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1 Representations of the Gaussian state

The goal of this section is to first introduce the eigenstates of the annihilation operator, the

so-called coherent states |α⟩ that fulfill the eigenvalue equation

â|α⟩ = α|α⟩, (S1)
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where α ∈ C is a given complex number. Based on the coherent states, we will then introduce

the so called P-representation of density operators that we will use to unfold GBS. We will

see that a coherent state has a precise phase defined by the complex amplitude α, although

an indefinite number of photons, like the state of coherent light in a laser beam. In contrast,

a Fock state is an eigenstate of the number operator, corresponding to a fixed well-defined

number of photons although completely arbitrary (random) phase. In the following, we

focus on harmonic oscillator coherent states, while noting that generalization to anharmonic

coherent states is readily available.1

1.1 Overview of the coherent states

The goal of this subsection is to provide an overview of properties of coherent states that

would be vital for applications to the GBS.

Displacement operator. We start by showing that we can create coherent states, as

follows

D̂(α)|0⟩ = |α⟩, (S2)

where |0⟩ is the vacuum state defined as the ground state of the harmonic oscillator, and

D̂(α) is the displacement operator, defined as follows

D̂(α) = eαâ
†−α∗â

= eαâ
†
e−α∗âe−

1
2
|α|2 .

(S3)

The second row of Eq. (S3) is obtained from the first one by using the Hausdorff for-

mula eÂ+B̂ = eÂeB̂e−
1
2
[Â,B̂], with Â = αâ† and B̂ = −α∗â, which is valid if [Â, [Â, B̂]] =

[B̂, [Â, B̂]] = 0, as in this case. Note that [Â, B̂] = −|α|2[â†, â] = |α|2, since [â†, â] = −1.

We will obtain Eqs. (S1) and (S2) by showing that, according to the Baker–Campbell–
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Hausdorff relation, D̂(α)†âD̂(α) = â + α (part 1). Hence, with â|0⟩ = 0, we can conclude

that D̂(α)†âD̂(α)|0⟩ = α|0⟩, and âD̂(α)|0⟩ = αD̂(α)|0⟩ (part 2). Consequently, by

definition, D̂(α)|0⟩ is equal to |α⟩: the eigenfunction of â with eigenvalue α.

Let us start with part 1: Firstly, we show that D̂(α)−1 = D̂(−α) = D̂(α)†:

D̂(α)−1 = e
1
2
|α|2eα

∗âe−αâ†

= e−
1
2
|α|2e−αâ†eα

∗â = D̂(−α),
(S4)

where the first equality follows from D̂(α)−1D̂(α) = 1. The second row of Eq. (S4) is

obtained from the first one since

eα
∗âe−αâ† = e−αâ†eα

∗âe−|α|2 . (S5)

The Baker–Campbell–Hausdorff relation

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2
[Â, [Â, B̂]] + . . . (S6)

can be used with Â = −αâ† + α∗â, and B̂ = â to show that

D̂(α)†âD̂(α) = â+ α, (S7)

since [Â, B̂] = [−αâ† + α∗â, â] = α, and therefore [Â, [Â, B̂]] = 0. For part 2, we apply the

vacuum state |0⟩ to Eq. (S7) and obtain

D̂(α)†âD̂(α)|0⟩ = α|0⟩, (S8)
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since we have â|0⟩ = 0. Therefore, according to Eq. (S1), we conclude that

D̂(α)|0⟩ = |α⟩, (S9)

which indeed is Eq. (S2).

Series expansion. Substituting Eq. (S3) into Eq. (S9), we obtain

|α⟩ = e−
1
2
|α|2eαâ

†
e−α∗â|0⟩ (S10)

and by expanding the exponentials in Taylor series, we get

|α⟩ = e−
1
2
|α|2eαâ

†|0⟩

= e−
1
2
|α|2

∞∑
n=0

αn

n!
(â†)n|0⟩

= e−
1
2
|α|2

∞∑
n=0

αn

√
n!
|n⟩,

(S11)

where the third row is obtained by â†|n⟩ =
√
n+ 1|n + 1⟩. In particular, we obtain the

following eigenvalue equation â|α⟩ = α|α⟩ since

â|α⟩ = e−
1
2
|α|2

∞∑
n=1

αn

√
n!

√
n|n− 1⟩

= e−
1
2
|α|2

∞∑
n=1

α
αn−1√
(n− 1)!

|n− 1⟩

= αe−
1
2
|α|2

∞∑
n=0

αn√
(n)!

|n⟩.

