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ABSTRACT: An accurate and efficient algorithm for dynamics simulations of particles with attractive 1/r singular potentials is
introduced. The method is applied to semiclassical dynamics simulations of electron�proton scattering processes in the Wigner-
transform time-dependent picture, showing excellent agreement with full quantum dynamics calculations. Rather than avoiding the
singularity problem by using a pseudopotential, the algorithm predicts the outcome of close-encounter two-body collisions for the
true 1/r potential by solving the Kepler problem analytically and corrects the trajectory for multiscattering with other particles in the
system by using standard numerical techniques (e.g., velocity Verlet, or Gear Predictor corrector algorithms). The resulting
integration is time-reversal symmetric and can be applied to the general multibody dynamics problem featuring close encounters as
occur in electron�ion scattering events, in particle�antiparticle dynamics, as well as in classical simulations of charged interstellar
gas dynamics and gravitational celestial mechanics.

1. INTRODUCTION

Understanding the dynamics of particles mutually attracted by
1/r singular potentials is a problem common to a wide range of
systems in chemistry, biology, physics, and astronomy, including
classical and semiclassical studies of electron transfer,1 excess
electrons in liquids,2,3 ionic states,4 electron scattering and
trapping in ionic liquids or solids,5�7 attractive plasmas with
nuclei and electrons,8,9 particle�antiparticle dynamics,10 dyna-
mics of charged interstellar gas particles,11 and celestial
mechanics.12,13 However, serious numerical problems typically
arise in classical and semiclassical simulations when particles
gravitate into each other and the potential gradients (or accel-
erations) diverge. To avoid this type of Coulomb (or grav-
itational) catastrophe problem, simulation studies often rely on
pseudopotentials where the essential singularities of the poten-
tials are artificially removed. Such approximations lead to inte-
grationmethods that are both practical and useful for simulations
of scattering events with large impact parameters, as typically
observed in low-energy collisions of particles with repulsive
cores. However, close-encounter collisions are beyond the
capabilities of pseudopotential methods, and more rigorous
methodologies have to be employed. This paper introduces
a predictor�corrector algorithm for dynamics simulations of
particles evolving on attractive 1/r singular potentials. The
method is rigorous and efficient, even when modeling close-
encounter collisions. Its application to semiclassical dynamics
simulations of electron�proton scattering in the Wigner-
transform time-dependent picture shows excellent agreement
with full quantum dynamics calculations.

The Coulomb catastrophe problem could be avoided by using
a quantum treatment of the attractive interaction, setting a lower
limit for the bound state in the potential. However, quantum
dynamics methods are computationally demanding and scale
poorly (i.e., exponentially) with the number of strongly coupled

particles in the system. For example, quantum dynamics simula-
tions of dense proton plasmas with electrons are usually compu-
tationally impractical. Accurate simulations of such systems thus
require a rigorous solution to the Coulomb catastrophe problem
within the framework of linear scaling particle simulation tech-
niques, analogous to standard molecular dynamics simulations.
When implemented with adaptive time-step integrators, such
methods are capable of accurately simulating point particles
interacting through singular attractive pair potentials, bypass-
ing energy conservation problems associated with divergent
accelerations.

Adaptive time-step integrators are the most common techni-
ques applied to ensure energy conservation for systems with
rapidly changing potential gradients (or accelerations). However,
such methods are hopeless for simulations of close encounters
since the integration time-steps converge to zero as the accel-
erations diverge and bring the simulation to a halt. [Specifically,
the time step becomes so small that additive terms that include
the time step as a factor become smaller than the least signifi-
cant digit of the coordinate, so coordinates no longer evolve.]
This happens even if individual time-steps are used for each
particle.12,14 Conversely, imposing a minimal time-step yields
trajectories that eventually violate energy conservation, prompt-
ing the common practice of using pseudopotentials to artificially
remove the singularities and ensure energy conservation.

Smoothed (pseudo)potentials with a finite value at the origin
have been postulated for electron dynamics5,8 as well as for ion
dynamics15 and astrophysical simulations.12,16 The Coulomb
potential is also commonly switched-off at small interparticle
distances through the use of switching functions (e.g., the error
function).7,9 These cases are typically distinguished from the
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construction of pseudopotentials based on physical insights, such
as the screening effect of electrons in the conduction band of
metals.6 In ionic solids (e.g., alkali halides, oxide insulators, or
semiconductors), however, there are no electrons in the con-
duction band that could offer screening of Coulombic interac-
tions. Therefore, alternative methods are required.

Changes in the potential usually alter the underlying dynamics
of the systems yielding artificial effects that disappear only when
the pseudopotentials become more and more similar to the true
potentials. In that limit, however, the numerical problems due to
large gradients usually reappear. An approach that avoids chan-
ging the singular potential has been developed for gravitational
systems, implementing a change of variables that regularizes the
dynamics (e.g., the Kustaanheimo�Stiefel (KS) regularization
and related methods12,17�21) and applies standard numerical
integration for the new variables rather than for the original
coordinates. This requires transformation of the time variable
and coordinates that depend on the interparticle distance for the
pair of particles experiencing a close encounter. Great care must
be taken to keep track of transformations for multiple close
encounters and to match up time-steps so that the interaction
with other particles present in the simulation is properly
accounted for, while not sacrificing efficiency.20,21 As a conse-
quence of these complications, the method is, to our knowledge,
implemented in only a few stellar codes.22

In this paper, we introduce a simple Kepler predictor corrector
(KPC) algorithmwhere close-encounter collisions are integrated
analytically by solving the Kepler two-body problem without
altering (or smoothing) the Coulomb potential and updating
coordinates based on the residual potential due to particles not
participating in the close encounter. A simple well-known ex-
ample for such an approach is the lightly damped harmonic
oscillator, where the frequency of the resulting oscillation is
approximately the same as that of the underlying undamped
oscillator and only the amplitude may be viewed as modulated.23

In molecular dynamics, the analytic solution of the har-
monic oscillator has been employed by splitting linear molecule
Hamiltonians into a harmonic and anharmonic part and treating
high frequency components of the molecular vibrations analyti-
cally, while treating low frequency components numerically.24�29

In biological systems, a large speedupwas achieved by treating water
molecules as rigid and using analytic solutions for their motion.30

