Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Supporting Information for

Surprisingly Big Linker-Dependence of Activity and Selectivity in CO₂ Reduction by an Iridium(I) Pincer Complex

Gongfang Hu,^{a,‡} Jianbing "Jimmy" Jiang,^{b,‡,*} H. Ray Kelly,^a Adam J. Matula,^a Yueshen Wu,^a Neyen Romano,^a Brandon Q. Mercado,^a Hailiang Wang,^{a,*} Victor S. Batista,^{a,*} Robert H. Crabtree,^{a,} Gary W. Brudvig^{a,*}

^aDepartment of Chemistry, Yale University, New Haven, Connecticut 06520, U.S.A., and Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, U.S.A.

^bDepartment of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, U.S.A.

[‡]Contributed equally

*Corresponding Authors
Jianbing "Jimmy" Jiang
Victor S. Batista
Hailiang Wang
Gary W. Brudvig

jianbing.jiang@uc.edu victor.batista@yale.edu hailiang.wang@yale.edu gary.brudvig@yale.edu

Table of Contents

General Methods	
Synthesis	
Characterization Data	
General Computational Details	
Crystal Data	
References	

General Methods

All air and/or moisture sensitive chemicals were handled in a nitrogen-filled glovebox. All solvents were used as received unless otherwise noted. Milipore water was used in all cases. ¹H and ³¹P NMR spectra were acquired at room temperature using a Bruker 400 MHz NMR spectrometer. Chemical shifts for ¹H NMR spectra were referenced to the residual ¹H resonances of the deuterated solvents. Reflection FT-IR spectra of neat solid films were measured using an Agilent Cary 660 FT-IR spectrometer. Absorption spectra were measured using a Shimadzu UV-2600 UV-visible spectrophotometer. XPS measurements were performed using a PHI Versa Probe II system with a monochromatic 1486.7 eV Al Ka X-ray source. SEM and EDS measurements were made on a Hitachi SU8230 field emission SEM.

Electrochemistry experiments were carried out using a Pine Wavenow potentiostat. Cyclic voltammetry measurements were made in a single compartment electrochemical cell under argon or CO₂ atmosphere using a glassy carbon electrode (3.0 mm diameter) as the working electrode and a platinum wire as the counter electrode. A Ag/AgCl wire in saturated KCl (aq) closed by a piece of fritted glass was dipped into the solutions, serving as the reference electrode (hereafter named Ag/AgCl). The potential of the Ag/AgCl electrode $E_{Ag/AgCl}$ was calibrated using the ferrocene/ferrocenium redox couple (Fc/Fc⁺, 0.5 mM) in anhydrous DMF with 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) before each set of experiments, which was measured to be -0.38 V vs. Fc/Fc⁺. The glassy carbon electrode was polished with 0.05 µm alumina, sonicated in water for 30 s, and dried with a nitrogen stream before each measurement. The Pt wire was flamed with a propane torch before each experiment. All experiments were performed in either anhydrous DMF or DMF with 5 M water with 0.1 M TBAPF₆ as the supporting electrolyte. The concentrations of iridium complexes were 0.5 mM.

The overpotential here was defined as the difference between the half-wave potential $E_{cat/2}$ (the potential at which the current reaches half of the maximum current) and the thermodynamic potentials of CO₂-to-CO conversion E^0 (-1.51 V vs. Fc/Fc⁺ in a 5 M solution of water in DMF) estimated in the literature.¹

 $E_{\text{cat/2}} = -1.78 \text{ V} vs. \text{ Ag/AgCl}; E_{\text{Ag/AgCl}} = -0.38 \text{ V} vs. \text{ Fc/Fc}^+. \text{ So,}$ $E_{\text{cat/2}} = -2.26 \text{ V} vs. \text{ Fc/Fc}^+$ Accordingly, the overpotential $\eta = E^0 - E_{\text{cat/2}} = -1.51 \text{ V} - (-2.26 \text{ V}) = 0.75 \text{ V}$

Controlled-potential electrolysis measurements were conducted in a two-compartment Hcell, separated with an anion-exchange membrane (Selemion DSV). The cathodic chamber held the working and reference electrodes in 12 mL of 0.1 M TBAPF₆ solution in DMF with 5 M water. The anodic chamber held the counter electrode in 12 mL of 0.1 M TBAPF₆ solution in DMF with 5 M water. The volume of the headspace of the cathodic chamber was measured to be 30 mL. Carbon paper electrodes (1 cm × 1 cm, DGS 3250, Fuel Cell Store) and a graphite electrode were used as the working and counter electrodes, respectively. A Ag/AgCl (in saturated KCl aqueous solution) electrode was used as the reference electrode. The cathodic solution was first deaerated by bubbling with argon for 30 min, then with CO₂ for 15 min, and kept under constant CO₂ bubbling (flow rate = 10 mL/min) to maintain the concentration of CO₂ in the electrolyte. The headspace sample of the cathodic chamber was delivered into the sample loop of an SRI gas chromatograph (multiple gas analyzer MG#5) through the CO₂ stream. The gas chromatograph was equipped with a 0.5 m Hayesep D column, a 2 m Molesieve column, a TCD detector (for H₂ detection), a methanizer, and an FID detector (for CO detection). N₂ was used as the carrier gas. The system was calibrated with a mixture of gas calibration standards and nitrogen in various ratios. 1.0 mL of the gas sample was injected from the sample loop in each measurement. CO and

 H_2 were detected simultaneously in one measurement with the FID detector and the TCD detector, respectively. The retention time for CO and H_2 were 6 min and 0.5 min, respectively. Faradaic efficiencies were determined by dividing the measured CO or H_2 by the amount expected based on the charge passed during the bulk electrolysis experiment. Bulk electrolysis at each potential was repeated at least twice.

Low-temperature diffraction data (ω -scans) were collected on a Rigaku MicroMax-007HF diffractometer coupled to a Dectris Pilatus3R detector with Mo K α ($\lambda = 0.71073$ Å) for the structures of 3-N and 3-O. The diffraction images were processed and scaled using Rigaku Oxford Diffraction software (CrysAlisPro; Rigaku OD: The Woodlands, TX, 2015). These data were refined as a 2-component twin. The fractional volume contribution of the minor twin component was freely refined to a converged value of 0.239(3). The structure was solved with SHELXT and was refined against F² on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The full numbering scheme of compounds 3-N and 3-O can be found in the full details of the X-ray structure determination (CIF). CCDC number 007c-18031 (compound 3-N) and 007c-18033 (compound 3-O) contain the supplementary crystallographic data for this paper. These data can be obtained free The Cambridge Crystallographic Data of charge from Center via www.ccdc.cam.ac.uk/data request/cif.

Synthesis

 $[Ir(COE)_2(acetone)_2]PF_6^2$ was prepared according to literature procedures.

Scheme S1. Synthetic routes for complexes 3-N and 3-O.

[{C₆H₃N-2,6-[CH₂P('Bu)₂]₂}Ir(CO)]PF₆ (3-C). Following a reported procedure,³ in a glovebox, a solution of S1 (57 mg, 0.14 mmol) in anhydrous acetone (1.5 mL) was treated dropwise with a solution of [Ir(COE)₂(acetone)₂]PF₆ (102 mg, 0.14 mmol) in acetone (1.5 mL). The resulting solution turned dark red immediately. The solution was stirred in the glovebox at room temperature for 1.5 h, and then taken out of the glovebox and bubbled with CO at room temperature for 15 min. The resulting yellow solution was dried *in vacuo*. Pentane (6.0 mL) was added to the solid sample. The suspension was sonicated for 30 s (benchtop sonicator), and then centrifuged (3245 g, 15 min). The supernatant was discarded. This washing procedure was repeated three times to afford the title compound as a yellow powder (92 mg, 83%): ¹H NMR (CDCl₃, 400 MHz) δ 7.93 (t, *J* = 8.0 Hz, 1H), 7.74 (d, *J* = 7.8 Hz, 2H), 3.89 (t, *J* = 3.9 Hz, 4H), 1.43–1.39 (m, 36H); ³¹P NMR (CDCl₃, 167 MHz) *d* 73.5 (s, *P*-Ir), –144 (sept, *J* = 733 Hz, *P*F₆).

[{C₆H₃N-2,6-[NHP('Bu)₂]₂}Ir(COE)]PF₆ (S3). A solution of complex S2⁴ (74 mg, 0.10 mmol) in dichloromethane (4.0 mL) was treated with AgPF₆ (25 mg, 0.10 mmol) in one portion, and stirred for 16 h at room temperature. The reaction mixture was then centrifuged (4200 rpm, 15 min). The supernatant was separated and concentrated to afford a reddish residue. The resulting sample was suspended in hexanes, sonicated for 30 s (benchtop sonicator), and then centrifuged (3245 g, 15 min). The supernatant was discarded. The washing procedure was repeated three times to afford the title compound as a reddish powder (73 mg, 86%): ¹H NMR (acetone-*d*₆, 400 MHz) δ 7.42 (t, *J* = 8.0 Hz, 1H), 6.47 (d, *J* = 8.0 Hz, 2H), 5.72 (br, 2H), 5.23 (m, 2H), 4.15 (m, 2H), 2.36 (m, 2H), 1.69 (m, 4H), 1.22–1.52 (m, 40H); ³¹P NMR (acetone-*d*₆, 167 MHz) δ 95 (br, *P*-Ir), -144 (sept, *J* = 723 Hz, *P*F₆). FT-IR 2969, 2910, 2848, 1617, 1562, 1478, 1175, 828, 557, 473 cm⁻¹.

 $[{C_6H_3N-2,6-[NHP('Bu)_2]_2}Ir(CO)]PF_6$ (3-N). A solution of complex S3 (25 mg, 0.030 mmol) in dichloromethane (10 mL) was bubbled with carbon monoxide for 30 min at room

temperature. The color of the solution changed from orange to dark yellow. The yellow solution was dried by mild argon gas flow. The resulting sample was suspended in hexanes, sonicated for 30 s (benchtop sonicator), and then centrifuged (3245 g, 15 min). The supernatant was discarded. The washing procedure was repeated three times to afford the title compound as a yellow powder (21 mg, 95%): ¹H NMR (CD₃OD, 400 MHz) δ 7.58 (t, *J* = 8.0 Hz, 1H), 6.52 (d, *J* = 8.0 Hz, 2H), 4.85 (s, 2H), 1.46 (d, *J* = 8.0 Hz, 18H), 1.44 (d, *J* = 8.0 Hz, 18H); FT-IR 2976, 2954, 2873, 1962, 1617, 1572, 1473, 1398, 1368, 1177, 1056, 839, 630, 552, 479 cm⁻¹; λ_{abs} [DMF/H₂O (5 M)] 355, 418, 472 nm.

{C₆H₃N-2,6-[OP('Bu)₂]₂}Ir(COE)]PF₆ (S5). A solution of pincer ligand S4⁴ (100 mg, 0.10 mmol) in acetone (2.0 mL) was treated with a freshly prepared solution of [Ir(COE)₂(acetone)₂]PF₆³ (325 mg, 0.10 mmol) in one portion, and stirred for 16 h at room temperature. The color changed from yellow to red. The red solution was dried by mild nitrogen gas flow. The resulting sample was suspended in hexanes, sonicated for 30 s (benchtop sonicator), and then centrifuged (3245 g, 15 min). The supernatant was discarded. The washing procedure was repeated three times to afford the title compound as a reddish powder (154 mg, 73%): ¹H NMR (acetone-*d*₆, 400 MHz) δ 8.31 (t, *J* = 8.0 Hz, 1H), 7.27 (d, *J* = 8.0 Hz, 2H), 4.69 (m, 2H), 2.67 (m, 2H), 1.47–1.56 (m, 46H); ³¹P NMR (acetone-*d*₆, 167 MHz) δ 207 (s, *P*-Ir), -144 (sept, *J* = 723 Hz, *P*F₆). FT-IR 2964, 2918, 2865, 1610, 1462, 1055, 833, 548 cm⁻¹.