(S12)
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Given that the coherent state is an eigenstate of the annihilation operator, its complex

conjugate is an eigenstate of the creation operator

(â |α⟩)† = (α |α⟩)† , (S13)

⟨α| â† = ⟨α|α⋆. (S14)

Overlap. Coherent states are not orthogonal since, according to Eq. (S11),

⟨β|α⟩ = e−
1
2
|α|2e−

1
2
|β|2

∞∑
n=0

∞∑
m=0

(β∗)mαn

√
m!n!

⟨m|n⟩

= e−
1
2
|α|2e−

1
2
|β|2

∞∑
n=0

(β∗)nαn

n!

= e−
1
2
|α|2e−

1
2
|β|2eβ

∗α

= e−
1
2
|β−α|2e

1
2
(β∗α−βα∗)

(S15)

Expectation values. The expectation value of position,

x̂ =

√
ℏ

2mω

(
a+ a†

)
, (S16)

follows from

⟨α |x̂|α⟩ =

〈
α

∣∣∣∣∣
√

ℏ
2mω

(
a+ a†

)∣∣∣∣∣α
〉

(S17)

=

√
ℏ

2mω

(
⟨α |a|α⟩+

〈
α
∣∣a†∣∣α〉) (S18)

=

√
ℏ

2mω
(α ⟨α|α⟩+ α⋆ ⟨α|α⟩) (S19)

=

√
ℏ

2mω
(α + α⋆) (S20)

=

√
2ℏ
mω

Re (α) . (S21)
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Likewise, the expectation value of the momentum,

p̂ = −i
√
mℏω
2

(
a− a†

)
, (S22)

follows from

⟨α |p̂|α⟩ =

〈
α

∣∣∣∣∣−i
√
mℏω
2

(
a− a†

)∣∣∣∣∣α
〉

(S23)

= −i
√
mℏω
2

(
⟨α |a|α⟩ −

〈
α
∣∣a†∣∣α〉) (S24)

= −i
√
mℏω
2

(α ⟨α|α⟩ − α⋆ ⟨α|α⟩) (S25)

= −i
√
mℏω
2

(α− α⋆) (S26)

=
√
2mℏω Im (α) . (S27)

Therefore, according to Eq. (S17) and Eq. (S23), we obtain

α = αr + iαi =

√
mω

2ℏ
qα + i

1√
2mℏω

pα, (S28)

where qα = ⟨α|x̂|α⟩ and pα = ⟨α|p̂|α⟩.

Representation as wavefunction. The wavefunctions can be obtain by substituting the

eigenfunctions of the Harmonic oscillator,

⟨x|n⟩ = (2nn!)−1/2
(mω
πℏ

)1/4
exp
(
−x̃2/2

)
Hn(x̃), (S29)

into Eq. (S11), where x̃ = x
√
mω/ℏ, with Hn the nth-Hermite polynomial, giving

⟨x|α⟩ =
(mω
πℏ

)1/4
e−

1
2
|α|2e−

1
2
x̃2

∞∑
n=0

(α/
√
2)n

n!
Hn(x̃). (S30)
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The vacuum state corresponding to n = 0 photons is described by the wavefunction ⟨x|0⟩.

According to Eq. (S30), ⟨x|0⟩ is also a coherent state with α = 0 (i.e., the ground state of a

harmonic oscillator with mass m and frequency ω). We note that the Hermite polynomials

are given by the characteristic function

e2x̃t−t2 =
∞∑
n=0

Hn(x̃)
tn

n!
, (S31)

as can be verified by the Taylor expansion at x̃. Therefore, substituting the characteristic

function into Eq. (S30), with t = α/
√
2, we obtain

⟨x|α⟩ =
(mω
πℏ

)1/4
e−

1
2
|α|2e

1
2
x̃2

e−(x̃−α/
√
2)2

=
(mω
πℏ

)1/4
e−

1
2
(α2

r+α2
i )e

1
2
x̃2

e−(x̃−αr/
√
2−iαi/

√
2)2

=
(mω
πℏ

)1/4
e−

1
2
(α2

r+α2
i )e

1
2
x̃2

e−(x̃2+α2
r/2−α2

i /2+iαrαi−
√
2x̃(αr+iαi))

=
(mω
πℏ

)1/4
e−α2

re−
1
2
x̃2

e
√
2x̃αre−iαi(αr−

√
2x̃)

=
(mω
πℏ

)1/4
e−(αr−x̃/

√
2)2e−iαi(αr−

√
2x̃).

