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Nonadiabatic photodissociation dynamics of ICN in the Ã continuum:
A semiclassical initial value representation study

Eduardo A. Coronado, Victor S. Batista, and William H. Miller
Department of Chemistry, University of California, and Chemical Sciences Division,
Lawrence Berkeley National Laboratory, Berkeley, California 94720

~Received 15 December 1999; accepted 7 January 2000!

In this paper we investigate the nonadiabatic photodissociation dynamics ofICN in the Ã
continuum, using a semiclassical initial value representation method which is able to describe
electronically nonadiabatic processes through the quantization of the classical electron–nuclear
model Hamiltonian of Meyer and Miller@J. Chem. Phys.70, 3214 ~1979!#. We explore the
capabilities of this semiclassical technique as applied to studying theICN absorption spectrum, and
the CN rotational distribution, through direct comparison of our semiclassical results with
experimental data, and with full quantum mechanical calculations. We find that the Meyer–Miller
Hamiltonian, quantized according to the semiclassical prescription, describes theICN
photodissociation dynamics in excellent agreement with full-quantum mechanical calculations.
© 2000 American Institute of Physics.@S0021-9606~00!01113-2#
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I. INTRODUCTION

Understanding the effect of electronic nonadiabatic tr
sitions in the photodissociation dynamics of polyatomic s
tems is a fundamental problem of much current research
terest in studies of chemical reaction dynamics. The effe
of electronic relaxation processes on molecular photofr
mentation dynamics are also ideally suited to detailed inv
tigations using new computational methods for simulat
chemical reactions. This paper reports the first application
semiclassical initial value representation~SC–IVR!
methods1–24 to study the effect of electronic nonadiabatici
in the state-to-state photofragmentation dynamics ofICN in
the gas phase.

Experiments have shown that theICN molecule has a
broad continuum absorption in the 200–300 nm range~see
Fig. 1!. Photolysis of theICN molecule at the peak of theÃ
continuum~e.g.,;266 nm! produces two peaks in the tran
lational photofragment spectra, which are assigned to
photodissociation pathways that produce iodine atoms in
I (2P1/2) and I * (2P3/2) spin–orbit states, respectively, alon
with the CN radical in the ground electronic sta
CN(X 2S1), as indicated below,

ICN1\v→I * ~2P1/2!1CN~X 2S1!

→~2P3/2!1CN~X 2S1!, ~1.1!

where \v is the photoexcitation energy. Little vibrationa
excitation is found in theCN fragment~.98% inn50), but
the rotational distribution ofCN involves highly excited
states and exhibits a bimodal structure~see Fig. 2!. The CN
fragment is formed rotationally cold—i.e., with rotation
distributions that peak at low quantum numbers—when d
sociation of the molecule produces excited state iodine at
I * (2P1/2), while the channel forming ground state iodin
I (2P3/2) produces rotationally hotCN fragments. Experi-
ments have also shown that theI /I * branching ratio in the
5560021-9606/2000/112(13)/5566/10/$17.00
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CN rotational distribution is not very sensitive to the initi
temperature of the parent molecule but strongly wavelen
dependent, withI * production accounting for approximatel
62% of the total product at 266 nm, but much less at b
lower and higher photoexcitation energies.25

Much of the earlier experimental and theoretical wo
developed for understanding the photodissociation dynam

of ICN via its Ã continuum has been summarized by Tann
Morokuma and co-workers,26–28 who carried out rigorous
time-dependent quantum dynamics simulations as well asab
initio calculations of the electronic excited state poten
energy surfaces where nuclear and electronic relaxation
namics takes place after photoexcitation of the system. O
theoretical studies of theICN photodissociation dynamic
can be found in Refs. 29–31.

Exact quantum dynamical methods have also made
nificant progress in the understanding of many other che
cal reactions.32 However, these rigorous computational tec
niques are currently limited to systems with only a fe
degrees of freedom, since they usually require computatio
effort and storage space that scales exponentially with
number of coupled degrees of freedom. The extensively
vestigatedICN photodissociation reaction is therefore, ide
to explore the capabilities of alternative computational me
ods to model excited state quantum reaction dynamics.

Since classical trajectory methods have been extrem
successful for describing diabatic dynamics of molecu
systems with many degrees of freedom, it is natural to try
extend such approaches to treat nonadiabatic dynamics
volving several potential energy surfaces. Approximate te
niques for including nonadiabatic effects have been de
oped in terms of effective path methods,33–40 and surface
hopping algorithms41–47 that were successfully implemente
in various studies of ultrafast photodissociatio
dynamics.48–54 However, the development of a rigorou
method for generalizing classical molecular dynamics te
6 © 2000 American Institute of Physics
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niques to incorporate quantum mechanical effects corre
is still a goal of current investigations.