{C₆H₃N-2,6-[OP('Bu)₂]₂}Ir(CO)]PF₆ (3-O). A solution of complex S5 (100 mg, 0.118 mmol) in dichloromethane (20 mL) was bubbled with carbon monoxide for 30 min at room temperature. The color of the solution changed from red to dark yellow. The yellow solution was dried by mild argon gas flow. The resulting sample was suspended in hexanes, sonicated for 30 s (benchtop sonicator), and then centrifuged (3245 g, 15 min). The supernatant was discarded. The washing procedure was repeated three times to afford the title compound as a yellow powder (87 mg, 96%): ¹H NMR (acetone-*d*₆, 400 MHz) δ 8.35 (t, *J* = 8.0 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 1.54 (d, *J* = 8.0 Hz, 18H), 1.52 (d, *J* = 8.0 Hz, 18H); ³¹P NMR (acetone-*d*₆, 167 MHz) δ 181 (br, *P*-Ir), -141 (sept, *J* = 752 Hz, *P*F₆); FT-IR 2954, 2924, 2865, 1980, 1621, 1445, 1369, 1333, 1038, 833, 638, 552, 482 cm⁻¹; λ_{abs} [DMF/H₂O (5 M)] 340, 415, 470 nm.

Characterization Data

Figure S1. FT-IR spectra of iridium complexes 3-N and 3-O before and after COE substitution with CO.

Figure S2. (A) X-ray crystal structure of **3-N**. The Ir-C distance refined to a value of 1.822(10) Å; Ir-P distances are 2.2846(8) Å and 2.2892(8) Å; Ir-N distance is 2.076(8) Å. (B) X-ray crystal structure of **3-O**. The model lies on the crystallographic 2-fold axis that contains the N-Ir-C-O atoms. The Ir-C distance refined to a value of 1.822(10) Å; both Ir-P distances are 2.2858(17) Å; Ir-N distance is 2.076(8). The counter ion (PF₆⁻) is omitted from both images. All hydrogen atoms are omitted except for those on nitrogen in **3-N**. All omissions are intended to enhance the clarity of the models.

Figure S3. Cyclic voltammetry of a 0.5 mM solution of 3-N in DMF under argon. Scan rate = 0.1 V/s.

Ir(acac)(CO)₂ in DMF under argon

Figure S4. Cyclic voltammetry of a 1.0 mM solution of $Ir(acac)(CO)_2$ in DMF under argon. Scan rate = 0.1 V/s. One irreversible reduction event was observed at -1.81 V vs. Ag/AgCl.

Figure S5. Scan-rate-dependent CV of 0.5 mM **3-N** in DMF with 5 M H₂O. Inset: square root of scan rate versus current for the 1st reduction peak.

Figure S6. Left: Foot-of-wave analysis of 0.5 mM **3-N** in CO₂-saturated DMF in the presence of 1 M or 5 M water. Scan rate = 0.1 V/s. Right: Foot-of-wave analysis of **3-N** with different scan rates.

Figure S7. Left: CV scans of a 0.5 mM solution of **3-N** in DMF/H₂O (5 M) with different concentrations of CO₂. Scan rate = 0.1 V/s. Right: plot of the normalized current at -1.9 V vs Ag/AgCl against the square root of the CO₂ concentration.

Figure S8. Left: CV scans of a 0.5 mM solution of **3-N** in CO₂-saturated DMF with different concentrations of water. Scan rate = 0.1 V/s. Right: the plot of the normalized current at -1.9 V vs Ag/AgCl against different water concentrations.

Figure S9. Cyclic voltammetry of a 0.5 mM solution of **3-C** in DMF under argon. Scan rate = 0.1 V/s.

Figure S10. Cyclic voltammetry of a 0.5 mM solution of **3-O** in DMF under argon. Scan rate = 0.1 V/s.

Figure S11. ¹H NMR spectra of the electrolyte solutions of **3-N** (A) and **3-O** (B) after CPE, and the electrolyte solution after CPE with authentic formic acid added (C). Phenol is used as an internal reference for the quantification of any liquid products.

Figure S12. Absorption spectra of 3-N, 3-O, and 3-C in DMF or CH₂Cl₂, and spectra of the corresponding ligands in CH₂Cl₂.

Table S1. Current densities (j) and Faradaic efficiencies (FE) from controlled-potential electrolyses with the studied compounds or the blank solution.

Detential	$\mathbf{A} = (\mathbf{A} - \mathbf{C}1 + \mathbf{U})$	15	1.(17	1.0	1.0	2.0
Potential v	s. Ag/AgCI(V)	-1.3	-1.0	-1./	-1.8	-1.9	-2.0
	j (mA/cm ²)	0.28	0.46	0.83	2.0	5.0	7.8
3-N	FE(CO)	0	7.5	23	71	98	100
	FE(H ₂)	0.25	0.75	1.3	1.7	1.8	1.3
	$j (\mathrm{mA/cm^2})$		0.86	3.6	3.7	3.4	3.8
3- C	FE(CO)		5.1	47	44	39	43
	$FE(H_2)$		62	48	47	54	47
	$j (\mathrm{mA/cm^2})$		0.6	0.78	1.0	1.26	1.85
3-0	FE(CO)		0	0	0	14	20
	$FE(H_2)$		0.5	0	0.1	0.4	0.1
	$j (mA/cm^2)$	0.19	0.73	0.80	0.88	0.95	1.3
Blank	FE(CO)	0	0	0	0	4	11
	FE(H ₂)	0.31	1.1	0.56	1.4	1.1	1.3

Figure S13. Absorption spectra of the electrolyte solutions of **3-N** (blue) and **3-O** (red) before (solid) and after (dash) 1 hour of CPE. The same amounts of aliquots from the electrolyte solution were used.

Figure S14. Absorption spectra of the electrolyte solutions of **3-N** before (black) and after (red) the 67 hours of CPE. The same amounts of aliquots from the electrolyte solution were used.

Figure S15. SEM image of the carbon paper electrode (A) before and (B) after 1 hour electrolysis with **3-N**.

Figure S16. Absence of iridium signal in the EDS spectra of the electrode after 1 hour of electrolysis. A carbon paper electrode was used as the electrode.

Figure S17. Absence of nitrogen and iridium signals in the XPS spectra of the electrode after 1 hour of electrolysis. (A) N signal of **3-N**, (B) N signal of **3-O**, (C) Ir signal of **3-N**, and (D) Ir signal of **3-O**. A carbon paper electrode was used as the electrode.

Figure S18. The 1 H NMR spectrum of compound 3-N.

Figure S19. The ³¹P NMR spectrum of compound 3-N.

Figure S20. The ¹H NMR spectrum of compound 3-C.

General Computational Details

Density functional theory (DFT) calculations were performed using the B3LYP functional⁶ as implemented in Gaussian 2016, revision A.03.⁷ All optimizations were performed using the default "ultrafine" integration grid (99 radial shells and 590 angular points per shell) and "tight" convergence criteria (0.000015 a.u. for maximum force, 0.000010 a.u. for RMS force, 0.000060 a.u. for maximum displacement, 0.000040 a.u. for RMS displacement). Stationary points were verified by the absence of imaginary frequencies. All geometry optimizations and frequency calculations were performed with the $6-31+G(d,p)^8$ basis set for all nonmetal atoms (C, H, N, O, P) and the DEF2SVP^{8a,9} basis set and effective core potential for the Ir center. Single point calculations employed the $6-311+G(2df,p)^{8c,10-12}$ basis set for nonmetal atoms and the DEF2TZVP^{8a,9} basis set and effective core potential for Ir. The 5 M water in DMF mixture was modeled using a generic SMD¹³ solvent with a dielectric constant of 46.21 (keyword "Eps") and square of the index of refraction at high frequency of 4.28 (keyword "EpsInf"). These parameters were experimentally determined for the 5 M water in DMF mixture at 298 K.¹⁴ All reported orbital energies, density plots, and population analyses were obtained from the single point calculations performed in solvent. Vibrational frequencies reported in Table S2 were scaled such that the CO stretching frequency of 3-O matched the experimental value (scaling factor of 0.9572) as there was no reference scaling factor for the chosen functional and mixed basis set. All molecular orbital surfaces were plotted with an isovalue of 0.03. Visualization of molecular geometries and isosurfaces was performed in GaussView 6.15

Calculation of Reduction Potentials

Reduction potentials were computed according to our previously reported methodology.¹⁶ The Born-Haber thermodynamic cycle in Scheme S2 was used to obtain the change in free energy in solution, $\Delta G(sol)$, where reactant R is reduced to form product P. Optimization and frequency calculations were performed to obtain Gibbs free energies in the gas phase, while single point energies were computed in solution.

Scheme S2. Thermodynamic cycle utilized for calculation of reduction potentials.

The Nernst equation was then used to convert the change in free energy in solution to the absolute reduction potential as follows

$$E_{abs} = \frac{-\Delta G(sol)}{nF}$$

where *n* is the number of electrons transferred in the reaction and *F* is Faraday's constant. In order to compare the computed reduction potential with measurements, it is necessary to use a reference redox couple. It has been shown that using a reference complex with a metal center in the same row as that of the complex of interest greatly reduces systematic DFT error.¹⁶ Thus, we used the $Ir(acac)(CO)_2^{0/-}$ redox couple as a reference. Relative reduction potentials *vs.* $Ir(acac)(CO)_2^{0/-}$ were computed for each complex of interest. The reported values *vs.* Ag/AgCl (Table S2) were determined by shifting the relative potentials by the experimentally measured reference potential for $Ir(acac)(CO)_2^{0/-}$, -1.80 V *vs.* Ag/AgCl (Figure S4).

Complex	Experimental (cm ⁻¹)	Computed (cm ⁻¹)	Computed After Reduction (cm ⁻¹)
 3-N	1962	1967	1875
3-С	1959	1961	1881
 3-0	1980	1980	1890
 5-0	1980	1980	1890

Table S2. Comparison of Experimental and Computed CO Stretching Frequencies.^a

^aComputed frequencies were scaled by 0.9572 as explained in General Computational Details.

Table S3. Com	parison of Experin	nental and Computed Reduction	Potentials (V vs. Ag/AgCl).
Complex	Experimental	Computed 1 st Reduction	Computed 2 nd Reduction

3-N	-1.91	-1.93	-2.39
3- C	-1.57	-1.81	-2.29
3-0	-1.44	-1.67	-2.60

Figure S21. HOMOs (left) and LUMOs (right) of 3-C (top), 3-N (middle), and 3-O (bottom).

Figure S22. Singly occupied molecular orbitals (SOMOs) of reduced complexes **3-N** (left), **3-C** (middle), and **3-O** (right).

Figure S23. Mulliken spin population on the pyridyl N, Ir center, and CO of **3-N** (left), **3-C** (middle), and **3-O** (right). Lighter green indicates greater spin population according to the indicated scale. Note that the spin population of the C at the C4 position of the pyridyl ring has the largest spin population in all complexes (Table S4), but has been omitted from the color scale for clarity.

Table S4. Mulliken Spin Population by Atom.

Atom	3-N	3-С	3-0
0	0.053	0.037	0.049
C1	0.145	0.085	0.114
Ir	0.113	0.040	0.055
Р	0.078	0.030	0.058
Ν	0.070	0.185	0.110
C2	0.161	0.168	0.196
C3	-0.081	-0.093	-0.112
C4	0.357	0.437	0.418

Note: Mulliken spin populations on other atoms (including the linkers) were negligible in all cases.

Figure S24. Electron density differences (isovalue = 0.0014) after reduction of **3-N** (left), **3-C** (middle), and **3-O** (right). Purple and light blue surfaces correspond to an increase and decrease in electron density, respectively. Electron densities were computed using the geometry of the oxidized complexes to exclude inconsequential differences due to small changes in geometry.