For the 1/r problem, an update scheme based on a singlemom-
entum shift has been proposed previously for the purpose of
simulating ion collisions.31We propose amethod that corrects the
predicted scattering trajectories with an additional term rigor-
ously derived from numerical integrators (e.g., velocity Verlet or
Gear Predictor Corrector algorithms), accounting for the regular
influence of other particles (or external fields) in the system. The
integration method as a whole is time-reversal symmetric, does
not require any time-variable transformation, and can be applied
to the general multibody dynamics problem with close en-
counters, as in electron�proton scattering processes, particle�
antiparticle dynamics, and charged gas dynamics. Algorithmi-
cally, the complete potential is separated into two parts, including
an integrable two-body term that is dominant at close encounters
and a correction due to interactions with all other particles
(or potentials) in the system. With an integrable two-body
problem (as is the case of Coulombic 1/r or van der Waals
1/r6 potentials),32 the analytic solution of close encounters is
employed, and the effect due to interactions with all other
particles is introduced by augmenting the analytic solution with

additional terms that stem from the numerical integrator (e.g.,
the velocity Verlet method33,34). The resulting KPC method
allows for integration time-steps on the same order as used for
regular potentials and hence reduces the numerical effort for
problems with close encounters. It is applicable for any integrable
singular pair potential,32 including the family of integrable
spherically symmetric singular pair potentials that are the focus
of this paper.

The paper is organized as follows. Section 2 introduces the
KPC method as applied to modeling the dynamics of a particle
evolving on a potential with multiple singularities and its general-
ization to multibody dynamics. Section 3 describes its imple-
mentation for semiclassical simulations of electron�proton
scattering in the Wigner-transform time-dependent picture.
Section 4 presents concluding remarks in perspective of the KPC
limitations and applicability as a general method.

2. KEPLER PREDICTOR CORRECTOR ALGORITHM

2.1. Single Particle Colliding with Multiple Singularities.
Consider the general case of a single particle moving in a
stationary potential with multiple singularities, as shown in
Figure 1. The total potential V acting on the particle is composed
of the spherically symmetric potential Vs with the singularity
nearest to the particle, and the residual potential Vr:

VðxÞ ¼ V sðrÞ þ V rðxÞ ð1Þ
As an example, we consider the semiclassical trajectory of a fast

electron undergoing multiple scattering through proton plasma,
under the Born�Oppenheimer approximation, where V(x) is
defined as the Coulomb potential due to the closest proton Vs(x)
plus the sum of Coulomb potentials Vr(x) due to the other
protons in the plasma.
During a close encounter with the singularity Vs(r), the

electron scattering force is dominated by this closest proton, and
accurate numerical integration faces several difficulties, including
the following:
1. the large absolute value of potential energy,
2. the very large norm of the potential gradient and higher

derivatives, and hence,
3. the very large acceleration of particles and curvature of

trajectories,
4. the requirement of very small time-steps of standard inte-

grators (such as theVerletmethods and theNordsieck�Gear
Predictor�Corrector methods33,34).

Figure 1. KPC trajectory (red line) of a particle scattered by a
singularity Vs(r), obtained by solving the Kepler problem (dashed line),
taking into account the effect of a weakly varying residual potential Vr(r)
(bold green lines) as described in the text.
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The KPC algorithm addresses these challenges by first
predicting the coordinates and momenta due to the collision
with the closest singularity Vs(r) and then correcting the result-
ing coordinates and momenta according the residual term,
as follows.
Formally, x(t) and p(t) are obtained according to the velocity

Verlet method:33�35

xðt þ ΔtÞ ¼ xðtÞ þ Δt
m

pðtÞ �Δt2

2m
∇V jxðtÞ ð2Þ

pðt þ ΔtÞ ¼ pðtÞ �Δt
2
ð∇V jxðtÞ þ ∇V jxðtþΔtÞÞ ð3Þ

where m = me is the mass of the particle, and the time increment
Δt is assumed to be sufficiently short to ensure energy conserva-
tion. However, to address the numerical challenge of the close
encounter, we decompose the total force 3V into the contribu-
tion due to the nearest singularity3Vs and the contributions due
to smaller residual forces 3Vr and write suggestively:

xðt þ ΔtÞ ¼ xðtÞ þ Δt
m
pðtÞ �Δt2

2m
ð∇V sjxðtÞ þ ∇V rjxðtÞÞ

ð4Þ

pðt þ ΔtÞ ¼ pðtÞ �Δt
2
ð∇V rjxðtÞ þ ∇V sjxðtÞ

þ ∇V sjxðtþΔtÞ þ ∇V rjxðtþΔtÞÞ ð5Þ
and introducing auxiliary coordinates

xrðtÞ ¼ xðtÞ ð6Þ

prðtÞ ¼ pðtÞ �Δt
2
∇V rjxðtÞ ð7Þ

xsðt þ ΔtÞ ¼ xrðtÞ þ Δt
m
prðtÞ �Δt2

2m
∇V sjxrðtÞ ð8Þ

¼ xðtÞ þ Δt
m
pðtÞ �Δt2

2m
ð∇V sjxðtÞ þ ∇V rjxðtÞÞ ð9Þ

psðt þ ΔtÞ ¼ prðtÞ �Δt
2
ð∇V sjxrðtÞ þ ∇V sjxsðtþΔtÞÞ ð10Þ

We obtain by comparison with eqs 4 and 5:

xðt þ ΔtÞ ¼ xsðt þ ΔtÞ ð11Þ

pðt þ ΔtÞ ¼ psðt þ ΔtÞ �Δt
2
∇V rjxðtþΔtÞ ð12Þ

The auxiliary variables were constructed such that eqs 8 and 10
become velocity Verlet equations for only the singular potential
Vs(r), so they provide a practical way of predicting coordinates
and momenta at time t + Δt, as solely determined by the two-
body collision with the closest proton. During a close encounter,
however, such equations become numerically stiff, and they are
replaced by analytic solutions of the corresponding two-body
Kepler initial value problem with initial coordinates (xr(t),pr(t))

[three-body collisions are usually prevented by Coulombic
repulsion under cool plasma conditions] as described in section
2.3. [The two-body problem is integrable for a variety of
spherically symmetric interaction potentials, including the Cou-
lomb r�1 potential and van der Waals r�6 type potentials. 32 In
particular, the two-body problem for the 1/r potential is known
as the “Kepler problem,” since the elliptical trajectories obey
Kepler’s laws of planetary motion.] Having obtained xs(t + Δt)
and ps(t + Δt), we obtain x(t + Δt) and p(t + Δt) by correcting
the predicted coordinates and momenta according to eq 12. It
turns out that xr(t) and xs(t +Δt) are not, as indicated in Figure 1,
distinct from x(t) and x(t + Δt), but their corresponding
momenta are.
The resulting KPC algorithm thus allows for the integration of

close-encounter collisions beyond the capabilities of the standard
velocity Verlet algorithm (i.e., eqs 4 and 5), as follows:
A. Determine pr(t) by a momentum shift according to eq 6.
B. Obtain (xs(t + Δt), ps(t + Δt)) by solving the two-body