Early theoretical studies ofICN photodissociation dy-
namics were focused on interpreting the cold vibrational d
tributions ofCN fragments using collinear models.55–58More
recently, classical molecular dynamics~MD! simulations
were also carried out to obtain the rotational distribution
CN fragments using various model potential energy surfac
In general, classical MD simulations studies that included
description of nonadiabatic effects were based on
Meyer–Miller classical-analog method in an assumed dia
tic basis set representation.28,59,60

The classical analog-model33 is an effective path method
that propagates electronic and nuclear degrees of free
according to classical equations of motion, and accounts
the multiple surfaces by means of an average potenti34

Guo and Schatz tested the validity of the classical-ana
method for describing theICN photodissociation dynamic
by comparing its results with accurate quantum mechan
results obtained by solving the time-independent Sch¨-
dinger equation for the excited state scattering wa
function.60 These calculations were carried out using emp

FIG. 1. ExperimentalICN absorption spectrum~Ref. 76!.

FIG. 2. ExperimentalCN rotational distributions associated with two po
sible photofragmentation channels as described in the text. Experim
data was obtained from low resolution LIF spectra after 266 nm photol
of 300 K ICN ~Ref. 77!. \v is the photoexcitation energy.
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cal potential energy surfaces developed by Goldfieldet al. in
an early study ofICN photodissociation dynamics in terms o
the Meyer–Miller classical-analog method.59 From the com-
parison with full-quantum mechanical results for theI /I *
quantum yields, the bimodal rotational distribution, and t
total cross section, Guo and Schatz concluded that
classical-analog calculations were not accurate enough to
scribe theICN photodissociation dynamics properly, pro
ably due to the inherent weakness of the Meyer–Mil
method where trajectories were governed by an average
tential even in the asymptotic region~see Fig. 3!.60 In this
paper we explore to what extent semiclassical quantiza
of the classical Meyer–Miller Hamiltonian is able to ove
come the shortcomings of the totally classical formulatio
by incorporating nuclear coherence and interference eff
within the description of the SC–IVR.

The SC–IVR is a generalization of classical molecu
dynamics simulation methods that combines the quantum
perposition of probability amplitudes with real-valued cla
sical trajectories in the computation of the quantum mecha
cal propagator.1 In recent years there has been a rebirth
interest for developing new implementation methodolog
of these approaches, including the Herman–Kluk~HK!
SC–IVR,12 the linearized~L!SC–IVR method,61–64 the time

tal
is

FIG. 3. Comparison between quantum~symbols! and classical-analog cal
culations ~solid lines! for the CN rotational distributions in theI and I *
channels, individually normalized, adapted from Ref. 60.~a! 266 nm; ~b!
248 nm.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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5568 J. Chem. Phys., Vol. 112, No. 13, 1 April 2000 Coronado, Batista, and Miller
average approach,65 and forward–backward~FB!SC–IVR
techniques.3,66,67These methods aim to provide a more tra
table alternative to exact quantum mechanical methods
dynamics calculations as well as an intuitive understand
of complex quantum dynamics associated with chemical
actions in terms of classical mechanics, but where quan
coherence effects are included correctly and naturally.
comparison with state specific quantum mechanical res
presented in this paper, provides perhaps the most det
and rigorous possible test of these new SC–IVR techniq
for simulating nonadiabatic excited state photofragmenta
dynamics of a real polyatomic system.

The semiclassical methodology implemented in this
per removes the drawbacks inherent in the classical ver
of the Meyer–Miller approach. It has been successfu
tested for the three one-dimensional model problems s
gested by Tully for testing nonadiabatic dynamics,41 and for
the spin-boson model for dissipative systems.68,69 However,
the only application to date for a real molecular system
been our nonadiabatic MD simulation of the ultrafast pho
dissociation dynamics of ozone.2 In that work the semiclas
sical methodology was implemented onab initio potential
energy surfaces and the photofragmentation dynamics
simulated on the lower lying excited states of1A9 symmetry
that are coupled by a conical intersection. The capabilitie
the SC–IVR were demonstrated for simulating the Chapp
absorption band, by comparing our semiclassical results
rectly with experimental data, and with full-quantum m
chanical calculations.