Complex	Partial Charge on Ir (e)	Partial Charge on Ir After Reduction (e)
3-N	0.290	0.197
3-С	0.270	0.213
3-0	0.300	0.226

Table S5. CM5 Partial Charges on Ir Atom Before and After Reduction

Energy: -1890.16329791			
Atom	x (Å)	y (Å)	z (Å)
Ir	0.000001	-0.402225	0.000042
С	-0.000015	-2.254531	0.000300
0	-0.000021	-3.415432	0.000461
Р	-2.330772	-0.071746	0.012175
Р	2.330781	-0.071779	-0.012187
Ν	0.000014	1.727719	-0.000257
С	1.177122	2.416918	-0.041343
С	-1.177085	2.416944	0.040629
С	1.208998	3.816472	-0.041678
С	-1.208943	3.816499	0.040562
С	0.000032	4.504778	-0.000656
Η	2.156792	4.341010	-0.074096
Η	-2.156731	4.341059	0.072829
Η	0.000039	5.590349	-0.000812
С	-3.294478	-0.559306	1.582811
С	-3.236641	-0.466791	-1.619551
С	3.294473	-0.559794	-1.582689
С	3.236648	-0.466378	1.619648
С	-4.568020	0.285006	1.800551
Η	-5.310140	0.161438	1.010612
Η	-5.037006	-0.034424	2.738243
Η	-4.341566	1.350344	1.911961
С	-2.333732	-0.307525	2.767095
Η	-1.431723	-0.921010	2.697457
Η	-2.031146	0.742460	2.831898
Η	-2.851781	-0.561254	3.699241
С	-3.656308	-2.057781	1.528936
Η	-4.428948	-2.273341	0.786454
Η	-2.787484	-2.691114	1.323391
H	-4.052887	-2.357744	2.505402
С	-4.732800	-0.098990	-1.605952
H	-5.135584	-0.235940	-2.616144
H	-5.314491	-0.738945	-0.938245
H	-4.910973	0.946742	-1.332246
C	-3.068517	-1.968683	-1.938984
H	-3.547224	-2.175077	-2.902993
H	-2.015580	-2.248227	-2.027031
H	-3.537813	-2.619183	-1.197941
С	-2.520027	0.352690	-2.716771
H	-2.662845	1.429680	-2.590231

Table S6. Minimum energy geometries of complexes and corresponding SCF energy (a.u.) in solvent at UB3LYP/DEF2TZVP/6-311+G(2df,p) level. [3-N]⁺

Н	-1.445702	0.145255	-2.741373
Н	-2.939533	0.073909	-3.689957
С	3.656255	-2.058267	-1.528404
Н	4.428874	-2.273653	-0.785849
Н	2.787405	-2.691516	-1.322706
Н	4.052842	-2.358505	-2.504782
С	4.568041	0.284418	-1.800660
Н	5.310164	0.161034	-1.010694
Н	5.037010	-0.035274	-2.738272
Н	4.341623	1.349734	-1.912348
С	2.333736	-0.308309	-2.767042
Н	1.431700	-0.921734	-2.697226
Н	2.031197	0.741671	-2.832146
Н	2.851771	-0.562329	-3.699117
С	4.732820	-0.098640	1.605933
Н	5.135606	-0.235316	2.616161
Н	5.314480	-0.738811	0.938405
Н	4.911033	0.947005	1.331924
С	2.520073	0.353451	2.716633
Н	2.662936	1.430398	2.589779
Н	1.445739	0.146070	2.741300
Н	2.939570	0.074934	3.689898
С	3.068464	-1.968170	1.939518
Н	3.547157	-2.174303	2.903590
Н	2.015515	-2.247644	2.027637
Н	3.537739	-2.618905	1.198667
Ν	2.330166	1.664722	-0.088746
Η	3.195682	2.188972	-0.102700
Ν	-2.330138	1.664776	0.088244
Н	-3.195648	2.189039	0.102046

[3-N]⁰ Energy: -1890.23890156

Energy: 1090.25090150			
Atom	x (Å)	y (Å)	z (Å)
Ir	-0.000002	-0.380173	0.000037
С	-0.000019	-2.235232	0.000283
0	-0.000030	-3.411955	0.000439
Р	-2.305266	-0.040740	0.031850
Р	2.305270	-0.040788	-0.031874
Ν	0.000016	1.711688	-0.000256
С	1.175072	2.444823	-0.072777
С	-1.175027	2.444864	0.072053
С	1.206889	3.827943	-0.071297
С	-1.206822	3.827984	0.070174
С	0.000040	4.552657	-0.000666
Η	2.163378	4.338666	-0.130861
Η	-2.163302	4.338740	0.129589

Н	0.000049	5.636375	-0.000822
С	-3.306780	-0.598519	1.569521
С	-3.243301	-0.430700	-1.602470
С	3.306779	-0.599019	-1.569385
С	3.243299	-0.430307	1.602557
С	-4.588335	0.228355	1.804308
Н	-5.330321	0.111966	1.012667
Н	-5.055485	-0.105108	2.739615
Н	-4.366002	1.293738	1.925382
C	-2.371575	-0.381873	2.779910
Ĥ	-1.457707	-0.974805	2.692553
Н	-2.079672	0.668151	2.880135
H	-2.901273	-0.677310	3.695086
C	-3.654634	-2.096663	1.467258
Ĥ	-4 411324	-2 297751	0 703590
н	-2 772972	-2 709233	1 252927
н	-4.063491	-2 435147	2 427482
C II	-4 749861	-0 114177	-1 572993
н	-5 158947	-0.232669	-2 584605
Н	-5 306851	-0.790366	-0.919019
н	-4 956404	0.917142	-1 264544
C	-3.025287	-1.911457	-1.977308
H	-3.471016	-2.098837	-2.962484
Н	-1.960174	-2.150931	-2.038358
Н	-3.491138	-2.602656	-1.270606
C	-2.569220	0.446869	-2.680656
Ĥ	-2.743439	1.513646	-2.511283
H	-1.488001	0.279901	-2.709071
Н	-2.986810	0.186618	-3.661415
С	3.654618	-2.097137	-1.466687
Н	4.411308	-2.298011	-0.702962
Н	2.772950	-2.709636	-1.252177
Н	4.063470	-2.435903	-2.426814
С	4.588341	0.227777	-1.804410
Н	5.330327	0.111609	-1.012738
Н	5.055485	-0.105960	-2.739622
Н	4.366016	1.293127	-1.925791
С	2.371576	-0.382715	-2.779836
Н	1.457702	-0.975613	-2.692307
Н	2.079682	0.667282	-2.880366
Н	2.901270	-0.678423	-3.694926
С	4.749865	-0.113829	1.572987
Н	5.158954	-0.232054	2.584629
Н	5.306834	-0.790210	0.919194
Н	4.956431	0.917401	1.264255
С	2.569240	0.447584	2.680495
Н	2.743482	1.514309	2.510815
Н	1.488018	0.280648	2.708961

Η	2.986828	0.187604	3.661326
С	3.025247	-1.910953	1.977809
Н	3.470953	-2.098065	2.963047
Н	1.960128	-2.150387	2.038903
Н	3.491099	-2.602361	1.271312
Ν	2.334653	1.670698	-0.164434
Н	3.203193	2.187766	-0.161676
Ν	-2.334622	1.670784	0.163930
Η	-3.203153	2.187865	0.161020

[3-N]⁻ **Energy:** -1890.29942423

Atom	x (Å)	y (Å)	z (Å)
Ir	-0.021070	-0.437652	0.900237
С	-0.022173	-1.734853	2.218865
0	-0.052017	-2.660016	2.971097
Р	-2.217408	-0.129973	0.238693
Р	2.178314	-0.188567	0.194677
Ν	-0.003854	1.728236	0.466424
С	1.172382	2.376889	0.233054
С	-1.166667	2.405733	0.249618
С	1.225030	3.749163	-0.054846
С	-1.191550	3.776171	-0.044306
С	0.024456	4.457129	-0.171974
Н	2.185119	4.237391	-0.196214
Н	-2.141739	4.286208	-0.175215
Н	0.035587	5.520905	-0.393479
С	-3.654294	-0.550364	1.479452
С	-2.940831	-0.457342	-1.607209
С	3.022102	-0.440875	-1.625385
С	3.551695	-0.668871	1.488158
С	-4.941105	0.286035	1.311225
Н	-5.448506	0.125555	0.360188
Н	-5.649356	0.013272	2.107235
Н	-4.739283	1.357310	1.424829
С	-3.126228	-0.268794	2.902227
Н	-2.257015	-0.879343	3.144804
Н	-2.829711	0.778840	3.014264
Н	-3.927873	-0.482223	3.625979
С	-3.985135	-2.051178	1.362567
Н	-4.476778	-2.295218	0.415005
Н	-3.081334	-2.663117	1.450923
Н	-4.668167	-2.344301	2.172660
С	-4.423588	-0.199216	-1.919593
Н	-4.602278	-0.331205	-3.000059
Н	-5.089475	-0.896132	-1.401338
Н	-4.733228	0.823588	-1.671759

С	-2.596309	-1.920488	-1.943924
Н	-2.767003	-2.110274	-3.014834
Н	-1.546722	-2.132104	-1.712838
Н	-3.210155	-2.631840	-1.380888
С	-2.092488	0.459207	-2.507384
Н	-2.389029	1.510273	-2.418326
Н	-1.030821	0.385212	-2.251394
Н	-2.214063	0.164988	-3.560458
С	3.467887	-1.902692	-1.788093
Н	4.383106	-2.127767	-1.231043
Н	2.684904	-2.593066	-1.451948
Н	3.669568	-2.120699	-2.848763
С	4.167372	0.509769	-2.021902
Н	5.066054	0.389670	-1.413620
Н	4.459869	0.321997	-3.068856
Н	3.856182	1.560381	-1.975207
С	1.852402	-0.185399	-2.591133
Н	1.009399	-0.846452	-2.370731
Н	1.487764	0.845785	-2.520200
Н	2.179131	-0.356627	-3.628279
С	4.994327	-0.272462	1.121257
Н	5.655491	-0.494387	1.971886
Н	5.379351	-0.827091	0.261567
Н	5.091484	0.799970	0.914134
С	3.192895	0.039003	2.812795
Н	3.286368	1.126277	2.722891
Н	2.166019	-0.182335	3.112533
Н	3.881951	-0.303345	3.599366
С	3.488012	-2.193758	1.717032
Н	4.170262	-2.468935	2.534606
Н	2.481277	-2.510439	1.998648
Н	3.790247	-2.760637	0.831455
Ν	2.300611	1.581633	0.280366
Н	3.150323	2.050899	-0.005988
Ν	-2.316400	1.639195	0.331304
Н	-3.153090	2.120261	0.023774

[3-C]⁺ **Energy:** -1858.01786256

Energy1050.01700250			
Atom	x (Å)	y (Å)	z (Å)
Ir	-0.000004	-0.345308	0.000013
С	-0.000033	-2.188028	0.000246
0	-0.000048	-3.350108	0.000393
Р	-2.345948	-0.050947	0.100616
Р	2.345948	-0.051052	-0.100653
Ν	0.000032	1.818096	-0.000262
С	1.143079	2.505762	-0.282912