Kepler problem. The analytic solution SK is a set that
contains position, momentum, and, in principle, all higher
derivatives of the position at the final time t + Δt:

ðxsðt þ ΔtÞ, psðt þ ΔtÞÞ ⊂ SKðxrðtÞ, prðtÞÞ ð13Þ

C. From ps(t + Δt), determine p(t + Δt) according to eq 12.
Maximum efficiency is achieved when the analytic task is

restricted to small regions surrounding the singularity closest to
the scattering particle, since the solution of the Kepler problem is
more involved than a velocity Verlet integration step. This is
typically ensured by defining a cutoff distance rmin from the
singularity center, belowwhich the KPCmethod is implemented.
In the case under consideration, the potential is stationary, and
the cutoff distance can be set to a constant value much smaller
than half the minimal distance between singularities, rmin , 1/2
min{rij}. It should be small enough that the residual potential
Vr is always much more slowly varying than the close-encounter
potential Vs, guaranteeing that the singular potential dominates
the dynamics and the influence of the residual potential leads
only to small corrections. Tomake themethod fully time-reversal
symmetric, the cutoff criterion has to be made time-reversal
symmetric as well, in the following way. The KPCmethod is used
when the initial coordinate is inside the cutoff radius from a
scattering center. If the coordinate after the time step is outside
the cutoff radius, the result is discarded, and a velocity Verlet step
is made instead.
In contrast to ref 31 where a single momentum shift was

applied, our symmetrized approach uses two momentum shifts
per time step. However, the potential gradient needs only be
evaluated once per time step.
2.2. Multibody Molecular Dynamics. The generalization of

the KPC algorithm, introduced in section 2.1, to multibody molec-
ular dynamics is straightforward. Let (x(t), ξ(t)) and (p(t), π(t))
be the position and momentum vectors of the system at time t.
Without a loss of generality, let (x(t), p(t)) be the six-dimensional
phase-space vector describing the relative motion of two particles
undergoing a close encounter and m be their reduced mass, while
their center-of-mass coordinate, along with the coordinates of all
other particles (some of which may also be in a close encounter), is
contained in the phase-space vector (ξ(t), π(t)).
While the interparticle potential V(x(t), ξ(t)) includes all of

the interactions, only the dynamics of the relative coordinate
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(x(t), p(t)) are discussed in the following. Accordingly, the
gradient will denote the vector of partial derivatives with respect
to the relative coordinate x only:

∇3V ¼ ∂V
∂x1

, :::,
∂V
∂x3

� �
ð14Þ

The dependence of the phase-space relative coordinates
(x(Δt), p(Δt)) on initial conditions (x(0), p(0)) is then
approximated by

xðt þ ΔtÞ ¼ xðtÞ þ Δt
m

pðtÞ �Δt2

2m
∇3V jðxðtÞ, ξðtÞÞ ð15Þ

pðt þ ΔtÞ ¼ pðtÞ �Δt
2
ð∇3V jðxðtÞ, ξðtÞÞ

þ ∇3V jðxðtþΔtÞ, ξðtþΔtÞÞÞ ð16Þ
To deal with the close encounter, the potential V is again

written as a sum of the close encounter potential Vs(r), r = ||x||,
and the residual potential Vr(x, ξ):

Vðx, ξÞ ¼ V sðrÞ þ V rðx, ξÞ ð17Þ
and eqs 15 and 16 become

xðt þ ΔtÞ ¼ xðtÞ

þ Δt
m
pðtÞ �Δt2

2m
ð∇3V

sjxðtÞ

þ ∇3V
rjðxðtÞ, ξðtÞÞÞ ð18Þ

pðt þ ΔtÞ ¼ pðtÞ �Δt
2
ð∇3V

rjðxðtÞ, ξðtÞÞ

þ ∇3V
sjxðtÞ þ ∇3V

sjxðtþΔtÞ

þ ∇3V
rjðxðtþΔtÞ, ξðtþΔtÞÞÞ ð19Þ

Following section 2.1, we define appropriate auxiliary coordi-
nates and momenta:

xrðt þ ΔtÞ ¼ xðtÞ ð20Þ

prðt þ ΔtÞ ¼ pðtÞ �Δt
2
∇3V

rjðxðtÞ, ξðtÞÞ ð21Þ

xsðt þ ΔtÞ ¼ xrðtÞ þ Δt
m
prðtÞ �Δt2

2m
∇3V

sjxrðtÞ ð22Þ

psðt þ ΔtÞ ¼ prðtÞ �Δt
2
ð∇3V

sjxrðtÞ þ ∇3V
sjxsðtþΔtÞÞ

ð23Þ
and we obtain

xðt þ ΔtÞ ¼ xsðt þ ΔtÞ ð24Þ

pðt þ ΔtÞ ¼ psðt þ ΔtÞ �Δt
2
∇3V

rjðxðtþΔtÞ, ξðtþΔtÞÞ ð25Þ
During a close encounter, eqs 22 and 23 are replaced by the

analytic solution of the Kepler problem, as described in section
2.3, and the resulting values are then augmented according to

eqs 24 and 25. The resulting algorithm for multibody molecular
dynamics is summarized, as follows:
1. Determine pr(t) by momentum shift according to eq 21.
2. Compute (xs(t + Δt), ps(t + Δt)) by solving the Kepler

problem SK:

ðxsðt þ ΔtÞ, psðt þ ΔtÞÞ ⊂ SKðxðtÞ, pðtÞÞ ð26Þ

3. Obtain coordinates x(t + Δt) and ξ(t + Δt), as follows:
a. From xs(t +Δt), determine x(t +Δt) according to eq 24.
b. Obtain ξ(t + Δt) by using velocity Verlet, or otherwise

solving steps 2 and 3a for relative coordinates describing
two-body close encounters.

4. Obtain momenta p(t + Δt) and p(t + Δt), as follows:
a. From ps(t +Δt), determine p(t +Δt) according to eq 25.
b. Determine π (t + Δt), analogously to step 3b.