In this paper we extend our semiclassical calculations
compute not only the photoabsorption spectrum ofICN, but
also the rotational distributions ofCN photofragments and
the asymptotic nuclear wave packet components that
even more demanding quantities. The rotational distribut
provides a more detailed description of dynamics and is p
ticularly challenging to calculate not only because it involv
the evaluation of a high dimensional integral with an osc
latory integrand, but also because it is determined by
asymptotic shape of the nuclear wave packet compon
and is sensitive to how various different potential ene
surfaces are populated according to the details of the e
tronic coupling between the excited electronic states and
speed with which the system moves through the coup
regions at the conical intersection. It is shown in this pa
that the HK version of the SC–IVR methodology, togeth
with stationary phase Monte Carlo methods, can be ef
tively implemented as described in Ref. 2 to obtain semic
sical results that are in excellent agreement with fu
quantum mechanical calculations.

The paper is organized as follows. In Sec. II we fi
outline our semiclassical approach for modeling the pho
dissociation dynamics, the calculation of the absorpt
spectrum, and the rotational distributions ofCN photofrag-
ments. Section III then summarizes our results and comp
them with full-quantum calculations. Section IV summariz
and concludes.
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II. METHODS

A. The semiclassical approach

The time-dependent wave functionC t can be obtained
from the initial state of the systemC0 according to

C t~q8!5E dq Kt~q8,q!C0~q!, ~2.1!

whereq denotes theN coordinates of nuclear and electron
degrees of freedom collectively~vide infra!, and the time
dependent propagatorKt(q8,q) is simply the evolution op-
erator in coordinate representation,

Kt~q8,q![^q8ue2 iĤ t/\uq&. ~2.2!

HereĤ is the Hamiltonian operator of the molecular syste
The Herman–Kluk~HK!,12 or coherent state IVR for the
time evolution operator, is

Kt
HC~q8,q!5~2p\!2NE

2`

`

dp0E
2`

`

dq0 gqt ,pt
~q8!

3Ct~p0 ,q0!eiSt~p0 ,q0!/\gq0 ,p0
~q!* , ~2.3!

where the integration variables (p0 ,q0) in Eq. ~2.3! are the
initial conditions for classical trajectories;qt[qt(p0 ,q0) and
pt[pt(p0 ,q0) are the time-evolved coordinates and m
menta, andSt(p0 ,q0) the classical action along this trajec
tory, obtained by integrating the following equation:

dSt

dt
5pt•q̇t2H~pt ,qt!. ~2.4!

along with the usual classical equations of motion,

dq~ j !

dt
5

]H~q,p!

]p~ j !
and

dp~ j !

dt
52

]H~q,p!

]q~ j !
. ~2.5!

The Hamiltonian H(pt ,qt), in Eqs. ~2.4! and ~2.5!
above, is the Meyer–Miller classical analog model for t
system with total angular momentumJ50.

H~R,K,u,l ,p̃,x!5
K2

2M
1

l 2

2MR2 1
l 2

2mr2

1
1

2 (
k51

2

(
k51

2

@ p̃~k! p̃~k8!

1x~k!x~k8!#Hk,k8~R,u!

2
1

2 (
k51

2

Hk,k~R,u!. ~2.6!

written in terms of cartesian electronic degrees of freed
(x,p̃), and Jacobi nuclear coordinates (R,u) and momenta
~K,l!, assuming the rigid rotor approximation for theCN
fragment with equilibrium bond lengthr. As illustrated in
Fig. 4, the Jacobi coordinateR is the distance between th
iodine atom and theCN center of mass, andK is its corre-
sponding momentum,U is the Jacobi angle, andl is its cor-
responding canonical conjugate variable.M and m, intro-
duced by Eq.~2.6!, are the I 2CN and C2N reduced
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



ia
e

-
r-
es

th
eg

d

a
e-
w

nic
nt
-

i-

d

alu-
nitial

he
he

l

ar-

l
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masses, respectively. The diabatic electronic Hamilton
matrix elementsHk,k8(R,u), in Eq. ~2.6!, are assumed to b
real and symmetric.

The wave functions for the coherent states in Eq.~2.3!
are given by

gqt ,pt
~q!5)

j 51

N S 2g~ j !

p D 1/4

expS 2g~ j !@q~ j !2qt~ j !#2

1
i

\
pt~ j !@q~ j !2qt~ j !# D , ~2.7!

and similarly for gq0•p0
(q). The Gaussian functions intro

duced by Eq.~2.7! are numerically convenient but not rigo
ously valid as functions of the Jacobi coordinat
(R,U)—i.e., they are not periodic functions ofU, and they
extend to unphysical negative values ofR. However, these
functions are assumed to be sufficiently localized, so that
error introduced by this approximation is expected to be n
ligible.