С	-1.142991	2.505874	0.282213
Č	1 166497	3 901091	-0 276844
Č	-1 166361	3 901202	0 275789
C	0.000080	4 609039	-0.000617
н	2 091929	4 420057	-0 501785
н	-2 091775	4,420257	0 500599
	0.000000	5 604616	0.000755
	2 225661	0.062800	-0.000733
	-3.323001	-0.962890	1.408329
	-3.213139	-0.072734	-1.003949
	3.325051	-0.963383	-1.46811/
C	3.213121	-0.072438	1.603927
C C	-4.626780	-0.233213	1.869366
H	-5.347960	-0.166023	1.053965
H	-5.103611	-0.797172	2.679413
H	-4.443871	0.775704	2.251630
C	-2.401866	-1.038915	2.705814
Н	-1.482223	-1.590618	2.498390
Н	-2.123975	-0.050795	3.087821
Н	-2.937268	-1.556288	3.510277
С	-3.659010	-2.398702	1.011363
Н	-4.400610	-2.417289	0.208937
Н	-2.773724	-2.949985	0.681784
Н	-4.086680	-2.945944	1.859102
С	-4.730395	0.184453	-1.535266
Н	-5.117965	0.274363	-2.556875
Н	-5.270994	-0.636072	-1.057959
Н	-4.979163	1.114576	-1.013623
С	-2.938858	-1.431206	-2.286407
Н	-3.384053	-1.418928	-3.288082
Н	-1.866167	-1.611839	-2.397667
Н	-3.375125	-2.273921	-1.746149
С	-2.553199	1.035213	-2.456359
Н	-2.767894	2.040768	-2.081102
Н	-1.468358	0.907330	-2.519812
Н	-2.955928	0.978854	-3.474060
Ē	3.658959	-2.399082	-1.010764
Ĥ	4 400551	-2 417473	-0.208325
H	2 773656	-2 950255	-0.681049
н	4 086625	-2 946560	-1 858353
C	4 626792	-0 233842	-1 869332
н	5 347963	-0 166451	-1 053940
н	5.103620	-0 798029	-2 679221
н	4 443909	0.774976	-2 251866
	2 401867	-1 030713	-2 705591
	1 /87711		-2.703371 _7 /08033
	2 12/000	-1.5713+2	-2.720055
	2.124000	1 557207	2 500012
	2.75/20/ 1 720202	-1.33/30/ 0.18/717	-3.307713
U	4./30303	0.104/1/	1.333174

Н	5.117946	0.274877	2.556784
Н	5.270968	-0.635941	1.058100
Η	4.979178	1.114702	1.013318
С	2.553197	1.035765	2.456042
Н	2.767903	2.041216	2.080516
Н	1.468354	0.907911	2.519532
Н	2.955927	0.979673	3.473758
С	2.938804	-1.430706	2.286738
Н	3.383987	-1.418174	3.288414
Н	1.866109	-1.611289	2.398032
Н	3.375062	-2.273571	1.746706
С	-2.380575	1.731818	0.664357
Н	-2.432961	1.702430	1.758940
Н	-3.277853	2.259858	0.327804
С	2.380635	1.731565	-0.664860
Η	2.433016	1.701890	-1.759435
Н	3.277931	2.259662	-0.328447

[**3-C**]⁰ Energy: -1858.09862303

Atom	x (Å)	y (Å)	z (Å)
Ir	0.000006	-0.349399	0.000059
С	0.000023	-2.194098	0.000480
0	0.000033	-3.369843	0.000751
Р	-2.326711	-0.035471	0.117615
Р	2.326719	-0.035496	-0.117636
Ν	-0.000008	1.758357	-0.000414
С	1.150361	2.503472	-0.303039
С	-1.150384	2.503595	0.301879
С	1.165012	3.881259	-0.294034
С	-1.165048	3.881377	0.292266
С	-0.000021	4.625507	-0.001048
Н	2.092845	4.390789	-0.541504
Н	-2.092885	4.391009	0.539510
Н	-0.000025	5.709022	-0.001286
С	-3.331001	-0.995215	1.440664
С	-3.209769	-0.028113	-1.586518
С	3.331031	-0.995825	-1.440244
С	3.209763	-0.027355	1.586500
С	-4.627848	-0.271821	1.865742
Н	-5.347578	-0.173691	1.051557
Н	-5.110786	-0.853803	2.661025
Н	-4.431982	0.725340	2.271578
С	-2.423286	-1.132912	2.684810
Н	-1.499120	-1.667602	2.455098
Н	-2.147180	-0.162650	3.109834
Н	-2.968639	-1.689057	3.458324

С	-3.672718	-2.411353	0.932876
Н	-4.406136	-2.395803	0.122201
Н	-2.785904	-2.951960	0.589833
Н	-4.111616	-2.987726	1.756887
С	-4.728692	0.215429	-1.515009
Н	-5.117424	0.333175	-2.534674
Н	-5.265831	-0.621028	-1.060104
Н	-4.979866	1.129223	-0.965899
С	-2.923239	-1.359504	-2.313267
Н	-3.340509	-1.309269	-3.327144
Н	-1.846995	-1.536533	-2.394632
Н	-3.373599	-2.221175	-1.814661
С	-2.562819	1.111669	-2.406628
Н	-2.789476	2.101200	-1.999721
Н	-1.475346	1.004087	-2.453270
Н	-2.956331	1.073883	-3.430246
С	3.672745	-2.411735	-0.931817
Н	4.406154	-2.395821	-0.121141
Н	2.785928	-2.952190	-0.588540
Н	4.111653	-2.988476	-1.755565
С	4.627881	-0.272612	-1.865621
Н	5.347601	-0.174122	-1.051470
Н	5.110832	-0.854940	-2.660643
Н	4.432015	0.724370	-2.271895
С	2.423341	-1.134082	-2.684346
Н	1.499163	-1.668656	-2.454413
Н	2.147259	-0.164012	-3.109824
Η	2.968706	-1.690588	-3.457591
С	4.728683	0.216179	1.514903
Н	5.117398	0.334381	2.534522
Н	5.265842	-0.620472	1.060378
Н	4.979852	1.129736	0.965395
С	2.562785	1.112786	2.406090
Н	2.789436	2.102137	1.998740
Н	1.475313	1.005212	2.452766
H	2.956284	1.075466	3.429730
С	2.923252	-1.358425	2.313845
H	3.340515	-1.307726	3.327703
H	1.847012	-1.535440	2.395285
H	3.373634	-2.220310	1.815630
C	-2.364041	1.720608	0.735497
H	-2.355639	1.626282	1.830029
H	-3.287934	2.244111	0.468982
	2.364022	1.720304	-0.736315
H	2.355608	1.625480	-1.830803
H	3.287912	2.243939	-0.470049

Atom	v (Å)	y (Å)	7 (Å)
Atom	X (A)	<u>y (A)</u>	2(A)
Ir C	0.011307	-0.554084	0.230302
	0.043461	-2.188445	0.505649
	0.046162	-3.380012	0.557651
P P	-2.288655	-0.045842	0.180460
P V	2.295306	-0.028506	-0.069345
N	0.000808	1.750003	0.196884
C	1.120894	2.521732	-0.192521
C	-1.184701	2.505955	0.373863
C	1.082657	3.889916	-0.335780
C	-1.241930	3.873156	0.222136
C	-0.102963	4.638902	-0.125028
Н	1.997104	4.392255	-0.649278
Н	-2.198828	4.363749	0.396602
Н	-0.138414	5.716204	-0.239923
C	-3.427451	-0.992943	1.422364
С	-3.136779	-0.038591	-1.587215
С	3.267690	-0.950741	-1.467020
С	3.341031	-0.064363	1.568912
С	-4.747851	-0.257544	1.741779
Η	-5.394611	-0.139540	0.870807
Η	-5.306762	-0.836778	2.490493
Η	-4.567366	0.733851	2.169749
С	-2.650113	-1.157444	2.748587
Η	-1.703069	-1.680107	2.599589
Н	-2.413762	-0.194017	3.210658
Η	-3.274760	-1.727053	3.454860
С	-3.739623	-2.403804	0.881458
Η	-4.398575	-2.377767	0.008797
Η	-2.827238	-2.944707	0.612710
Η	-4.252689	-2.983632	1.661381
С	-4.655416	0.202192	-1.612599
Η	-4.986730	0.324195	-2.655709
Η	-5.221544	-0.635235	-1.193624
Η	-4.938849	1.115114	-1.076527
С	-2.798372	-1.362995	-2.298679
Н	-3.095539	-1.296027	-3.355455
Η	-1.720727	-1.554523	-2.249834
Н	-3.316329	-2.222498	-1.863409
C	-2.445572	1.103024	-2.363470
Н	-2.732784	2.091325	-1.993522
Н	-1.355644	1.017523	-2.291644
Н	-2.731207	1.040473	-3.423502

[3-C]⁻ **Energy:** -1858.15120604

С	3.618150	-2.379304	-1.004119
Н	4.384725	-2.386818	-0.223844
Н	2.737079	-2.909307	-0.629247
Н	4.013805	-2.949778	-1.856364
С	4.547281	-0.229870	-1.943791
Н	5.318168	-0.177760	-1.173014
Н	4.973660	-0.777048	-2.797373
Н	4.338782	0.788934	-2.287142
С	2.305870	-1.066260	-2.670647
Н	1.372169	-1.556915	-2.383543
Н	2.040416	-0.086139	-3.080280
Н	2.797511	-1.644163	-3.468042
С	4.851269	0.177518	1.398258
Н	5.312830	0.291693	2.389862
Н	5.355904	-0.657926	0.903485
Н	5.065043	1.093119	0.834866
С	2.758065	1.066190	2.447313
Н	2.980349	2.060548	2.048122
Н	1.670402	0.970165	2.533771
Н	3.198039	1.000795	3.452516
С	3.103062	-1.398577	2.303469
Н	3.557755	-1.349515	3.303261
Н	2.029759	-1.584357	2.418229
Н	3.542733	-2.253601	1.781896
С	-2.377122	1.710809	0.811250
Н	-2.337577	1.566251	1.904021
Н	-3.314063	2.226314	0.573398
С	2.340967	1.744450	-0.620548
Н	2.338189	1.684328	-1.719961
Н	3.265253	2.256925	-0.329624

		5, 1) 2) 1) 05 00 002	
Atom	x (Å)	у (Å)	z (Å)
Ir	-0.000001	0.475554	0.000037
С	-0.000020	2.335035	0.000105
0	-0.000032	3.493638	0.000147
Р	2.314431	0.087965	0.004094
Р	-2.314426	0.087918	-0.004049
Ν	0.000020	-1.636220	-0.000040
С	1.170896	-2.326329	0.018572
С	-1.170841	-2.326352	-0.018703
С	1.212520	-3.717672	0.018590
С	-1.212438	-3.717695	-0.018823
С	0.000049	-4.406463	-0.000142
Н	2.169676	-4.222932	0.033185
Н	-2.169582	-4.222974	-0.033455
Н	0.000060	-5.491847	-0.000181
С	3.290734	0.444546	1.589083
C	3.242058	0.415352	-1.615494
C	-3.290733	0.444594	-1.589013
Č	-3.242061	0.415169	1.615561
C	4.537914	-0.449532	1.749656
Н	5.316225	-0.229476	1.018850
Н	4.961862	-0.266201	2.743547
H	4.289853	-1.511995	1.686000
C	2.320927	0.155201	2.758712
H	1.421877	0.775740	2.710558
Н	2.016390	-0.895952	2.786897
H	2.837665	0.371929	3.700436
C	3.686513	1.936250	1.608698
H	4.450503	2.173451	0.863741
Н	2.829917	2.601364	1.456974
Н	4.108853	2.170987	2.592040
С	4.715460	-0.032652	-1.592249
Н	5.120423	0.059390	-2.606552
Н	5.329715	0.595527	-0.942927
Н	4.828350	-1.076402	-1.285945
С	3.146850	1.925486	-1.929846
Н	3.637918	2.109034	-2.892014
Н	2.109794	2.259887	-2.019758
Н	3.649204	2.548426	-1.185754
С	2.484939	-0.372980	-2.709407
Η	2.579799	-1.454130	-2.575109
H	1.422497	-0.111417	-2.740939
Н	2.921235	-0.120267	-3.682104
Ċ	-3.686530	1.936295	-1.608526
Ĥ	-4.450526	2.173435	-0.863556
H	-2.829943	2.601409	-1.456753