2.3. Kepler Problem.When a close encounter is detected, we
consider the particle attracted by the nearest singularity:

V sðrÞ ¼ � γ

r
ð27Þ

where

rðtÞ ¼ xsðtÞ � X ð28Þ
with X being the position of the singularity. We solve the
equation of motion:

€r þ μ
r
r3

¼ 0 ð29Þ

with force parameter μ = γ/m resulting from the gravitational or
Coulomb coefficient γ and the massm, and initial conditions r0 =
x(t)� X and v0= _x(t). The solutions exploit the conservation of
specific angular momentum L = r � v, specific energy hs(t) =
v2/2 � μ/r, and eccentricity vector e = v � (r � v)/μ � r/r.
Equation 29 is regularized by introducing the fictitious time

τ with

d
dτ

¼ r
d
dt

ð30Þ

leading to the regularized equation of motion

r00 � 2hsr ¼ � μe ð31Þ
where the derivatives in eq 31 are in respect to τ, and the initial
conditions are modified according to eq 30 to r(τ = 0) = r0 and
r0(τ = 0) = rv0. This is a harmonic oscillator problem that is
readily solved by exponential functions, typically leading to real
solutions that are trigonometric or hyperbolic functions.
The motion is characterized according to four classes of

possible solutions, including circular, parabolic, elliptic, and
hyperbolic, as shown in the following subsections.36 [In
contrast, ref 36 considers 13 classes of solutions, including
the circular case and 12 other cases generated from the
elliptic, hyperbolic, and parabolic classes as subdivided ac-
cording to the values of the rotational momentum and
fictitious time τ, described below.] The circular and parabolic
cases have simple, explicit solutions, while the elliptic and
hyperbolic cases lead to Kepler equations that need to be
solved iteratively.37,38

2.3.1. Circular Motion.When r0 3 v0 = 0, the eccentricity e = 0
and eq 31 becomes homogeneous. In this case, r0 3 v0 = 0 and
v0 = (μ/r0)

1/2; i.e., the coordinate change is orthogonal to the
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radius vector, so that particle motion is circular and

rðt þ ΔtÞ ¼ crr0 þ cv
v0
n

ð32Þ

vðt þ ΔtÞ ¼ � ncvr0 þ crv0 ð33Þ
where cv = sin(n(t + Δt)) and cr = cos(n(t + Δt)), with n = j3/μ
and j = (2|Es(t + Δt)|/m)1/2.
2.3.2. Parabolic Motion.When e = 1, the specific energy hs = 0,

and eq 31 has no linear term, giving the parabolic solution

rðt þ ΔtÞ ¼ 1
2
ðp� μ½τðt þ ΔtÞ�2Þe þ τðt þ ΔtÞB

ð34Þ

rðt þ ΔtÞ ¼ 1
2
ðp þ μ½τðt þ ΔtÞ�2Þ ð35Þ

vðt þ ΔtÞ ¼ 1
rðt þ ΔtÞð � μ½τðt þ ΔtÞ�e þ BÞ ð36Þ

where B = L � e. The fictitious time τ(t), introduced above, is
obtained by solving the Kepler equation:

t � tP ¼ 1
2

pτðtÞ þ μ

3
½τðtÞ�3

� �
ð37Þ

where tP is the pericenter time:

tP ¼ � τ0 p þ μ

3
τ20

� �
ð38Þ

p is the semilatus rectum:

p ¼ L2

μ
ð39Þ

and τ0 is the fictitious time at time t:

τ0 ¼ r0 3 v0
μ

ð40Þ

Equation 37 can be solved explicitly to obtain the fictitious
time, as follows:

τðtÞ ¼ 1ffiffiffi
μ3

p ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tD þ ffiffiffiffi

D
p3

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tD � ffiffiffiffi

D
p3

q
Þ ð41Þ

where negative values are assumed for negative arguments of the
cube root, tD = 3(t � tP) and D = tD

2 + p3/μ.
2.3.3. Elliptic and Hyperbolic Motion. When e 6¼ 0 and 1, the

motion is either elliptic (e < 1, hs < 0) or hyperbolic (e > 1, hs > 0).
In either case, we obtain the eccentric anomaly:

εðt þ ΔtÞ ¼ jτðt þ ΔtÞ ð42Þ
as the solution of the (elliptic or hyperbolic) Kepler equation at
time t +Δt, as described below. The resulting eccentricity defines
the values of cv and cr (see below) and, therefore, the coordinates
and velocities, as follows:

rðt þ ΔtÞ ¼ 1
k

cr
e
� 1

� �
e þ cv

ej
B ð43Þ

rðt þ ΔtÞ ¼ 1� ecr
k

ð44Þ

vðt þ ΔtÞ ¼ 1
erðt þ ΔtÞ � μcv

j
e þ crB

 !
ð45Þ

where k =� 2hs/μ and j = (2|hs|)1/2.
When hs(t) < 0, the eccentricity ε is the solution of the

elliptic Kepler equation:

nðt þ Δt � tPÞ ¼ εðt þ ΔtÞ � e sin½εðt þ ΔtÞ� ð46Þ
n = j3/μ, which can be solved iteratively, as described in section
2.3.4. The resulting ε(t + Δt) gives the trigonometric functions:

cv ¼ sin½εðt þ ΔtÞ� ð47Þ

cr ¼ cos½εðt þ ΔtÞ� ð48Þ
which determine the coordinates and velocities, according to
eqs 43 and 45.
The pericenter time tP, introduced by eq 46, is obtained from

the eccentricity at the initial time ε0, as follows:

tP ¼ � ε0 � e sin ε0
n

ð49Þ

where ε0 = atan2(y,x), with

y ¼ sin ε0 ¼ n
kμe

r0 3 v0 ð50Þ

x ¼ cos ε0 ¼ 1
e

1� nr0
j

 !
ð51Þ

Analogously, when hs(t) > 0, the eccentricity ε(t + Δt) is the
solution of the hyperbolic Kepler equation:

nðt þ Δt � tPÞ ¼ � εðt þ ΔtÞ þ e sinh εðt þ ΔtÞ
ð52Þ

which is solved iteratively, as described in section 2.3.4, using the
pericenter time:

tP ¼ 1
n

sinh�1 � 1
e 3
nr0 3 v0
μk

� �
þ nr0 3 v0

μk

� �
ð52aÞ

The resulting eccentricity ε(t +Δt) gives the hyperbolic functions

cv ¼ sinh εðt þ ΔtÞ ð53Þ

cr ¼ cosh εðt þ ΔtÞ ð54Þ
that determine the coordinates and velocities, according to eqs
43 and 45.
2.3.4. Iterative Solution of Elliptic and Hyperbolic Equations.

