.00000000			
	-4	504000	
	-4	504000	
	-4	44.98504000	
1.44215000	-2.4		
		44.98504000	
	-2.49788000	44.98504000	
	0001	44.98504000	
00000	-0.0000100	44.98504000	
	-0.000	44.98504000	
		504	
	2.49786000	0	
00	2.49786000	44.98504000	
00	2.4978	44.9850400	
	-3.330	. 3400500	
	-3	00	
	-3.3305000	000	
00	-3	400500	
214000	-0.83263	7.34005000	
000	-0.832		
	-0.		
00	-0.83263	4005000	
29000	1.66523000	400500	
00	523000	34005000	
29000	6523	4005000	
	.66523000	47.34005000	Au
32644000	. 16310000	7.34005000	
-1.44215000	4.16310000	7.34005000	
14000	. 16310000	47.34005000	
643000	4.16310000	7.34005000	1 Au 243
. 44215000			

```
    1.44214000 -4.16312000 49.69506000 1 Au 245
    4.32643000 -4.16312000 49.69506000 1 Au 246
    7.21072000 -4.16312000 49.69506000 1 Au 247
    -2.88428000 -1.66526000 49.69506000 1 Au 248
    -0.00001000 -1.66525000 49.69506000 1 Au 249
    2.88428000 -1.66525000 49.69506000 1 Au 250
    5.76857000 -1.66525000 49.69506000 1 Au 251
-4.32643000 0.83261000 49.69506000 1 Au 252
-1.44214000 0.83261000 49.69506000 1 Au 253
1.44214000 0.83262000 49.69506000 1 Au 254
4.32643000 0.83262000 49.69506000 1 Au 255
-5.76858000 3.33048000 49.69506000 1 Au 256
-2.88429000 3.33048000 49.69506000 1 Au 257
0.00000000 3.33048000 49.69506000 1 Au 258
2.88428000 3.33048000 49.69506000 1 Au 259
%endblock AtomicCoordinatesAndAtomicSpecies
```