The pre-exponential factor in the integrand of Eq.~2.3!
is given by

Ct~p0 ,q0!5Adet@M #, ~2.8!

where q[(R,u,x) and p[(K,l ,p̄) denote the nuclear an
electronic variables collectively, andM is a linear combina-
tion of components of the monodromy matrix,

M ~ j ,k!5
1

2 S ]qt~k!

]q0~ j !
1

g~ j !

g~k!

]pt~k!

]p0~ j !
2

1

2i\g~k!

]pt~k!

]q0~ j !

22i\g~ j !
]qt~k!

]p0~ j ! D , ~2.9!

whereg( j ) are the constant parameters in the Gaussian w
packets of Eq.~2.7!. The various time dependent partial d
rivatives are obtained by numerical integration of the follo
ing equations for the stability matrix:

d

dt S ]pt~ i !

]z~ j ! D52 (
k51

N S ]2H~pt ,qt!

]pt~k!]qt~ i !

]pt~k!

]z~ j !

1
]2H~pt ,qt!

]qt~k!]qt~ i !

]qt~k!

]z~ j ! D ,

d

dt S ]qt~ i !

]z~ j ! D51 (
k51

N S ]2H~pt ,qt!

]pt~k!]pt~ i !

]pt~k!

]z~ j !

1
]2H~pt ,qt!

]qt~k!]pt~ i !

]qt~k!

]z~ j ! D ,

wherez5p0 or q0 .

FIG. 4. Definition of the Jacobi coordinates (R,Q) for the ICN molecule.R
is the distance between the iodine atom and theCN center of mass.
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The time-dependent nuclear wave function of electro
statek,C t

k(R,U), is obtained from the total time-depende
wave functionC t(x,R,u), by projecting out the correspond
ing electronic statefk,

C t
k~R,u!5E dx^fkux&^x,R,uuC t&, ~2.10!

with

fk~x!5xke
21/2~x1

2
1x2

2
!. ~2.11!

C t(q), in Eq. ~2.10!, is obtained by substituting Eq.~2.3!
into Eq. ~2.1!,

C t~q!5~2p\!2NE
2`

`

dp0E
2`

`

dq0 gqt ,pt
~q!

3Ct~p0 ,q0!eiSt~p0 ,q0!/\Cg~q0 ,p0!, ~2.12!

whereCg(q0 ,p0) is the coherent state transform of the in
tial wave function,

Cg~q0 ,p0!5E dq8 gp0 ,q0
~q8!* C0~q8!. ~2.13!

The total photoabsorption cross sections~l!, as a func-
tion of the photolysis wave lengthl, is calculated by the
Fourier transform of the survival amplitudej(t)

s~l!5
1

2p\ E
2`

`

dt j~ t !eivt, ~2.14!

with v52pc/l, and

j~ t ![^C0ue2 iĤ t/\uC0&5^C0uC t&, ~2.15!

whereC0 is the initial ground state wave function multiplie
by the constant transition dipole moment~Condon approxi-
mation!.

As presented above, the computational task is to ev
ate a rather high dimensional phase space average over i
conditions defined as follows

j~ t !5~2p\!2NE
2`

`

dp0E
2`

`

dq0 Cg* ~qt ,pt!

3Ct~p0 ,q0!eiSt~p0 ,q0!/\Cg~q0 ,p0!. ~2.16!

In order to damp out the most oscillatory regions of t
integrands, which make little contribution to the value of t
integrals in Eqs.~2.12! and ~2.16!, we have utilized a sim-
plified version of the Filinov,70,71 or stationary phase Monte
Carlo ~SPMO! method,72 which is described in Ref. 2.

The time evolved wave packetx t
J(K) in the K2J rep-

resentation~whereK is the nuclear momentum andJ is the
rotational quantum number ofCN!, contains the rotationa
product distributions at all energies, and is given by

x t
J~K !5AE

0

`

dRE
0

p

dUYJ0* ~U!sin~U!e2 iKRC t
k~R,Q!,

~2.17!

whereA is a normalization constant, and the spherical h
monic YJ0(U) represents theJth rotational state of theCN
fragment in the plane of theICN molecule. The rotationa
product distributions are obtained at different energies\v in
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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terms of the square of the asymptotic wave packet amplit
x t

J(K) along the different elliptical cuts defined as a functi
of K andJ by the following formula:

Ei1\v2E05
\2K2

2M
1

\2J~J11!

2mr2 , ~2.18!

whereEi is the initial energy of the wave function,v is the
photon energy, andE0 is the asymptotic energy of the frag
ments.