The elliptic and hyperbolic Kepler equations, introduced by
eqs 46 and 52, have the general form

nðt þ Δt � tPÞ ¼ M ¼ ( ε - e sinðhÞ ε ð55Þ
When n(t + Δt � tP) < 0, M is replaced by its absolute value, as
follows:

jMj ¼ ( εa - e sinðhÞ εa ð56Þ
Therefore, the solution of eq 55 is

εðt þ ΔtÞ ¼ ε ¼ sgnðMÞεa ð57Þ
Equation 56 is solved iteratively,38 starting from an initial guess

εa
(0) applicable over the whole range of possible parameters
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M and e, where each Halley’s iteration is followed by a Newton�
Raphson optimization. The iterative scheme typically converges
to machine accuracy in about three iterations.37 The initial guess
εa
(0) is obtained, as follows:
Elliptic Kepler Equation. For elliptic motion (0eMe π and

0 e e e 1) and small M, we expand the sin function in eq 56 to
third order, and the resulting approximation of M is substituted
in eq 55, giving a cubic approximation of the elliptic Kepler
equation:

0 ¼ ε300 þ 3qε00 � 2r ð58Þ
where q = 2(1 � e)/e and r = 3M/e. Solving eq 58, we obtain

ε00 ¼ 2r

c2v þ q þ ðq=wÞ2 ð59Þ

where cv = ((r
2 + q3)1/2 + r)1/3. On the other hand, for largeM, a

good initial guess is

ε01 ¼ M

Therefore, we define an initial guess that is valid for intermediate
values of M, as an M-weighted average of the small M guess ε00
and the large M guess ε01:

εð0Þa ¼ 1
π
ðM � ε01 þ ðπ�MÞ � ε00Þ ð60Þ

¼ 1
π
ðM2 þ ðπ�MÞ � ε00Þ ð61Þ

Hyperbolic Kepler Equation. For hyperbolic motion (M > 0
and 1e e) with smallM, the sinh function in eq 56 is expanded to
third order, and the resulting approximation of M is introduced
into eq 55 to give the cubic approximation to the hyperbolic
Kepler equation:

0 ¼ ε300 þ 3qε00 � 2r ð62Þ
where q= 2(e� 1)/e and r= 3M/e, with the same formal solution
introduced by eq 59, although there are different values of q and r.
Bounded coefficients are obtained through an iterative proce-

dure based on the hyperbolic equation divided by e, as follows:

0 ¼ �M� ε þ e sinh½ε� ð63Þ

0 ¼ � L� gε þ sinh½ε� ð64Þ
with L = M/e and g = 1/e. For large L, a good initial guess is

ε01 ¼ sinh�1 L ð65Þ
which is again mixed with ε00, as follows:

εð0Þa ¼ M � ε01 þ 1� ε00
M þ 1

ð66Þ

¼ M � sinh�1 L þ ε00
M þ 1

ð67Þ

3. ELECTRON SCATTERING

3.1. Time-Dependent Wigner Transform. This section
illustrates the capabilities of the KPC algorithm, introduced in
section 2, as applied to semiclassical dynamics simulations of
electron�proton scattering processes in the Wigner-transform

time-dependent picture. Simulations consider the problem of
electron scattering from stationary protons, as described within
the Born�Oppenheimer approximation (i.e., with m = me and
the Coulombic parameter γ = 1 au, so that μ = γ/m = 1 au).
The initial state for the scattering electron is defined by the

three-dimensional Gaussian:

ψ0ðxÞ ¼ ð2πσ2Þ�3=4exp � ðx � x0Þ2
4σ2

þ i
p
p0ðx� x0Þ

 !
ð68Þ

with average position x0 and momentum p0. The corresponding
Wigner transform:39

P0ðx, pÞ ¼ 1

ð2πpÞ3
Z ∞

�∞
ψ�

0 x þ s
2

� �
ψ0 x � s

2

� �
eip 3 s ds ð69Þ

¼ 1

ð2πpσxσpÞ3
exp � ðx � x0Þ2

2σ2
x

� ðp� p0Þ2
2σ2

p

" #
ð70Þ

defines the initial phase-space distribution function, where σx = σ
and σp is defined by the uncertainty relation σxσp = p/2.
The full quantum-mechanical Wigner distribution Pt

QM(x,p) is
computed as

PQM
t ðx, pÞ ¼ 1

ð2πpÞ3
Z ∞

�∞
ei=pp 3 s ψ�t x þ s

2

� �
ψt x� s

2

� �
ds ð71Þ

where ψt is the solution of the time-dependent Schr€odinger
equation

ip
∂

∂t
ψtðxÞ ¼ p̂2

2me
þ VðxÞ

 !
ψtðxÞ ð72Þ

with

VðxÞ ¼ � ∑
j

qj
jx� R jj ð73Þ

where the sum is over all protons j, with charge qj = +e, and
coordinates Rj. ψt(x) is represented on a three-dimensional grid
and propagated according to the standard Split Operator Fourier
Transform (SOFT) method.40,41 The grid is defined as follows:
xαk = xα0 + kΔx, k = 1, 2, ..., 128, where α = 1�3 enumerates the
Cartesian directions, x10 =�4 Å, and x20 = x30 =�5 Å. The grid
spacingsΔx = 10/128 Å andΔt = 10�4 fs define a sufficiently fine
space�time grid that ensures an accurate representation of the
oscillatory structure of ψt(x), even during high-energy collisions
(e.g., collisions with tens of electronvolts). The full-quantum
propagation is based on the short-time Trotter approximation of
the time-evolution operator:

ψtþΔtðxÞ ¼ Uðt, t þ ΔtÞ ψtðxÞ ð74aÞ

≈ e�i=pVΔt=2 e�i=pp̂2=2meΔt e�i=pVΔt=2 ψtðxÞ ð74Þ
The time-evolved semiclassical Wigner distribution Pt

SC(x,p) is
computed as follows:

PSCt ðx, pÞ ¼ ð2πÞ�3
Z ∞

�∞
ds
Z ∞

�∞
dp0

Z ∞

�∞
dx0 e

iðp � ptÞsδðxt � xÞ P0ðx0, p0Þ

ð75aÞ
¼ 1

N ∑
N

j¼ 1
δðp� ptðjÞÞ δðxtðjÞ � xÞ ð75Þ

where xt(j) and pt(j) are coordinates and momenta, obtained by
classical KPC propagation. The initial coordinates and momenta



30 dx.doi.org/10.1021/ct200452h |J. Chem. Theory Comput. 2012, 8, 24–35

Journal of Chemical Theory and Computation ARTICLE

x0(j) and p0(j) are sampled by Box�Muller Monte Carlo,42

using the phase-space distribution |P0(x0, p0)|.
3.2. Results. Three model systems were analyzed, including

electron scattering from a single central proton (model I),
scattering from a central proton in the presence of a peripheral
proton (model II), and scattering through a cluster of 125
protons in a configuration typical of a high-density plasma
(model III). In models I and II, the initial state for the scattering
electron was defined according to eq 68, with σ0 = σ = 0.5 Å,
x0 = �1 au, z0 = 0, and y0 = k � 0.2 au, where k = 1, 2, ..., 5.
Therefore, the initial momentum of the scattering electron was
defined as follows:

p20 ¼ 2meÆT0æ
¼ 2meðE� ÆV0æÞ
≈ 2me E þ 1

r0

� � ð76Þ

with r0
2 = x0

2 + y0
2, and E = 9.2 eV, defining the initial kinetic

energies as listed in Table 1.
Figure 2 shows the comparison of electron�proton scattering

trajectories, as described by a single classical trajectory (dots,
with initial coordinates and momenta defined by the expectation
values of the initial state) and the corresponding full-quantum
(SOFT, crosses) and Wigner semiclassical expectation values
(lines).