[3-O]⁺ **Energy:** -1929.90308082

Η	-4.108870	2.171095	-2.591853
С	-4.537901	-0.449488	-1.749649
Η	-5.316218	-0.229491	-1.018831
Η	-4.961849	-0.266096	-2.743529
Η	-4.289829	-1.511952	-1.686063
С	-2.320921	0.155342	-2.758662
Η	-1.421879	0.775887	-2.710464
Η	-2.016373	-0.895806	-2.786919
Η	-2.837660	0.372129	-3.700371
С	-4.715453	-0.032863	1.592283
Η	-5.120418	0.059093	2.606593
Н	-5.329721	0.595351	0.943008
Η	-4.828321	-1.076593	1.285901
С	-2.484926	-0.373224	2.709419
Η	-2.579762	-1.454367	2.575044
Η	-1.422490	-0.111640	2.740971
Н	-2.921229	-0.120590	3.682133
С	-3.146884	1.925283	1.930020
Η	-3.637951	2.108753	2.892203
Η	-2.109835	2.259701	2.019950
Η	-3.649255	2.548264	1.185974
0	-2.321895	-1.629770	-0.041588
0	2.321935	-1.629725	0.041509

[3-O]⁰ Energy: -1929.98908751

Encigy1929.08908751				
Atom	x (Å)	y (Å)	z (Å)	
Ir	-0.000003	0.467001	0.000008	
С	0.000028	2.327297	0.000047	
0	0.000048	3.501360	0.000071	
Р	2.288273	0.062632	0.009426	
Р	-2.288292	0.062709	-0.009426	
Ν	-0.000037	-1.603755	-0.000036	
С	1.170828	-2.344177	0.031508	
С	-1.170927	-2.344136	-0.031610	
С	1.212327	-3.717680	0.030684	
С	-1.212473	-3.717638	-0.030843	
С	-0.000085	-4.444539	-0.000094	
Н	2.177845	-4.209500	0.055685	
Н	-2.178008	-4.209425	-0.055864	
Н	-0.000103	-5.527663	-0.000116	
С	3.301840	0.472127	1.570201	
С	3.239843	0.407711	-1.606822	
С	-3.301846	0.472307	-1.570183	
С	-3.239850	0.407750	1.606838	
С	4.553372	-0.413881	1.739357	
Н	5.331441	-0.196131	1.006794	

Н	4.978772	-0.228579	2.733685
Н	4.303713	-1.476240	1.674972
С	2.355466	0.202945	2.762931
Н	1.448953	0.811223	2.706277
Н	2.054682	-0.848506	2.809715
Н	2.885366	0.442813	3.693455
С	3.689179	1.964414	1.560618
Н	4.441112	2.193164	0.799836
Н	2.822762	2.614945	1.400648
Н	4.120544	2.226426	2.534484
C	4.725452	0.005561	-1.575039
Ĥ	5.136084	0.094465	-2.588811
H	5.318876	0.658295	-0.929242
Н	4.863896	-1.030537	-1.252172
C	3 099897	1 904809	-1 955085
н	3 562945	2 084509	-2 933225
н	2 050098	2 204175	-2 019677
н	3 598687	2 556369	-1 232379
C	2 519353	-0.423026	-2 693514
H	2.637757	-1.497555	-2.528013
н	1 449817	-0 193936	-2 729473
Н	2.957076	-0.179308	-3.669397
C	-3.689133	1.964607	-1.560534
H	-4.441059	2.193349	-0.799743
Н	-2.822693	2.615100	-1.400532
Н	-4.120486	2.226677	-2.534389
C	-4.553408	-0.413650	-1.739378
Ĥ	-5.331470	-0.195906	-1.006805
Н	-4.978801	-0.228289	-2.733698
Н	-4.303786	-1.476020	-1.675040
С	-2.355481	0.203145	-2.762925
Н	-1.448948	0.811389	-2.706244
Н	-2.054734	-0.848315	-2.809755
Н	-2.885374	0.443072	-3.693438
С	-4.725472	0.005653	1.575037
Н	-5.136102	0.094528	2.588813
Н	-5.318874	0.658435	0.929268
Н	-4.863952	-1.030427	1.252126
С	-2.519388	-0.423059	2.693493
Н	-2.637829	-1.497577	2.527944
Н	-1.449844	-0.194007	2.729462
Н	-2.957104	-0.179369	3.669386
С	-3.099851	1.904828	1.955165
Н	-3.562892	2.084502	2.933314
Н	-2.050042	2.204155	2.019769
Н	-3.598620	2.556437	1.232489
0	-2.337259	-1.622322	-0.072789
0	2.337183	-1.622403	0.072715

		5. 1950:05 105000	
Atom	x (Å)	y (Å)	z (Å)
Ir	0.014364	-0.750440	-0.062446
С	-0.008785	-2.593491	-0.304190
0	-0.003532	-3.782899	-0.338696
Р	2.192788	-0.058993	0.236280
Р	-2.168306	-0.064982	0.265746
Ν	0.013267	1.110157	-1.186128
С	1.178279	1.730757	-1.498445
С	-1.155351	1.732664	-1.481710
С	1.219745	2.901924	-2.256703
С	-1.202892	2.903420	-2.242424
С	0.006044	3.477199	-2.652698
Н	2.179142	3.341281	-2.504979
Н	-2.164494	3.343699	-2.480384
Н	0.002939	4.387091	-3.246434
С	3.659086	-1.130080	-0.440623
C	2.909336	1.055050	1.721167
C	-3.021736	1.071612	1.668261
Č	-3.556299	-1.213240	-0.445989
C	4.891537	-0.332736	-0.919100
Н	5.459351	0.114125	-0.103664
Н	5.569349	-1.016765	-1.450065
H	4.603383	0.460115	-1.615254
C	3.128848	-1.910523	-1.662826
H	2.284629	-2.550768	-1.409823
Н	2.799674	-1.231426	-2.455586
H	3.943010	-2.534550	-2.060861
С	4.065701	-2.140002	0.651238
Ĥ	4.538934	-1.653067	1.510470
Н	3.200977	-2.708959	1.009428
Н	4.790283	-2.856362	0.238679
С	4.376591	1.510749	1.703240
Н	4.552534	2.206554	2.540122
Н	5.075205	0.678384	1.832422
Н	4.629386	2.040532	0.779410
С	2.634898	0.253521	3.008922
Н	2.829908	0.884456	3.889057
Н	1.593633	-0.083861	3.044094
Н	3.274291	-0.632778	3.089717
С	2.019130	2.311556	1.727324
Н	2.271711	2.987024	0.903941
Η	0.960809	2.047335	1.643892
Н	2.158962	2.859646	2.670672
С	-3.527637	0.157886	2.798035
Н	-4.432966	-0.391066	2.519379
Н	-2.762730	-0.571883	3.090916

[3-O]⁻ **Energy:** -1930.05405806

Н	-3.770179	0.759475	3.687181
С	-4.124396	2.048792	1.219997
Η	-5.062207	1.551058	0.968189
Η	-4.342996	2.755921	2.037068
Η	-3.805294	2.631511	0.351132
С	-1.850862	1.906565	2.216985
Η	-1.019158	1.266320	2.525172
Η	-1.470900	2.610003	1.467492
Η	-2.188226	2.493673	3.083951
С	-4.977736	-0.622797	-0.473851
Η	-5.644285	-1.325410	-0.995319
Η	-5.390889	-0.471732	0.526919
Η	-5.011327	0.328043	-1.014368
С	-3.165982	-1.555532	-1.900989
Η	-3.211542	-0.668348	-2.540681
Η	-2.154628	-1.962985	-1.958240
Η	-3.875484	-2.298973	-2.293355
С	-3.554803	-2.512657	0.387557
Η	-4.253337	-3.233335	-0.061658
Η	-2.563682	-2.971974	0.409063
Н	-3.875558	-2.341865	1.420372
0	-2.285328	1.191641	-0.996420
0	2.315111	1.181100	-1.032112

[Ir(acac)(CO)₂]⁰ Energy: -676.604264265

Energy: -070.004204205				
Atom	x (Å)	y (Å)	z (Å)	
С	-0.057823	-2.100227	-0.000946	
0	-0.080142	-3.254610	-0.041095	
Ir	-0.007440	-0.243145	0.019908	
С	-0.591749	-0.228837	1.783457	
0	-0.954046	-0.191277	2.879832	
0	0.643879	-0.207651	-1.940638	
0	0.064689	1.821621	-0.005636	
С	0.410926	2.587216	-0.977404	
С	0.915079	0.819003	-2.663660	
С	0.819527	2.157213	-2.249908	
Η	1.082559	2.920617	-2.971772	
С	1.368582	0.489932	-4.064877	
Η	0.588646	-0.088774	-4.571269	
Η	1.591754	1.384051	-4.649965	
Η	2.260543	-0.143888	-4.017415	
С	0.351408	4.061116	-0.658905	
Η	1.004149	4.273783	0.194513	
Η	0.650890	4.681450	-1.505706	
Η	-0.668073	4.325862	-0.358642	

Atom	x (Å)	y (Å)	z (Å)	
С	-0.237598	-2.037757	-0.183929	
0	-0.610160	-3.152130	-0.226377	
Ir	0.129604	-0.247917	0.075187	
С	-0.890398	-0.118006	1.607556	
0	-1.614610	-0.198209	2.530330	
0	1.335823	-0.161445	-1.704119	
0	0.657561	1.835533	0.160576	
С	0.658342	2.595119	-0.896908	
С	1.258041	0.827623	-2.547254	
С	0.939645	2.153128	-2.201945	
Н	0.884360	2.883842	-3.004627	
С	1.487734	0.447074	-3.995539	
Н	0.705951	-0.251864	-4.327641	
Н	1.485105	1.318237	-4.659930	
Н	2.445984	-0.077617	-4.103093	
С	0.269300	4.037152	-0.643425	
Н	0.353833	4.655190	-1.544110	
Н	-0.767049	4.086730	-0.277982	
Н	0.901888	4.468772	0.143101	

[Ir(acac)(CO)₂]⁻ Energy: -676.682004236

Crystal Data

Figure S25. The complete numbering scheme of **3-N** (CCDC number: 007c-18031) with 50% thermal ellipsoid probability levels. Only the asymmetric unit is labeled. The hydrogen atoms are shown as circles for clarity.

•			
Identification code	007c-18031		
Empirical formula	C22 H41 F6 Ir N3 O P3		
Formula weight	762.69		
Temperature	93(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	a = 11.5628(2) Å	$\alpha = 90^{\circ}$.	
	b = 11.2503(2) Å	$\beta = 93.550(2)^{\circ}.$	
	c = 22.9994(5) Å	$\gamma = 90^{\circ}$.	
Volume	2986.14(10) Å ³		
Z	4		
Density (calculated)	1.696 Mg/m ³		
Absorption coefficient	4.690 mm ⁻¹		
F(000)	1512		
Crystal size	0.100 x 0.100 x 0.050 mm ³		
Crystal color and habit	Yellow Plate		
Diffractometer	Dectris Pilatus 3R		
Theta range for data collection	3.026 to 27.485°.		