B. Sample preparation and photoexcitation

In our simulations trajectories are initialized through M
sampling of coordinates and momenta according to locali
phase space distributions determined by the coherent
transforms of the initial excited state wave functions, crea
under the assumption that the photolysis event prom
molecules instantaneously from the ground electronic stat
the optically allowed excited states which are resonant w
the excitation wavelength~Franck–Condon approximation!.

We assume that the dominant contributions to the
cited state relaxation dynamics result from parallel tran
tions from the ground state1S0

1 potential energy surface t
the excited electronic state with3P0

1 symmetry, and perpen
dicular transitions to the1P1 , and 3P1 excited electronic
states. This assumption is based onab initio calculations
showing that the ratios of the transition intensities to
3P0

1 , 1P1 , and3P1 are 0.66:0.28 and 0.06, respectively28

Ab initio calculations also show that the3P0
1 potential en-

ergy surface has an attractive well of about 0.45 eV aR
54.92 a.u., and is significantly coupled only to the1P1 ex-
cited state, by a conical intersection atR56.42 a.u. There-
fore, in addition to the ground electronic state informatio
we include in our simulations the two excited state surfac
3P0

1 and1P1 , and the coupling between these two surfac
In our simulations we calculate the values of the excited s
potential energy surfaces and the couplings between th
according to analytic expressions taken from Ref. 73. O
simulations, therefore, model nonadiabatic dynamics on
ab initio potential energy surfaces without relying on a
approximate model potential.

The nuclear wave function that represents the ini
population in theX state is assumed to be the harmon
ground state, i.e.,

Cgr~R,u!5S aR

p D 1/4

expF2
aR

2
~R2R0!2G S a0

p D 1/4

3expF2
a0

2
~u2u0!2G , ~2.19!

whereaR andaU are obtained from theICN stretching and
bending force constants,74 and the equilibrium values of th
Jacobi coordinates (R,U) areR054.99 Bohrs, andu050.0
radians, respectively.

The total wave function for the initial state of the syste
is the product of electronic and nuclear wave functions,

C0,k~x,R,u!5A2

p
xk expF2

1

2
~x1

21x2
2!GmkCgr~R,u!,

~2.20!
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whereCgr(R,u) is defined by Eq.~2.19! and k denotes the
initially populated excited electronic state. The electron
wave function in Eq.~2.20! is a product of one dimensiona
harmonic oscillator wave functions, since these are
eigenfunctions of the part of the quantum Hamiltonian th
models the electronic degrees of freedom@cf. Eq. ~2.6!#. The
electronic wave function for statek is a ground state har
monic oscillator wave function for all electronic modes e
cept thekth one, which has one quantum of excitation.

III. RESULTS

Results are presented in three sections. First, Sec. I
presents the semiclassical results for the photoabsorp
spectrum compared with that given by full-quantum m
chanical calculations. Section III A also shows the compa
son between the survival amplitude components obtained
cording to the semiclassical methodology presented in S
II, and the corresponding reference results from full-quant
mechanical simulations. Section III B presents the semic
sical results for theCN rotational energy distributions asso
ciated with the two possible photofragmentation chann
and the comparison with the corresponding full-quantum m
chanical calculations, for photoexcitation to the3P01 elec-
tronic excited state at two different energies. Section II
also presents the comparison of the semiclassical result
the individual wave packet components, in theK2J repre-
sentation, with the corresponding full-quantum mechani
wave packets in the3P01 and1P1 electronic excited states
This complete comparison of the individual wave pack
components also provides a comprehensive understandin
the spectroscopic features in the finalCN rotational distribu-
tions. Finally, in order to make a direct comparison betwe
our semiclassical calculations and the classical-analog re
obtained by Schatz and co-workers, we present in Sec. I
the rotational distributions, and the wave packets com
nents in theK2J representation, obtained according to t
empirical potential energy surfaces developed by Goldfi
and co-workers. Full-quantum mechanical results are
tained using the fast Fourier transform~FFT! method with an
extended grid of 512 points in both theR andU coordinates,
defined in the range of coordinatesuR29u a.u.,5 a.u., and
uUu,2p radians.

A. Absorption spectrum and survival amplitude

Figure 5 shows the comparison of the semiclassical
sults for the total photoabsorption spectrum~solid lines! with
the total absorption given by full-quantum mechanical cal
lations ~dashes!, as well as the comparison of the semicla
sical and the full-quantum mechanical results for the in
vidual absorption components to the3P01, 1P1 , and 3P1

electronic excited states.
The first feature to note in this comparison is that t

photoabsorption spectrum obtained according to the S
IVR methodology presented in Sec. II is in excellent agre
ment with full-quantum mechanical calculations in terms
the shape and position of the absorption band, not only
the total absorption spectrum but also for each individ
contribution to the3P01, 1P1 , and 3P1 electronic excited
states. The small differences in the absorption intensities
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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be traced to small deviations in the survival amplitude en
lope, as discussed later in this section. The spectra prese
in Fig. 5, obtained according to semiclassical and fu
quantum mechanical methods are not only in excell
agreement with each other, but also in very good agreem
with the experimental data presented in Fig. 1.