Figure 2 shows that classical trajectories and benchmark full-
quantum trajectories agree at very early times but quickly deviate
from each other. In contrast, the semiclassicalWigner description
is in almost quantitative agreement with full quantum dynamics
throughout the whole propagation time for all cases investigated,
including model II where scattering trajectories curve away from
the central proton due to the significant influence of the
peripheral scattering center and the nearly symmetric impact of
the central proton on the extended wave packet.
The origin of small deviations, shown in Figure 2, when

comparing the Wigner semiclassical description to the full-
quantum results, can be traced to the comparison of the
distribution functions in configurational space (see Figure 3).
The initial (left) and final (right) densities are shown for impact
parameter 0.4 Å for models I (top) and II (bottom), respectively.
Large dots indicate proton positions, while small dots corre-
spond to the ensemble distribution. Contours are drawn at
σ, 2σ, and 3σ from the maximum density integrated over the
z coordinate (~60.6%, 13.5%, and 1.1%). SOFT (red) density
distributions are compared to the semiclassical Wigner distribu-
tions (blue), collected in 642 quadratic bins covering the
quantum grid (i.e., each bin covers 23 quantum grid cells). For
illustration purposes, the ensemble of trajectories shown in
Figure 2 corresponds to a simulation using 56 = 15 625 trajec-
tories. Contour lines and quantitative measures are derived from
simulations using 76 = 117 649 trajectories. A maximum allowed
energy change of 2.72 � 10�2 eV/fs for each trajectory was
enforced at each time step as the basis for the adaptive time step,
with a smallest allowed time step of 10�39 s.
Deviations between SOFT and semiclassical results, shown in

Figure 3, include small components of the semiclassical distribu-
tions that remain bound, localized at the protons. This is
observed even at the final propagation time, although the full
quantum distributions have no bound components. This is an
intrinsic limitation of the semiclassical Wigner transform picture
that becomes even more pronounced for lower energy collisions,
when there are more initial conditions bound in the Coulombic

Table 1. Impact Parameters y0 and Initial Kinetic Energies
(K.E.) for Trajectories Shown in Figure 2

y0 (a.u.) initial K.E. (eV)

0.2 35.9

0.4 34.5

0.6 32.5

0.8 30.4

1.0 28.4

Figure 2. Electron scattering trajectories obtained by expectation values of SOFT full-quantum (red crosses) propagation Wigner classical dynamics
(WCD, solid blue) and classical propagation of a single trajectory with initial position and momentum as defined by the expectation values of the initial
wave packet (blue dots). Left panel (model I): electron collision with a single proton (black bullet) at the origin. Right panel (model II): collision with
two protons, including a central proton at the origin (black bullet) and a peripheral proton (red bullet) at (0,1) au.
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well. As a result, the position predicted by the Wigner transform
lags behind the quantum result, faintly visible in Figure 2.
The convex features of the final quantum densities are

reproduced well by the WCD method, while concave features
in the lowest contour level of the quantum density are due to
interference effects and by construction not present in WCD.
Nevertheless, the semiclassical Wigner transform reproduces the
overall features of the quantum distribution. In fact, a quantitative
analysis of the normalized distributions shows >92% overlap
between the semiclassical and quantum distributions for all cases
investigated. Even the time-dependent widths, describing the
anisotropy of the distribution functions, are in good qualitative
agreement with full quantum results.
Figure 4 shows the widths for each of the Cartesian directions

describing the time-dependent anisotropy of the distributions.
Note that both quantum and semiclassical results show more
delocalization along the x direction than in the orthogonal
directions y and z. This is likely due to the head-on collision
causing the wave packet to undergomore significant deformation
in the direction of propagation.
Figure 4 shows that the semiclassical distributions slightly

overestimate the widths since they miss interference effects
leading to partial localization of the quantum wave packet. This
is most prominent in the x direction due to the bound compo-
nent of the semiclassical distributions, although the trends and
overall agreement are quite satisfactory. In fact, close inspection
of Figure 3 shows that the semiclassical dynamics reproduce the
full-quantum distributions very well, while featuring bound
components and deviations at the lowest-density contour level.
The concave features in the final quantum density are due to

interference effects, which by construction are not present in
WCD. At electron energies above 1 keV, interference becomes
negligible, and the agreement of WCD with quantum results
becomes excellent. Deviations in the long tails of the distribu-
tions, however, affect the overall widths σ disproportionately.
Analogous results are obtained for the description of electron

scattering through a cluster of protons (model III). Figure 5
shows the semiclassical (blue) and quantum (red) distributions
for a high-energy collision of an electron passing through a
disordered cluster of 125 protons (black dots, shown larger for
protons closer to the z = 0 plane), at the initial (left, t = 0 as) and
final (right, t = 50 as) propagation times. The configuration of
the cluster,43 contained in a box with dimensions 5� 5� 5 Å, has
been extracted from a plasma of density F = 1024 cm�3. The
initial state for the scattering electron is defined with a width
according to a 1s state of a hydrogen atom, and with initial kinetic
energy p0

2/2me = 250 eV.
Numerical Effort. Wall times for production run calculations

on a 2.67 GHz intel Core i7 CPU are shown in Table 2. KPC
calculations (second column) are compared to results obtained
according to the adaptive velocity Verlet method (third column)
for two sets of trajectories. The total simulation time is 50 as (5�
10�17 s). A maximum of 220 subdivisions of the default time step
was allowed, after which a trajectory was marked as failed if it did
not satisfy a maximum allowed energy change of 2.72 � 10�2

eV/fs in one default time step. Trajectories do not fail for the
KPC method, while a complete treatment of the failed trajec-
tories in the velocity Verlet method require longer times than
given here or are impossible altogether. A larger number of
trajectories with randomized initial conditions means an increase