(S32)

Substituting αr and αi in terms of qα and pα, we obtain

⟨x|α⟩ =
(mω
πℏ

)1/4
e−(qα

√
mω
2ℏ −x

√
mω
2ℏ )

2

e−ipα
√

1
2mℏω (qα

√
mω
2ℏ −

√
2x
√

mω
ℏ )

=
(mω
πℏ

)1/4
e−(

mω
2ℏ )(x−qα)

2

e
i
ℏpα(x−qα)e

i
2ℏpαqα

=
(γ
π

)1/4
e−

γ
2
(x−qα)

2

e
i
ℏpα(x−qα)e

i
2ℏpαqα ,

(S33)

with γ = mω/ℏ.
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1.2 P-representation of the density operator

The Glauber-Sudarshan P -representation of the density operator, ρ̂ (i.e., the P -function,

P (α)), is a pseudo-probability distribution defined, as follows

ρ̂ =

∫
P (α)|α⟩⟨α| d2α, (S34)

where d2α = dRe(α)d Im(α). As shown below,

P (α) =
e|α|

2

π2

∫
e−α∗u+u∗α⟨−u|ρ̂|u⟩e|u|2 d2u. (S35)

To prove Eq. (S35), we follow Mehta and compute ⟨−u|ρ̂|u⟩ by using Eq. (S34),

⟨−u|ρ̂|u⟩ =
∫
P (α)⟨−u|α⟩⟨α|u⟩d2α. (S36)

Substituting ⟨α|u⟩ according to Eq. (S15), we obtain

⟨−u|ρ̂|u⟩ =
∫
P (α)e−

1
2
|u|2− 1

2
|α|2−u∗αe−

1
2
|u|2− 1

2
|α|2+α∗u d2α

= e−|u|2
∫
P (α)e−|α|2eα

∗u−u∗α d2α.

(S37)

Introducing the variable substitution α = x+ iy and u = x′ + iy′, we obtain

⟨−u(x′, y′)|ρ̂|u(x′, y′)⟩e|u(x′,y′)|2 =

∫
P (α(x, y))e−x2−y2e(x−iy)(x′+iy′)−(x′−iy′)(x+iy) dxdy

=

∫
P (α(x, y))e−x2−y2e−i2yx′+i2y′x dxdy.

(S38)

S8
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Introducing the function I(x̃, ỹ) by

I(x̃, ỹ) =
1

π2

∫
ei2x

′ỹ−i2y′x̃⟨−u(x′, y′)|ρ̂|u(x′, y′)⟩e|u(x′,y′)|2 dx′dy′

=
1

π2

∫
P (α(x, y))e−x2−y2

∫
e−i2(y−ỹ)x′+iy′2(x−x̃) dx′dy′ dxdy

=
1

(2π)2

∫
P (α(x, y))e−x2−y2

∫
e−i(y−ỹ)x′′+iy′′(x−x̃) dx′′dy′′ dxdy

=

∫
P (α(x, y))e−x2−y2δ(y − ỹ)δ(x− x̃) dxdy,

(S39)

we conclude that

I(x̃, ỹ) = P (α(x̃, ỹ))e−x̃2−ỹ2 , (S40)

which gives us

P (α(x, y)) =
ex

2+y2

π2

∫
eix

′y−iy′x⟨−u(x′, y′)|ρ̂|u(x′, y′)⟩e|u(x′,y′)|2 dx′dy′,

P (α) =
e|α|

2

π2

∫
e−α∗u+u∗α⟨−u|ρ̂|u⟩e|u|2 d2u.

(S41)

Pure coherent states. For the pure state ρ̂ = |β⟩⟨β|, we obtain according to Eq. (S15)

⟨−u|ρ̂|u⟩ = e−
1
2
|−u−β|2e

1
2
(−u∗β+uβ∗)e−

1
2
|β−u|2e

1
2
(β∗u−βu∗)

= e−|u|2e−|β|2euβ
∗−u∗β.

(S42)

Therefore, substituting Eq. (S42) into Eq. (S41), we obtain

P (α) =
e|α|

2

π2

∫
e−α∗u+u∗αe−|u|2e−|β|2euβ

∗−u∗βe|u|
2

d2u

=
e|α|

2
e−|β|2

π2

∫
e−α∗u+u∗αeuβ

∗−u∗β d2u

=
e|α|

2
e−|β|2

π2

∫
e−u(α−β)∗+u∗(α−β) d2u,

(S43)
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and considering that u = x′ + iy′, we obtain

P (α) =
e|α|

2
e−|β|2

π2

∫
ei2x

′ Im(α−β)−i2y′ Re(α−β) dx′dy′

=
e|α|

2
e−|β|2

(2π)2

∫
eix

′′ Im(α−β)−iy′′ Re(α−β) dx′′dy′′

= e|α|
2

e−|β|2δ(Im(α− β))δ(Re(α− β))

= δ2(α− β).