The individual contributions to the absorption spect
from the 3P01, 1P1 , and3P1 electronic excited states, ar
obtained as described in Sec. II according to the Fou
transform of the survival amplitudes presented in Fig. 6.
order to check the accuracy and reliability of the semicla
cal methodology described in Sec. II, Fig. 6 also compa
the real part and modulus of the semiclassical survival a
plitudesj(t) ~solid lines! to the corresponding full-quantum
mechanical results~dots!. With the exception of small devia
tions in the shape of the envelope of the survival amplitud
one sees that the semiclassical results are in excellent a
ment with full-quantum mechanical calculations, both
terms of the frequencies and the relaxation times. The
trafast decay within the first 10 fs after photoexcitation of t
system, and the absence of recurrences in the survival
plitudes at longer times, indicate that the photofragmenta
process is direct, in the sense that the wave packet mov
the space of nuclear coordinates directly towards disso
tion.

Branching processes between the3P01 and 1P1 elec-
tronic state populations becomes significant only after
first 20 fs of dynamics, when the system reaches the con
intersection. Therefore, nonadiabatic couplings have on
minor effect on the absorption spectra, but play a crucial r
in determining the branching ratio of photofragment yie
and the corresponding rotational distributions ofCN photo-
fragments.

The semiclassical method for computing the survi
amplitude j(t), presented in Sec. II, is a direct approa
based on Eq.~2.16! which does not require the computatio
of the time dependent wave function. The survival amplitu
results, presented in this section, are converged with 106 tra-
jectories integrated according to a standard fourth-or

FIG. 5. Comparison of theICN photoabsorption spectrum calculated
terms of the semiclassical methodology described in Sec. II~solid lines!,
with the corresponding full quantum mechanical results~dashes!. Contribu-
tions from the individual populated states are also displayed for the3P01.
1P1 , 3P1 electronic excited states.
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Runge–Kutta algorithm,75 using the parallel programming
model described in Ref. 2. All forces and second derivati
necessary for integrating the equations of motion presen
in Sec. II are calculated using finite difference expressio
The system of two Jacobi coordinates evolving on two el
tronic surfaces coupled by a conical intersection involves
computation of an eight-dimensional integral with an osc
latory integrand, for which it is necessary to propagate
variables that include nuclear and electronic coordinates
momenta, the partial derivatives of each of them with resp
to the initial coordinates and momenta, and the classical
tion. Since most of the degrees of freedom involved in
equations of motion are rapidly changing variables, it is n
essary to employ a fairly small integration stepd50.012 fs
in order for the equations of motion to be integrated ac
rately, and to reinitialize the stability matrix every 0.12 fs
calculate the partial derivatives at longer times according
the chain rule. The values of the parametersg( j ) for the
electronic degrees of freedomj are arbitrarily set equal to 1
a.u., whileg( j ) for the nuclear variables are a set equal
a( j )/2, introduced by Eq.~2.19!.

B. Nascent CN rotational distributions

In order to make a rigorous comparison between
semiclassical and full-quantum mechanicalCN rotational

FIG. 6. Comparison of the modulus~long dashes! and real part~solid line!
of the survival amplitudes associated with photoexcitation to the3P01,
1P1 , 3P1 electronic excited states, calculated according to the semiclas
methodology presented in Sec. II, with the corresponding full-quantum
chanical results~dots! for the first 20 fs of dynamics.
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distributions, Fig. 7 compares the contributions of para
transitionsX←3P01 to the totalCN rotational distributions
at 266 nm, and 248 nm, respectively. The solid lines are
semiclassical results obtained as described in Sec. II, f
the time evolved wave function of the system in theK2J
representation at 70 fs after photoexcitation of the syst
The calculations of the time evolved wave function and
tational distributions were converged with 23107 trajecto-
ries, propagated according to the programming model o
lined in Sec. III A. The dashed lines are the correspond
full-quantum mechanical calculations. Although the wa
function of the system in theK2J representation is not com
pletely in the asymptotic region at 70 fs, it differs only mo
estly from the fully asymptotic wave function at 200 fs,
time at which the computational cost for totally convergi
the semiclassical calculations is forbidding.