Table S7.	Crystal	data and	structure	refinement	for	3-	N
-----------	---------	----------	-----------	------------	-----	----	---

Index ranges -14<=h<=14, -14<=k<=14, -2<=l<=29 Reflections collected 3424 Independent reflections 3424 [R(int) = 0.1175]Observed reflections (I > 2 sigma(I))3388 Completeness to theta = 25.242° 99.7 % Absorption correction Semi-empirical from equivalents 1.00000 and 0.51643 Max. and min. transmission Solution method SHELXT-2014/5 (Sheldrick, 2014) SHELXL-2014/7 (Sheldrick, 2014) Refinement method Data / restraints / parameters 3424 / 0 / 174 Goodness-of-fit on F² 1.082 Final R indices [I>2sigma(I)] R1 = 0.0488, wR2 = 0.1212R1 = 0.0492, wR2 = 0.1214R indices (all data) 3.268 and -9.314 e.Å⁻³ Largest diff. peak and hole

	X	у	Z	U(eq)	
 Ir(1)	5000	3863(1)	7500	9(1)	
P(1)	5098(2)	3595(2)	6519(1)	11(1)	
P(2)	5000	0	5000	15(1)	
F(1)	3974(5)	460(5)	5376(3)	37(1)	
F(2)	4919(5)	1196(4)	4624(2)	32(1)	
F(3)	4081(5)	-632(5)	4550(2)	34(1)	
O(1)	5000	6520(7)	7500	43(3)	
N(1)	5000	2018(7)	7500	12(2)	
N(2)	4996(6)	2080(5)	6488(3)	14(1)	
C(1)	5000	5483(9)	7500	21(2)	
C(2)	5008(6)	1403(6)	6986(3)	11(1)	
C(3)	5016(6)	169(6)	6978(3)	15(1)	
C(4)	5000	-460(8)	7500	15(1)	
C(5)	6557(7)	3921(7)	6243(3)	20(2)	
C(6)	7420(8)	3132(8)	6607(4)	29(2)	
C(7)	6869(8)	5231(7)	6364(4)	25(2)	
C(8)	6633(8)	3643(8)	5591(4)	27(2)	
C(9)	3847(7)	4109(7)	6044(3)	19(2)	
C(10)	3934(8)	5457(7)	5955(4)	23(2)	
C(11)	2770(7)	3826(9)	6384(4)	29(2)	
C(12)	3699(8)	3470(8)	5455(4)	25(2)	

Table S8. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å²× 10³) for **3-N**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Ir(1)-C(1)	1.822(10)
Ir(1)-N(1)	2.076(8)
Ir(1)-P(1)	2.2857(17)
Ir(1)-P(1)#1	2.2858(17)
P(1)-N(2)	1.710(6)
P(1)-C(9)	1.850(8)
P(1)-C(5)	1.875(8)
P(2)-F(1)	1.597(5)
P(2)-F(1)#2	1.597(5)
P(2)-F(2)	1.599(5)
P(2)-F(2)#2	1.599(5)
P(2)-F(3)	1.604(5)
P(2)-F(3)#2	1.604(5)
O(1)-C(1)	1.166(14)
N(1)-C(2)#1	1.371(8)
N(1)-C(2)	1.371(8)
N(2)-C(2)	1.374(9)
N(2)-H(2)	0.79(9)
C(2)-C(3)	1.388(9)
C(3)-C(4)	1.395(9)
C(3)-H(3)	0.9500
C(4)-C(3)#1	1.395(9)
C(4)-H(4)	0.9500
C(5)-C(7)	1.539(11)
C(5)-C(8)	1.540(11)
C(5)-C(6)	1.543(12)
C(6)-H(6A)	0.9800
C(6)-H(6B)	0.9800
C(6)-H(6C)	0.9800
C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800
C(7)-H(7C)	0.9800
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800

 Table S9. Bond lengths [Å] and angles [°] for 3-N.

C(9)-C(12)	1.534(11)
C(9)-C(10)	1.535(11)
C(9)-C(11)	1.545(12)
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
C(10)-H(10C)	0.9800
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
C(11)-H(11C)	0.9800
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(1)-Ir(1)-N(1)	180.0
C(1)-Ir(1)-P(1)	97.59(4)
N(1)-Ir(1)-P(1)	82.41(4)
C(1)-Ir(1)-P(1)#1	97.59(4)
N(1)-Ir(1)-P(1)#1	82.41(4)
P(1)-Ir(1)-P(1)#1	164.82(9)
N(2)-P(1)-C(9)	103.7(3)
N(2)-P(1)-C(5)	104.0(3)
C(9)-P(1)-C(5)	115.2(4)
N(2)-P(1)-Ir(1)	99.5(2)
C(9)-P(1)-Ir(1)	117.2(3)
C(5)-P(1)-Ir(1)	114.1(3)
F(1)-P(2)-F(1)#2	180.0
F(1)-P(2)-F(2)	90.0(3)
F(1)#2-P(2)-F(2)	90.0(3)
F(1)-P(2)-F(2)#2	90.0(3)
F(1)#2-P(2)-F(2)#2	90.0(3)
F(2)-P(2)-F(2)#2	180.0
F(1)-P(2)-F(3)	90.5(3)
F(1)#2-P(2)-F(3)	89.5(3)
F(2)-P(2)-F(3)	90.6(3)
F(2)#2-P(2)-F(3)	89.4(3)
F(1)-P(2)-F(3)#2	89.5(3)
F(1)#2-P(2)-F(3)#2	90.5(3)

F(2)-P(2)-F(3)#2	89.4(3)
F(2)#2-P(2)-F(3)#2	90.6(3)
F(3)-P(2)-F(3)#2	180.0
C(2)#1-N(1)-C(2)	119.4(8)
C(2)#1-N(1)-Ir(1)	120.3(4)
C(2)-N(1)-Ir(1)	120.3(4)
C(2)-N(2)-P(1)	121.4(5)
C(2)-N(2)-H(2)	117(6)
P(1)-N(2)-H(2)	121(6)
O(1)-C(1)-Ir(1)	180.0
N(1)-C(2)-N(2)	116.0(6)
N(1)-C(2)-C(3)	121.1(6)
N(2)-C(2)-C(3)	122.9(6)
C(2)-C(3)-C(4)	119.7(7)
C(2)-C(3)-H(3)	120.2
C(4)-C(3)-H(3)	120.2
C(3)-C(4)-C(3)#1	119.1(8)
C(3)-C(4)-H(4)	120.5
C(3)#1-C(4)-H(4)	120.5
C(7)-C(5)-C(8)	110.1(7)
C(7)-C(5)-C(6)	108.4(7)
C(8)-C(5)-C(6)	109.7(7)
C(7)-C(5)-P(1)	109.4(5)
C(8)-C(5)-P(1)	113.4(6)
C(6)-C(5)-P(1)	105.6(5)
C(5)-C(6)-H(6A)	109.5
C(5)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6B)	109.5
C(5)-C(6)-H(6C)	109.5
H(6A)-C(6)-H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5
C(5)-C(7)-H(7A)	109.5
C(5)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(5)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5

C(5)-C(8)-H(8A)	109.5
C(5)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(5)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(12)-C(9)-C(10)	110.4(7)
C(12)-C(9)-C(11)	107.5(7)
C(10)-C(9)-C(11)	109.4(7)
C(12)-C(9)-P(1)	114.6(5)
C(10)-C(9)-P(1)	109.4(5)
C(11)-C(9)-P(1)	105.2(5)
C(9)-C(10)-H(10A)	109.5
C(9)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(9)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(9)-C(11)-H(11A)	109.5
C(9)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(9)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(9)-C(12)-H(12A)	109.5
C(9)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(9)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+3/2 #2 -x+1,-y,-z+1

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}
 Ir(1)	14(1)	7(1)	7(1)	0	1(1)	0
P(1)	19(1)	6(1)	9(1)	0(1)	3(1)	-1(1)
P(2)	19(1)	13(1)	14(1)	-4(1)	4(1)	0(1)
F(1)	36(3)	30(3)	48(3)	-8(2)	27(3)	0(2)
F(2)	48(3)	20(2)	27(3)	3(2)	2(2)	-2(2)
F(3)	37(3)	29(3)	35(3)	-6(2)	-12(2)	-6(2)
O(1)	86(8)	7(4)	37(5)	0	15(6)	0
N(1)	15(4)	4(3)	18(4)	0	3(3)	0
N(2)	23(3)	9(3)	9(3)	-3(2)	3(2)	1(2)
C(1)	36(6)	11(5)	15(5)	0	5(5)	0
C(2)	12(3)	6(3)	14(3)	-1(2)	0(2)	0(2)
C(3)	14(3)	3(2)	26(3)	-5(2)	1(2)	2(2)
C(4)	14(3)	3(2)	26(3)	-5(2)	1(2)	2(2)
C(5)	22(4)	19(4)	18(4)	-3(3)	8(3)	-3(3)
C(6)	20(4)	27(4)	41(5)	1(4)	7(4)	1(3)
C(7)	27(4)	20(4)	29(4)	-3(3)	7(3)	-5(3)
C(8)	30(4)	32(4)	20(4)	-5(3)	15(3)	-10(4)
C(9)	23(4)	15(3)	18(4)	0(3)	-1(3)	3(3)
C(10)	32(4)	18(4)	20(4)	3(3)	-2(3)	7(3)
C(11)	21(4)	39(5)	27(4)	2(4)	-6(3)	6(4)
C(12)	31(4)	26(4)	17(4)	-3(3)	-8(3)	5(3)

Table S10. Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for **3-N**. The anisotropic displacement factor exponent takes the form: $-2p^2[\text{\AA}^2 a^{*2} U^{11} + ... + 2 \text{\AA} k a^* b^* U^{12}]$

	Х	У	Z	U(eq)	
H(2)	5060(70)	1740(80)	6190(40)	10(20)	
H(3)	5032	-245	6618	18	
H(4)	5000	-1304	7500	18	
H(6A)	7378	3320	7021	43	
H(6B)	8208	3281	6490	43	
H(6C)	7223	2293	6540	43	
H(7A)	6285	5745	6166	38	
H(7B)	7631	5403	6220	38	
H(7C)	6890	5380	6785	38	
H(8A)	6379	2824	5514	40	
H(8B)	7435	3737	5484	40	
H(8C)	6132	4191	5360	40	
H(10A)	4072	5848	6334	35	
H(10B)	3209	5752	5764	35	
H(10C)	4577	5632	5710	35	
H(11A)	2785	2987	6500	44	
H(11B)	2067	3984	6136	44	
H(11C)	2773	4327	6733	44	
H(12A)	4378	3622	5231	38	
H(12B)	3002	3767	5238	38	
H(12C)	3623	2613	5519	38	

Table S11. Hydrogen coordinates (×10⁴) and isotropic displacement parameters ($\text{Å}^2 \times 10^3$) for **3-N**.

C(9)-P(1)-N(2)-C(2)	-127.8(6)
C(5)-P(1)-N(2)-C(2)	111.3(6)
Ir(1)-P(1)-N(2)-C(2)	-6.7(6)
C(2)#1-N(1)-C(2)-N(2)	178.9(7)
Ir(1)-N(1)-C(2)-N(2)	-1.1(7)
C(2)#1-N(1)-C(2)-C(3)	-0.4(5)
Ir(1)-N(1)-C(2)-C(3)	179.6(5)
P(1)-N(2)-C(2)-N(1)	5.8(8)
P(1)-N(2)-C(2)-C(3)	-174.9(6)
N(1)-C(2)-C(3)-C(4)	0.9(10)
N(2)-C(2)-C(3)-C(4)	-178.4(6)
C(2)-C(3)-C(4)-C(3)#1	-0.4(5)
N(2)-P(1)-C(5)-C(7)	-168.5(6)
C(9)-P(1)-C(5)-C(7)	78.7(6)

Table S12.Torsion angles [°] for 3-N.

Ir(1)-N(1)-C(2)-N(2)	-1.1(7)
C(2)#1-N(1)-C(2)-C(3)	-0.4(5)
Ir(1)-N(1)-C(2)-C(3)	179.6(5)
P(1)-N(2)-C(2)-N(1)	5.8(8)
P(1)-N(2)-C(2)-C(3)	-174.9(6)
N(1)-C(2)-C(3)-C(4)	0.9(10)
N(2)-C(2)-C(3)-C(4)	-178.4(6)
C(2)-C(3)-C(4)-C(3)#1	-0.4(5)
N(2)-P(1)-C(5)-C(7)	-168.5(6)
C(9)-P(1)-C(5)-C(7)	78.7(6)
Ir(1)-P(1)-C(5)-C(7)	-61.1(6)
N(2)-P(1)-C(5)-C(8)	68.2(6)
C(9)-P(1)-C(5)-C(8)	-44.7(7)
Ir(1)-P(1)-C(5)-C(8)	175.5(5)
N(2)-P(1)-C(5)-C(6)	-52.0(6)
C(9)-P(1)-C(5)-C(6)	-164.8(5)
Ir(1)-P(1)-C(5)-C(6)	55.4(6)
N(2)-P(1)-C(9)-C(12)	-46.7(7)
C(5)-P(1)-C(9)-C(12)	66.3(7)
Ir(1)-P(1)-C(9)-C(12)	-155.2(5)
N(2)-P(1)-C(9)-C(10)	-171.3(5)
C(5)-P(1)-C(9)-C(10)	-58.3(6)
Ir(1)-P(1)-C(9)-C(10)	80.2(6)
N(2)-P(1)-C(9)-C(11)	71.2(6)
C(5)-P(1)-C(9)-C(11)	-175.8(5)
Ir(1)-P(1)-C(9)-C(11)	-37.3(6)

Symmetry transformations used to generate equivalent atoms: $\#1 - x + 1, y, -z + 3/2 \quad \#2 - x + 1, -y, -z + 1$

Figure S26. The complete numbering scheme of **3-O** (CCDC number: 007c-18033) with 50% thermal ellipsoid probability levels. The hydrogen atoms are shown as circles for clarity.