Figure 3. Initial (left) and final (right) densities for impact parameter 0.4 Å for electron scattering inmodels I (top) and II (bottom), respectively. Large
dots indicate proton positions; small dots are WCD representative configurations. Contours are drawn at percentages of the maximum density
(integrated over the z coordinate) found at σ, 2� σ, and 3� σ from the center of the distribution, i.e., 60.65%, 13.5%, and 1.1%. Color key: SOFT (red),
WCD (blue).
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in the probability of close encounters, which is reflected by the
increased ratio between the run times of the twomethods and the
increased percentage of failed particles.
The selection of trajectories that fail to conserve energy to

within 2.72� 10�2 eV/fs when propagated according to velocity
Verlet are uncontrolled by the user and depend on the dynamics,
so that the statistics of the result are skewed. The number of close
encounters scales with the third root of the number of particles
and linearly with time, making failing trajectories a considerable
problem for larger simulations. The adaptive KPC method with
cutoffs is more efficient and suffers from no such drawback, so
that production runs with 1 million or more trajectories can be
performed routinely.

Numerical Accuracy. All KPC results discussed above were
performed with an adaptive time step, ensuring that energy
conservation is satisfied to a given accuracy. The absence of
failed trajectories for the KPC method shows that, time step for
time step, the KPC method is more accurate than velocity Verlet
and effectively solves the close encounter problem.
To quantify energy conservation, close encounter simulations

at a constant time step of a single particle with a resting pro-
ton were performed, with a peripheral proton at 1 au distance
(model II). Figure 6 shows the energy change of KPC at a
constant time step for hyperbolic (left) and elliptic (right)
character trajectories. KPC results are shown for cutoff radii of
0.3 au (black lines), 0.2 au (dark gray lines), 0.1 au (light gray
lines), and no cutoff, i.e., never using velocity Verlet at any
distance (dashed lines). The difficulty of the close encounter
is expressed by energy nonconservation caused by it. As the
electronic particle approaches the protonic scattering center, the
velocity Verlet energy deviates from its initial value, and when
switching to the KPC method at the cutoff radius, energy is
conserved again before oscillating at the point of closest ap-
proach. The energy then returns to the value before its oscilla-
tion, before traversing the cutoff radius causes a switch back to
velocity Verlet. This demonstrates that, at a given time step, the
KPC method conserves energy much closer to the scattering
center than velocity Verlet.

Figure 4. Time dependence of the widths of the time-dependent distributions, as described by semiclassical and quantum calculations of electron
scattering in model I (left) and model II (right), respectively. Semiclassical Wigner transforms tend to overestimate the widths, since they lack
interference terms responsible for partial localization of the full quantum distributions.

Figure 5. Contour plots of quantum (red) and semiclassical (blue) probability densities, integrated over the z coordinate at the initial (left, t = 0 as) and
final (right, t = 50 as) propagation times, for a high-energy collision of an electron passing through a disordered cluster of 125 protons (black dots, shown
larger for protons closer to the z = 0 plane). Coordinates x and y in Å.

Table 2. Wall Times for Production Run Calculations
(in hours:minutes:seconds) on a 2.67 GHz Intel Core i7
CPU of Adaptive KPCMethod with Cutoff (Second Column)
and Adaptive Velocity Verlet Method (Third Column)
for Two Different Numbers of Trajectories for a Total
Simulation Time of 50 as 5 � 10�17 s

particles

adaptive

KPC adaptive Verlet

failed KPC

trajectories

failed Verlet

trajectories

15625 17:25 23:00 (+32%) 0 1 (0.0064%)

117649 1:55:04 2:44:33 (+43%) 0 15 (0.013%)
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At large cutoff radii, the energy eventually returns to its initial
value, demonstrating that the time-reversal symmetric construc-
tion of the KPC method solves the close-encounter problem. At
the smaller cutoff radius of 0.1 au, the energies do not quite return
to their initial value which, considering the success at larger cutoffs,
must be ascribed to a break down of the velocity Verlet method
already outside the cutoff radius. Velocity Verlet by itself fails at the
given time steps, as witnessed by macroscopic energy shifts after
the close encounters of 0.30 au (8.3 eV) and 0.55 au (14.9 eV).
Note that a shorter time step is shown for the elliptic case, as that
leads to a smaller distance of closest approach. For smaller time
steps, accuracy is improved, while for larger time steps, the
shortcomings of velocity Verlet become more pronounced.
It is worth mentioning that when adaptive time steps are used,

smaller cutoff values may be more useful since they allow for a
reduction in the numerical effort, which per time step is larger for
the KPC method, as well as making sure that cutoff spheres
between neighboring protons never overlap, which is why
0.1 au has been used for all adaptive time step Wigner density
propagations above. In calculations with many potential wells,
where the integrator effort is neglibile in comparison to that for
evaluation of the potential gradient, a larger cutoff is more useful.

4. DISCUSSION

The KPCmethod is a highly efficient multipurpose method for
simulations of an important class of dynamical problems featuring
singular potentials. Themethod is easy to implement and offers an
accurate treatment of dynamical problems in which close encoun-
ters between mutually attractive particles may occur. For compar-
able integration time steps, the KPCmethod ismore accurate than
standard integrators, even when the Kepler equation is solved to
machine accuracy, since its accuracy is determined by the impact of
the slowly varying residual potential on the trajectory (and its
occasionally sudden changes of direction). A sample program
reproducing the calculations reported in Figure 6 is available
free of charge upon request to the corresponding authors.

The KPCmethod can bemade arbitrarily accurate, as opposed
to standard integrators which typically break at some finite
distance of closest approach when the required time step be-
comes so small that the operations involved cannot be computed
at the given machine accuracy. The cost of the KPC method
increases when the distance between singularities decreases,

since the cutoff distance must be reduced to keep it smaller than
half the minimal distance between singularities. As the cutoff is
reduced, the cost of standard propagation methods, applied
outside the cutoff distance, increases.

As presented in this paper, the KPC method is limited to
problems with close encounters of two-body collisions. This is
usually sufficient for most molecular dynamics simulations where
the Coulomb repulsion limits close encounters to pairs of
particles of opposite charge and prevents three- and higher-body
collisions. The method, however, could still be used in applica-
tions to gravitational dynamics where multibody close encoun-
ters are much less common than two-body collisions.

To make the KPC method time-reversal symmetric, it has to
be made sure that the cutoff distance is crossed during the same
default time step in both directions. This is done by observing
whether the cutoff is crossed from the inside to the outside
during the default time step, reverting back to the underlying
numerical integrator if this occurs.