The semiclassical rotational product distribution asso
ated with the I * (2P1/2)1CN photofragmentation channe
has a maximum peak atJ,5, and is shown in panels~a! and
~b! of Fig. 7 for photoexcitation energies at 266 and 248 n
respectively. These results are also compared in Fig. 7 to
full-quantum mechanical rotational product distributions
sociated with parallel transitions,X←3P01. Although one

FIG. 7. Contributions of parallel transitionsX←3P01 to the rotational prod-
uct distributions at different photoexcitation energies:~a! 266 nm;~b! 248
nm. The solid lines are the semiclassical results obtained as describ
Sec. II, using theab initio potential energy surfaces. Dashed lines are
corresponding full-quantum mechanical results.
Downloaded 08 May 2001 to 130.132.58.224. Redistribution subject to A
l

e
m

.
-

t-
g

i-

,
he
-

sees that for this photodissociation channel there are s
small differences between the semiclassical rotational dis
butions and the full-quantum mechanical results, the ove
qualitative features are in excellent agreement with e
other in terms of the shape and position of the band,
shape of the superimposed resonance structure at aboJ
55, and the trend of these spectroscopic features when
excitation energy is increased from 266 nm to 248 nm—i
for both calculations the tail of the rotational distributio
becomes wider when the excitation energy is increased f
266 nm to 248 nm, extending out toJ540, while the super-
imposed resonance structure becomes less prominent d
the increase of amplitude in the rotational distribution.

Figure 7 also shows the semiclassical rotational prod
distributions~solid lines! associated with theI (2P3/2)1CN
photodissociation channel, with a maximum amplitude
40<J<50 for both photoexcitation energies. These resu
are also compared to the corresponding full-quantum m
chanical rotational product distributions~dashed lines! that
result from parallel transitionsX←3P01. Figure 7 shows
that for this other photodissociation channel there is alm
quantitative agreement between SC and full-quantum
chanical results at both photoexcitation energies. As m
tioned above, we have included in our calculations only
contributions of parallel transitionsX←3P01, in order to
present a clear and rigorous comparison. Therefore, the s
troscopic bands associated with theI (2P3/2)1CN photodis-
sociation channel result exclusively from population th
crossed from the initially populated3P01 state to the1P1

electronic state at the conical intersection. The agreem
observed in this comparison, therefore, validates our se
classical treatment and demonstrates that the Meyer–M
Hamiltonian, quantized according to the SC–IVR method
ogy, describes theICN photodissociation dynamics in exce
lent agreement with full-quantum mechanical calculations

In order to present a complete comparison of the SC
full-quantum rotational product distributions at all energie
as well as comprehensive understanding of the spectrosc
features in the finalCN rotational distributions, Fig. 8 com
pares the SC and full-quantum results for the contribution
parallel transitions to the time evolved wave packet in
K-J representation at 70 fs after photoexcitation of the s
tem. These results are presented in panels~a! and ~b! in the
form of contour plots for the individual wave packet comp
nents associated with the populated electronic excited st
3P01 and1P1 , respectively. Figs. 8~a!, and 8~b! also include
the elliptical form of the energy contours defined by E
~2.18!, as a function ofK andJ at 266 and 248 nm, respec
tively, and show that the agreement between SC and f
quantum mechanical results observed at these two ene
can also be observed at any other photoexcitation ene
The lowest contour line, in Fig. 8~a!, shows that there are
small differences in the tail of the nuclear wave packet as
ciated with electronic excited state3P01. This feature is
consistent with Figs. 7~a! and 7~b!, where the tail of the SC
rotational distributions are slightly smaller than the fu
quantum amplitudes atJ.10. The peak in the rotationa
product distribution, observed in theJ51 – 3 range in Figs.
7~a! and 7~b!, is slightly more prominent for the SC simula

in
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tions than for the full quantum calculations. This is cons
tent with the fact that the peak of the SC wave packe
slightly more prominent than the full-quantum mechani
wave packet at these low rotational quantum numbers.
nally, the origin of the resonance feature at aboutJ55, and
the trend of this feature as the photoexcitation energy is
creased from 266 nm to 248 nm, can be traced to the sh
of the wave packet at the intersection with the elliptic ene
contour lines atJ55 in Fig. 8~a!.

The overall agreement between SC and full-quant
mechanical rotational product distributions for theI (2P3/2)
1CN channel can also be observed at any other photoe
tation energy, in terms of the shape and position of the ba
since there is almost quantitative agreement between SC
full-quantum calculations at all contour lines of the1P1

wave packet component presented in Fig. 8~b!.