Table S13.	Crystal	data and	structure	refinement	for	3-0	0.
------------	---------	----------	-----------	------------	-----	-----	----

Identification code	007c-18033	
Empirical formula	C22 H39 F6 Ir N O3 P3	
Formula weight	764.65	
Temperature	93(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
Unit cell dimensions	a = 8.4834(2) Å	$\alpha = 90^{\circ}$.
	b = 27.8076(7) Å	$\beta = 91.593(2)^{\circ}.$
	c = 12.4613(2) Å	$\gamma = 90^{\circ}$.
Volume	2938.52(11) Å ³	

Ζ Density (calculated) Absorption coefficient F(000) Crystal size Crystal color and habit Diffractometer Theta range for data collection Index ranges Reflections collected Independent reflections Observed reflections (I > 2 sigma(I))Completeness to theta = 25.242° Absorption correction Max. and min. transmission Solution method Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole

4 1.728 Mg/m³ 4.769 mm⁻¹ 1512 0.320 x 0.150 x 0.060 mm³ Yellow Plate Dectris Pilatus 3R 2.813 to 27.484°. -11<=h<=11, -36<=k<=36, -16<=l<=16 76580 6716 [R(int) = 0.0743]6332 99.9 % Semi-empirical from equivalents 1.00000 and 0.36471 SHELXT-2014/5 (Sheldrick, 2014) SHELXL-2014/7 (Sheldrick, 2014) 6716 / 0 / 337 1.090 R1 = 0.0268, wR2 = 0.0654R1 = 0.0292, wR2 = 0.06661.334 and -0.777 e.Å⁻³

	x	V	Z	U(eq)	
Ir(1)	3390(1)	6080(1)	4034(1)	17(1)	
P(1)	3845(1)	6583(1)	5460(1)	20(1)	
P(2)	2279(1)	5751(1)	2509(1)	19(1)	
O(1)	5998(3)	5370(1)	4441(2)	37(1)	
O(2)	2518(3)	7020(1)	5206(2)	26(1)	
O(3)	939(3)	6170(1)	2165(2)	26(1)	
N(1)	1736(3)	6600(1)	3677(2)	18(1)	
C(1)	4960(4)	5635(1)	4300(3)	24(1)	
C(2)	1605(4)	6999(1)	4299(3)	22(1)	
C(3)	601(4)	7373(1)	4043(3)	28(1)	
C(4)	-305(4)	7334(1)	3100(3)	30(1)	
C(5)	-221(4)	6931(1)	2450(3)	29(1)	
C(6)	812(4)	6569(1)	2769(3)	22(1)	
C(7)	3198(4)	6360(1)	6776(3)	25(1)	
C(8)	1463(5)	6210(2)	6597(4)	45(1)	
C(9)	4179(6)	5910(2)	7063(3)	38(1)	
C(10)	3318(6)	6727(2)	7692(3)	42(1)	
C(11)	5676(5)	6947(1)	5466(3)	32(1)	
C(12)	5791(6)	7130(2)	4308(4)	44(1)	
C(13)	7088(5)	6621(2)	5727(5)	57(1)	
C(14)	5648(6)	7383(2)	6226(4)	53(1)	
C(15)	967(4)	5229(1)	2699(3)	28(1)	
C(16)	2012(6)	4785(2)	2892(4)	49(1)	
C(17)	44(6)	5342(2)	3705(4)	53(1)	
C(18)	-216(5)	5140(2)	1766(4)	42(1)	
C(19)	3503(5)	5744(1)	1300(3)	30(1)	
C(20)	2675(6)	5543(2)	290(3)	46(1)	
C(21)	5008(5)	5463(2)	1541(4)	48(1)	
C(22)	3884(6)	6280(2)	1084(4)	50(1)	
P(3)	8225(1)	8663(1)	4421(1)	31(1)	
F(1)	8965(6)	9181(1)	4395(5)	124(2)	
F(2)	6550(4)	8876(1)	4076(2)	62(1)	

Table S14. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for **3-O**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

F(3)	8611(5)	8563(2)	3229(3)	107(2)
F(4)	9955(3)	8463(1)	4789(3)	60(1)
F(5)	7872(5)	8760(2)	5643(2)	95(2)
F(6)	7594(5)	8149(1)	4552(5)	114(2)
~ /		~ /	()	

Ir(1)-C(1)	1.841(3)
Ir(1)-N(1)	2.054(3)
Ir(1)-P(1)	2.2846(8)
Ir(1)-P(2)	2.2892(8)
P(1)-O(2)	1.680(3)
P(1)-C(7)	1.851(3)
P(1)-C(11)	1.854(4)
P(2)-O(3)	1.676(3)
P(2)-C(15)	1.848(4)
P(2)-C(19)	1.853(4)
O(1)-C(1)	1.158(4)
O(2)-C(2)	1.354(4)
O(3)-C(6)	1.347(4)
N(1)-C(2)	1.359(4)
N(1)-C(6)	1.362(4)
C(2)-C(3)	1.377(5)
C(3)-C(4)	1.391(5)
C(3)-H(3)	0.9500
C(4)-C(5)	1.385(5)
C(4)-H(4)	0.9500
C(5)-C(6)	1.385(5)
C(5)-H(5)	0.9500
C(7)-C(10)	1.534(5)
C(7)-C(9)	1.539(5)
C(7)-C(8)	1.540(6)
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800
C(9)-H(9A)	0.9800
C(9)-H(9B)	0.9800
C(9)-H(9C)	0.9800
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
C(10)-H(10C)	0.9800
C(11)-C(13)	1.529(6)

Table S15. Bond lengths [Å] and angles [°] for 3-O.

C(11)-C(12)	1.536(6)
C(11)-C(14)	1.539(6)
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
C(15)-C(17)	1.529(6)
C(15)-C(18)	1.535(5)
C(15)-C(16)	1.535(6)
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(19)-C(21)	1.520(6)
C(19)-C(20)	1.530(6)
C(19)-C(22)	1.549(6)
C(20)-H(20A)	0.9800
C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800
C(21)-H(21A)	0.9800
C(21)-H(21B)	0.9800
C(21)-H(21C)	0.9800
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
P(3)-F(6)	1.537(3)
P(3)-F(3)	1.554(3)

P(3)-F(1)	1.571(4)
P(3)-F(5)	1.584(3)
P(3)-F(2)	1.587(3)
P(3)-F(4)	1.624(3)
C(1)-Ir(1)-N(1)	176.37(13)
C(1)-Ir(1)-P(1)	99.55(11)
N(1)-Ir(1)-P(1)	80.66(8)
C(1)-Ir(1)-P(2)	99.15(11)
N(1)-Ir(1)-P(2)	80.72(8)
P(1)-Ir(1)-P(2)	161.28(3)
O(2)-P(1)-C(7)	101.27(15)
O(2)-P(1)-C(11)	99.41(16)
C(7)-P(1)-C(11)	116.63(17)
O(2)-P(1)-Ir(1)	101.45(9)
C(7)-P(1)-Ir(1)	115.83(12)
C(11)-P(1)-Ir(1)	117.43(13)
O(3)-P(2)-C(15)	99.90(16)
O(3)-P(2)-C(19)	100.99(16)
C(15)-P(2)-C(19)	116.71(18)
O(3)-P(2)-Ir(1)	101.22(9)
C(15)-P(2)-Ir(1)	116.30(12)
C(19)-P(2)-Ir(1)	116.88(13)
C(2)-O(2)-P(1)	119.4(2)
C(6)-O(3)-P(2)	119.7(2)
C(2)-N(1)-C(6)	118.0(3)
C(2)-N(1)-Ir(1)	121.1(2)
C(6)-N(1)-Ir(1)	120.7(2)
O(1)-C(1)-Ir(1)	176.6(3)
O(2)-C(2)-N(1)	117.2(3)
O(2)-C(2)-C(3)	119.7(3)
N(1)-C(2)-C(3)	123.1(3)
C(2)-C(3)-C(4)	117.4(3)
C(2)-C(3)-H(3)	121.3
C(4)-C(3)-H(3)	121.3
C(5)-C(4)-C(3)	121.4(3)
C(5)-C(4)-H(4)	119.3

C(3)-C(4)-H(4)	119.3
C(6)-C(5)-C(4)	117.5(3)
C(6)-C(5)-H(5)	121.2
C(4)-C(5)-H(5)	121.2
O(3)-C(6)-N(1)	117.5(3)
O(3)-C(6)-C(5)	119.9(3)
N(1)-C(6)-C(5)	122.6(3)
C(10)-C(7)-C(9)	110.2(3)
C(10)-C(7)-C(8)	109.4(3)
C(9)-C(7)-C(8)	108.8(3)
C(10)-C(7)-P(1)	114.9(3)
C(9)-C(7)-P(1)	107.9(2)
C(8)-C(7)-P(1)	105.5(3)
C(7)-C(8)-H(8A)	109.5
C(7)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(7)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(7)-C(9)-H(9A)	109.5
C(7)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(7)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
C(7)-C(10)-H(10A)	109.5
C(7)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(7)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(13)-C(11)-C(12)	109.1(4)
C(13)-C(11)-C(14)	111.1(4)
C(12)-C(11)-C(14)	108.6(4)
C(13)-C(11)-P(1)	109.3(3)
C(12)-C(11)-P(1)	104.6(3)
C(14)-C(11)-P(1)	113.9(3)

C(11)-C(12)-H(12A)	109.5
C(11)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(11)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(11)-C(13)-H(13A)	109.5
C(11)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
С(11)-С(13)-Н(13С)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(11)-C(14)-H(14A)	109.5
C(11)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(11)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
C(17)-C(15)-C(18)	108.4(4)
C(17)-C(15)-C(16)	110.1(4)
C(18)-C(15)-C(16)	110.6(3)
C(17)-C(15)-P(2)	105.5(3)
C(18)-C(15)-P(2)	114.3(3)
C(16)-C(15)-P(2)	107.7(3)
C(15)-C(16)-H(16A)	109.5
C(15)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(15)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
С(15)-С(17)-Н(17А)	109.5
C(15)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
C(15)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
C(15)-C(18)-H(18A)	109.5

C(15)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(15)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(21)-C(19)-C(20)	109.8(3)
C(21)-C(19)-C(22)	110.6(4)
C(20)-C(19)-C(22)	107.5(4)
C(21)-C(19)-P(2)	109.3(3)
C(20)-C(19)-P(2)	114.7(3)
C(22)-C(19)-P(2)	104.8(3)
C(19)-C(20)-H(20A)	109.5
C(19)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
C(19)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(19)-C(21)-H(21A)	109.5
C(19)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
C(19)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(19)-C(22)-H(22A)	109.5
C(19)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(19)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
F(6)-P(3)-F(3)	91.0(3)
F(6)-P(3)-F(1)	174.3(3)
F(3)-P(3)-F(1)	92.9(3)
F(6)-P(3)-F(5)	88.8(3)
F(3)-P(3)-F(5)	178.6(2)
F(1)-P(3)-F(5)	87.2(3)
F(6)-P(3)-F(2)	93.7(2)
F(3)-P(3)-F(2)	91.1(2)