As illustrated for models I�III, the KPC method allows for
semiclassical dynamics simulations of phase-space distributions
in very good agreement with quantum dynamics simulations. For
electron scattering from attractive Coulomb potentials, the KPC
approach provides a highly parallelizable approach. The method
can be applied in conjunction with a wide range of standard
integrators, including high-order predictor corrector methods
(such as the Nordsieck�Gear method) since the solution SK of
the Kepler problem yields also higher time derivatives of the
position that can be correctly augmented, as described by eq 25.

At large times, the sampling of classical trajectories becomes
an issue, as the dispersion predicted by the Wigner trajectories is
limited by the largest momentum among these trajectories. The
predictive power of the Wigner density is also easily seen to be
limited in its spatial resolution by the number of trajectories
employed. In the multiple scattering case, self-interference of the
electronmay become significant after many interactions, which is
not represented by the current method. In the cases presented
here, it turns out to play a minor role not significantly altering the
resulting densities, so that the Wigner trajectory method yields
good agreement with SOFT.

As discussed in previous sections, the KPC method has been
implemented and illustrated as applied to modeling single
electron scattering from unscreened Coulombic potentials, using

Figure 6. Energy change of KPC at constant time step for hyperbolic (left) and elliptic (right) character trajectories. KPC results are shown for cutoff
radii of 0.3 au (black lines), 0.2 au (dark gray lines), 0.1 au (light gray lines), and no cutoff, i.e. never using velocity Verlet at any distance (dashed lines). It
can be seen that, approaching the scattering center, the velocity Verlet shows a significant energy deviation, while switching to KPC causes the energy to
level off. Energy nonconservation at the smaller cutoff of 0.1 is due to a break down of the velocity Verlet method already outside the cutoff radius, while
using KPC only leads to well conserved energy.
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a cutoff radius rmin around the scattering centers chosen to
optimize accuracy and performance. The multielectron scatter-
ing problem becomes rather complicated at low energies due to
electron exchange and correlation. Therefore, the Kepler pre-
dictor corrector method is expected to be most useful for
the description of electron scattering processes at high (keV)
energies. In this case, fast electrons may be seen as dressing the
nuclear potential seen by an additional electron in the form of the
Yukawa, or Debye�H€uckel, screened-Coulomb potential:44

VDHðrÞ ¼ 1
r
exp � r

d

� �
ð77Þ

where d is the Debye screening distance. Analogous treatments
of KPC can be applied for this and other classes of spherical
potentials, especially those whose two-body initial value problem
is solved analytically.

The Yukawa potential in particular, however, converges to the
Coulomb potential when rf 0. Therefore, for a sufficiently small
rmin, the solution of the unscreened Kepler problem already gives
a good approximation to close encounters for the Yukawa
potential. The intrinsic error can be minimized by setting rmin

to an appropriate value. Table 3 shows how small are the
percentage deviations of the Debye�H€uckel potential and its
gradient, when compared to the unscreened Coulomb potential,
for various screening distances d and cutoff radii rmin.

The deviations can be approximated by Taylor expansion of
the exponential:

δVDHðrÞ ¼ VDHðrÞ � V sðrÞ
V sðrÞ ≈

r
d

ð78Þ

δ∇VDHðrÞ ¼ j∇VDHðrÞ �∇V sðrÞj
j∇V sðrÞj ≈

1
2

r
d

� �2

ð79Þ

Through an appropriate choice of rmin, any desired accuracy
may be achieved for the KPC method for any given d, with a
corresponding impact on computational performance if small
rmin values are chosen. Careful analysis of the numerical effort
shows that with the Verlet method, a cutoff of 10�2 au may be
chosen with only minimal penalty to the efficiency of the KPC
method. Under ignition conditions, proton density is on the
order of 1026 cm�3, where the mean distance between protons is
larger than 0.2 au, i.e., much larger than this cutoff. If better
numerical accuracy is required, efficiency may be traded in to
obtain even smaller cutoff distances.

Another class of potentials is the repulsive Coulombic potential
between protons, commonly found in high energy density plasma
simulations where kinetic energies are sufficiently high as to cause
close encounters between protons. As at kiloelectronvolt energies,
electron exchange and correlation play a subordinate role for the
system’s dynamics, the single electron molecular dynamics meth-
ods proposed should be applicable. For such simulations, a

repulsive KPC method can be constructed analogously from
the analytic solution of the repulsive Kepler problem. For lower
energies (the warm dense matter regime), alternative methods
taking exchange and correlation into account have to be explored.

5. CONCLUSIONS

We have introduced the KPC algorithm for accurate and
efficient simulations of dynamics of particles with attractive 1/r
singular potentials. When used in its time-reversible form (with a
carefully chosen cutoff radius around singularities), the KPC
method always reduces the numerical effort with respect to
standard integrators and allows for the description of close
encounter collisions. The method is easy to implement and
should be practical for a wide range of applications where
particles gravitate into each other, such as electron�proton
interactions and ionic dynamics, as well as applications in other
fields with similar computational challenges such as molecular
dynamics of high-density plasmas and celestial mechanics.

We have shown how to apply the KPC method to model
semiclassical dynamics of electron�proton scattering processes
in the Wigner-transform time-dependent picture. The reported
results show excellent agreement with benchmark quantum
dynamics calculations, including models with multiple scatter-
ing centers that defy the capabilities of standard integration
methods. The reported results suggest that theWigner semiclassical
dynamics is a practical and accurate approach to include quantum
effects in high energy electron�proton collisions when simulated
according to the KPC method. The KPC method’s applicability
to other singular potentials featuring close encounters should
provide a useful, easy to implement tool for a wide range of studies,
including electron�ion scattering events and particle�antiparticle
dynamics, aswell as in classical simulations of charged interstellar gas
dynamics and gravitational celestial mechanics, where the latter has
not been able to profit from KS-regularization.
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Table 3. Percentage Deviations of the Debye�H€uckel Potential and Its Gradient, Relative to the Unscreened Coulomb Potential,
for Different Values of Debye Screening Distances and Cutoff Radii

r = rmin
Verlet = 10�2 au r = rmin

Gear = 10�3 au

relative deviation d = 5 au d = 10 au d = 20 au d = 5 au d = 10 au d = 20 au

δVDH(r) 2� 10�3 10�3 5� 10�4 2� 10�4 10�4 5� 10�5

δ3VDH(r) 2� 10�6 5� 10�7 1.25 � 10�7 2� 10�8 5� 10�9 1.25 � 10�9
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