C. Results obtained with empirical potential energy
surfaces

Figure 9 shows the comparison between the semicla
cal rotational product distributions~solid lines! and the cor-

FIG. 8. Contour plots of the time evolved wave packet in theK2J repre-
sentation at 70 fs after photoexcitation of the system to the3P01 electronic
excited state, obtained according to the semiclassical methodology pres
in Sec. II ~solid lines!, and the corresponding full-quantum mechanical
sults~dashed lines!. Panel~a! shows the3P01 wave packet component, an
the elliptical form of the energy contour defined by Eq.~2.18!, as a function
of K andJ at 266 and 248 nm, respectively. Panel~b! shows the projection
of the 1P1 wave packet component, and the corresponding elliptical ene
contour plots as a function ofK andJ at 266 and 248 nm, respectively.
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responding full-quantum mechanical results~dashed lines!
obtained with empirical potential energy surfaces from R
59, at two different photoexcitation energies. One sees
with exception of small differences the semiclassical ro
tional distributions are in almost quantitative agreement w
full-quantum mechanical results for all populated rotation
states of theCN photofragments. Figure 9 demonstrates t
capabilities of the semiclassical methodology presented
Sec. II for describing the photodissociation dynamics ofICN
according to the empirical potential energy surfaces use
previous theoretical studies, including those presented
Fig. 3.

The semiclassical results presented in this section w
converged with 83106 trajectories, after propagating th
system for 50 fs according to the programming model o
lined in Sec. II A. We find that the empirical potential ener
surfaces are significantly different from theab initio poten-
tial energy surfaces implemented in Sec. III B, and the wa
function of the system in theK2J representation become
asymptotic in less than 45 fs.

Figure 10 shows contour plots of the time evolved sem
classical wave packet components in theK2J representation
at 50 fs after photoexcitation of the system to the3P01 elec-

ted

y

FIG. 9. Rotational product distributions at different photoexcitation en
gies: ~a! 266 nm;~b! 248 nm. The solid lines are the semiclassical calcu
tions obtained as described in Sec. II, and the dashed lines are the c
sponding full-quantum mechanical results, using the empirical poten
energy surfaces from Ref. 59.
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5574 J. Chem. Phys., Vol. 112, No. 13, 1 April 2000 Coronado, Batista, and Miller
tronic excited state. Figure 10 also compares the semicla
cal results with the corresponding full-quantum mechan
wave packets, together with the elliptical form of the ener
contour defined as a function ofK andJ at 266 and 248 nm
respectively. Figure 10 shows that the agreement betw
SC and full-quantum mechanical results observed at the
photoexcitation energies presented in Fig. 9 can also be
served at any other photoexcitation energy.

IV. CONCLUSIONS

In this paper we have demonstrated that when
Meyer–Miller classical model for nuclear and electronic d
namics is quantized according to the Herman–Kluk SC–I
methodology, together with stationary phase MC method
describes theICN photodissociation dynamics in excelle
agreement with full-quantum mechanical calculations. W
have demonstrated the capabilities of the semiclassical m
odology by simulating the nonadiabatic photodissociat

FIG. 10. Contour plots of the time evolved wave packet in theK2J repre-
sentation at 50 fs after photoexcitation of the system to the3P01 electronic
excited state, using the empirical potential energy surfaces of Ref. 59.
sults obtained according to the semiclassical methodology presented in
II are displayed in solid lines, and the corresponding full-quantum mech
cal results in dashed lines. Panel~a! shows the3P01 wave packet compo-
nent, and the elliptical form of the energy contour defined by Eq.~2.18!, as
a function ofK andJ at 266 and 248 nm, respectively. Panel~b! shows the
projection of the1P1 wave packet component, and the corresponding el
tical energy contour plots as a function ofK and J at 266 and 248 nm,
respectively.
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dynamics ofICN using full ab initio PESs, and calculating
the ICN photoabsorption spectra, and the rotational ene
distributions of theCN photofragments.

Our SC results are in excellent agreement with fu
quantum calculations, demonstrating the potential of t
semiclassical methodology for studying reactions involvi
nonadiabatic complex quantum dynamics in small po
atomic systems. In the spirit of the original formulation
Meyer and Miller, the method treats nuclear and electro
degrees of freedom on the same dynamical footing and
volves the propagation of deterministic classical trajector
on an average PES. Here, however, the dynamics is tre
within the semiclassical IVR model rather than the mo
primitive quasiclassical model used earlier. Therefore, qu
tum coherence is incorporated within this description, a
any quenching of interference structure comes about via
structive interference, and noad hocdephasing approxima
tion needs to be introduced.
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