F(1)-P(3)-F(2)	90.5(2)
F(5)-P(3)-F(2)	90.32(17)
F(6)-P(3)-F(4)	88.0(2)
F(3)-P(3)-F(4)	89.7(2)
F(1)-P(3)-F(4)	87.8(2)
F(5)-P(3)-F(4)	88.86(18)
F(2)-P(3)-F(4)	178.14(18)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+3/2 #2 -x+1,-y,-z+1

	U ¹¹	U ²²	U33	U23	U13	U12
	15(1)	17(1)	18(1)	0(1)	1(1)	1(1)
P(1)	18(1)	20(1)	21(1)	-2(1)	-1(1)	-1(1)
P(2)	22(1)	18(1)	17(1)	-1(1)	1(1)	2(1)
O(1)	30(1)	39(2)	41(2)	1(1)	-2(1)	15(1)
O(2)	29(1)	24(1)	26(1)	-7(1)	-5(1)	5(1)
O(3)	33(1)	25(1)	21(1)	-3(1)	-5(1)	6(1)
N(1)	19(1)	19(1)	18(1)	0(1)	2(1)	1(1)
C(1)	24(2)	25(2)	21(2)	0(1)	0(1)	2(1)
C(2)	22(2)	23(2)	22(2)	-1(1)	1(1)	1(1)
C(3)	29(2)	24(2)	29(2)	-3(1)	2(1)	7(1)
C(4)	29(2)	29(2)	33(2)	4(2)	0(2)	12(2)
C(5)	30(2)	33(2)	24(2)	2(1)	-6(1)	8(2)
C(6)	24(2)	23(2)	21(2)	1(1)	3(1)	2(1)
C(7)	29(2)	27(2)	20(2)	-2(1)	3(1)	-2(1)
C(8)	34(2)	65(3)	36(2)	5(2)	11(2)	-11(2)
C(9)	54(3)	35(2)	25(2)	5(2)	4(2)	9(2)
C(10)	60(3)	40(2)	27(2)	-9(2)	9(2)	1(2)
C(11)	26(2)	32(2)	36(2)	0(2)	-3(2)	-13(2)
C(12)	47(3)	45(2)	41(2)	6(2)	5(2)	-24(2)
C(13)	25(2)	58(3)	89(4)	11(3)	-11(2)	-9(2)
C(14)	58(3)	49(3)	53(3)	-16(2)	-3(2)	-28(2)
C(15)	29(2)	26(2)	29(2)	3(1)	-7(1)	-7(1)
C(16)	49(3)	25(2)	71(3)	10(2)	-23(2)	-8(2)
C(17)	52(3)	61(3)	46(3)	-4(2)	14(2)	-34(2)
C(18)	45(2)	36(2)	44(2)	3(2)	-19(2)	-12(2)
C(19)	34(2)	35(2)	22(2)	-4(1)	8(2)	4(2)
C(20)	54(3)	62(3)	21(2)	-7(2)	2(2)	17(2)
C(21)	41(2)	69(3)	33(2)	1(2)	11(2)	18(2)
C(22)	63(3)	44(3)	43(3)	7(2)	24(2)	-2(2)
P(3)	38(1)	25(1)	30(1)	0(1)	5(1)	1(1)
F(1)	111(3)	44(2)	211(5)	24(3)	-92(4)	-18(2)
F(2)	48(2)	98(3)	41(2)	3(2)	-8(1)	19(2)

Table S16. Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for **3-O**. The anisotropic displacement factor exponent takes the form: $-2p^2[\text{\AA}^2 a^{*2} U^{11} + ... + 2 \text{\AA} k a^* b^* U^{12}]$

F(3)	86(3)	206(5)	31(2)	-14(2)	18(2)	19(3)
F(4)	47(2)	49(2)	84(2)	-10(2)	1(2)	12(1)
F(5)	95(3)	155(4)	36(2)	-16(2)	-9(2)	81(3)
F(6)	90(3)	52(2)	203(5)	20(3)	25(3)	-33(2)

	Х	У	Z	U(eq)	
H(3)	530	7648	4494	33	
H(4)	-996	7589	2897	36	
H(5)	-848	6904	1809	35	
H(8A)	824	6495	6430	67	
H(8B)	1082	6057	7249	67	
H(8C)	1380	5982	5997	67	
H(9A)	4050	5671	6489	57	
H(9B)	3818	5774	7738	57	
H(9C)	5294	5998	7143	57	
H(10A)	4430	6788	7878	63	
H(10B)	2786	6601	8321	63	
H(10C)	2813	7029	7462	63	
H(12A)	5821	6855	3816	66	
H(12B)	6754	7321	4242	66	
H(12C)	4871	7330	4127	66	
H(13A)	7048	6515	6476	86	
H(13B)	8068	6800	5622	86	
H(13C)	7055	6340	5252	86	
H(14A)	4634	7549	6140	80	
H(14B)	6503	7604	6051	80	
H(14C)	5789	7273	6970	80	
H(16A)	2566	4708	2234	73	
H(16B)	1354	4511	3092	73	
H(16C)	2784	4852	3473	73	
H(17A)	782	5391	4315	79	
H(17B)	-660	5073	3860	79	
H(17C)	-581	5634	3586	79	
H(18A)	-767	5441	1587	63	
H(18B)	-984	4897	1977	63	

Table S17. Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters ($\text{\AA}^2 \times 10^3$) for **3-O**.

H(18C)	347	5026	1139	63	
H(20A)	2518	5196	373	68	
H(20B)	3326	5603	-333	68	
H(20C)	1650	5701	183	68	
H(21A)	5565	5604	2164	71	
H(21B)	5686	5475	918	71	
H(21C)	4743	5127	1698	71	
H(22A)	2914	6449	866	75	
H(22B)	4646	6302	510	75	
H(22C)	4331	6426	1739	75	

Table S18. Torsion angles [°] for 3-O.

C(7)-P(1)-O(2)-C(2)	-122.0(3)
C(11)-P(1)-O(2)-C(2)	118.2(3)
Ir(1)-P(1)-O(2)-C(2)	-2.4(3)
C(15)-P(2)-O(3)-C(6)	120.4(3)
C(19)-P(2)-O(3)-C(6)	-119.7(3)
Ir(1)-P(2)-O(3)-C(6)	0.8(3)
P(1)-O(2)-C(2)-N(1)	5.0(4)
P(1)-O(2)-C(2)-C(3)	-175.0(3)
C(6)-N(1)-C(2)-O(2)	179.1(3)
Ir(1)-N(1)-C(2)-O(2)	-5.3(4)
C(6)-N(1)-C(2)-C(3)	-0.9(5)
Ir(1)-N(1)-C(2)-C(3)	174.7(3)
O(2)-C(2)-C(3)-C(4)	179.7(3)
N(1)-C(2)-C(3)-C(4)	-0.2(5)
C(2)-C(3)-C(4)-C(5)	1.0(6)
C(3)-C(4)-C(5)-C(6)	-0.6(6)
P(2)-O(3)-C(6)-N(1)	-3.7(4)
P(2)-O(3)-C(6)-C(5)	175.8(3)
C(2)-N(1)-C(6)-O(3)	-179.3(3)
Ir(1)-N(1)-C(6)-O(3)	5.1(4)
C(2)-N(1)-C(6)-C(5)	1.3(5)
Ir(1)-N(1)-C(6)-C(5)	-174.3(3)
C(4)-C(5)-C(6)-O(3)	180.0(3)
C(4)-C(5)-C(6)-N(1)	-0.6(5)
O(2)-P(1)-C(7)-C(10)	-63.7(3)
C(11)-P(1)-C(7)-C(10)	43.0(4)
Ir(1)-P(1)-C(7)-C(10)	-172.4(3)
O(2)-P(1)-C(7)-C(9)	173.0(3)
C(11)-P(1)-C(7)-C(9)	-80.3(3)
Ir(1)-P(1)-C(7)-C(9)	64.3(3)
O(2)-P(1)-C(7)-C(8)	56.8(3)
C(11)-P(1)-C(7)-C(8)	163.5(3)
Ir(1)-P(1)-C(7)-C(8)	-51.9(3)
O(2)-P(1)-C(11)-C(13)	178.0(3)
C(7)-P(1)-C(11)-C(13)	70.2(4)

_

Ir(1)-P(1)-C(11)-C(13)	-73.8(3)
O(2)-P(1)-C(11)-C(12)	-65.4(3)
C(7)-P(1)-C(11)-C(12)	-173.1(3)
Ir(1)-P(1)-C(11)-C(12)	42.8(3)
O(2)-P(1)-C(11)-C(14)	53.0(3)
C(7)-P(1)-C(11)-C(14)	-54.7(4)
Ir(1)-P(1)-C(11)-C(14)	161.3(3)
O(3)-P(2)-C(15)-C(17)	-69.1(3)
C(19)-P(2)-C(15)-C(17)	-176.8(3)
Ir(1)-P(2)-C(15)-C(17)	38.8(3)
O(3)-P(2)-C(15)-C(18)	49.9(3)
C(19)-P(2)-C(15)-C(18)	-57.8(4)
Ir(1)-P(2)-C(15)-C(18)	157.8(3)
O(3)-P(2)-C(15)-C(16)	173.3(3)
C(19)-P(2)-C(15)-C(16)	65.6(3)
Ir(1)-P(2)-C(15)-C(16)	-78.8(3)
O(3)-P(2)-C(19)-C(21)	167.8(3)
C(15)-P(2)-C(19)-C(21)	-85.1(3)
Ir(1)-P(2)-C(19)-C(21)	59.1(3)
O(3)-P(2)-C(19)-C(20)	-68.4(3)
C(15)-P(2)-C(19)-C(20)	38.7(4)
Ir(1)-P(2)-C(19)-C(20)	-177.1(3)
O(3)-P(2)-C(19)-C(22)	49.3(3)
C(15)-P(2)-C(19)-C(22)	156.4(3)
Ir(1)-P(2)-C(19)-C(22)	-59.4(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+3/2 #2 -x+1,-y,-z+1

References

- a) C. Costentin, S. Drouet, M. Robert, J.-M. Savéant, J. Am. Chem. Soc. 2012, 134, 11235– 11242; b) Y. Matsubara, ACS Energy Lett. 2019, 4, 1999–2004.
- 2. R. Dorta, R. Goikhman, D. Milstein, Organometallics 2003, 22, 2806–2809.
- 3. S. M. Kloek, D. M. Heinekey, K. I. Goldberg, Organometallics 2006, 25, 3007-3011.
- 4. L. Guo, Y. Liu, W. Yao, X. Leng, Z. Huang, Org. Lett. 2013, 15, 1144–1147.
- 5. H. Salem, L. J. W. Shimon, Y. Diskin-Posner, G. Leitus, Y. Ben-David, D. Milstein, Organometallics 2009, 28(16), 4791–4806.
- 6. a) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* 1988, 37, 785–789; b) A. D. Becke, *J. Chem. Phys.* 1993, 98, 5648–5652.
- Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford, CT, **2016**.
- a) P. C. Hariharan, J. A. Pople, *Theoret. chim. Acta* 1973, 28, 213–222; b) M. M. Francl, W. J. Peitro, W. J. Hehre, *J. Chem. Phys.* 1982, 77, 3654–3665; c) T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. von Ragué Schleyer, *J. Comput. Chem.* 1983, 4, 294–301.
- 9. F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.
- 10. A. D. McLean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639-5648.
- 11. R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650-654.
- 12. M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 1984, 80, 3265-3269.
- 13. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- 14. A. C. Kumbharkhane, S. M. Puranik, S. C. Mehrotra, J. Solution Chem. 1993, 22, 219–229.
- 15. Gaussview, Version 6, R. Dennington, T. A. Keith, M. J. Millam, Semichem Inc., Shawnee Mission, KS, 2016.
- 16. S. J. Konezny, M. D. Doherty, O. R. Luca, R. H. Crabtree, G. L. Soloveichik, V. S. Batista, J. *Phys. Chem. C* 2012, *116*, 6349–6356.