(S44)

Hence, for a pure coherent state, P (α) coincides with the classical density of states. In

particular, this shows that coherent states are classical-like quantum states.

Pure number states. The P-representation of a pure number state, ρ̂ = |n⟩⟨n|, is ob-

tained, as follows

⟨−u|ρ̂|u⟩ = ⟨−u|n⟩⟨n|u⟩

= e−|u|2 u
n

n!
(−u∗)n,

(S45)

where we have substituted ⟨n|u⟩ in the second row, according to Eq. (S11), as follows

⟨n|u⟩ = e−
1
2
|u|2 u

n

√
n!
. (S46)

Therefore, substituting Eq. (S45) into Eq. (S41), we obtain

P (α) =
e|α|

2

π2

∫
e−α∗u+u∗α⟨−u|ρ̂|u⟩e|u|2 d2u

=
e|α|

2

π2

∫
e−α∗u+u∗αe−|u|2 (−uu∗)n

n!
e|u|

2

d2u

=
e|α|

2

n!π2

∫
e−α∗u+u∗α(−uu∗)n d2u

=
e|α|

2

n!π2

∂2n

∂nα∂nα∗

∫
e−α∗u+u∗α d2u,

(S47)
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which can also be written as

P (α) =
e|α|

2

n!

∂2n

∂nα∂nα∗ δ
2α. (S48)

Analogously, for an M -mode Gaussian state, we obtain

P⊗M
j=1 |nj⟩⟨nj |(α) =

M∏
j=1

e|αj |2

nj!

∂2nj

∂njαj∂njα∗
j

δ2αj. (S49)

We note that this is the so-called tempered distribution function, which operates only as the

argument of an integral, as follows

∫
F (α)

∂2n

∂nα∂nα∗ δ
2α d2α =

∂2nF (α)

∂αn∂nα∗

∣∣∣∣∣
α=0, α∗=0

. (S50)

Expectation values for operators. In general, the P -representation of an operator

Ô(â†, â), is analogous to the representation of the density operator introduced by Eq. (S34).

It involves the P -function PÔ(α), which is defined, as follows

Ô =

∫
PÔ(α)|α⟩⟨α| d

2α, (S51)

with expectation value given by

⟨Ô⟩ = Tr[Ôρ̂]

=
∑
n

∫
PÔ(α)⟨n|α⟩⟨α|ρ̂|n⟩ d

2α

=

∫
PÔ(α)

∑
n

⟨α|ρ̂|n⟩⟨n|α⟩ d2α

=

∫
PÔ(α)⟨α|ρ̂|α⟩ d

2α

= π

∫
PÔ(α)Q(α) d

2α,

(S52)
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where Q(α) = π−1⟨α|ρ̂|α⟩ is called the Husimi function. In particular, for a pure state

ρ̂ = |ψ⟩⟨ψ|, the Husimi function is Q(α) = π−1|⟨ψ|α⟩|2. The derivation of the Husimi

function for an multimode Gaussian will be the subject of the following subsection. For the

particular case Ô = |n⟩⟨n|, we obtain:

Tr[Ôρ̂] = Tr[ρ̂|n⟩⟨n|] = π

∫
P|n⟩⟨n|(α)Q(α) d

2α, (S53)

where P|n⟩⟨n|(α) is defined according to Eq. (S48) as

P|n⟩⟨n|(α) =
e|α|

2

n!

∂2n

∂nα∂nα∗ δ
2α, (S54)

which yields

Tr[ρ̂|n⟩⟨n|] = π

∫
Q(α)

e|α|
2

n!

∂2n

∂nα∂nα∗ δ
2α d2α. (S55)

1.3 Husimi function of an M-mode Gaussian state

The Husimi function of an M -mode Gaussian state is defined, as follows

Q(α) = π−M⟨α|ρ̂|α⟩, (S56)

where α = (α1, . . . , αM , α
∗
1, . . . , α

∗
M)T . The goal of this subsection is to introduce the Wigner

transform for the evaluation of Eq. (S56) for M = 1. As a result of this, we will obtain the

following expression

Q(α) =
π−1√

| det(σQ)|
e−α†σ−1

Q α, (S57)

where σQ = σ + I2/2.
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Wigner transform. For the derivation of Eq. (S57), we first give the Husimi function for

a single-mode pure Gaussian state. The elements of the density operator of a single-mode

pure Gaussian state are given by

⟨x|ρ̂|x′⟩ = ⟨x|ψ⟩⟨ψ|x′⟩

=
(γ
π

)1/2
e−

γ
2
((x−dx)2+(x′−dx)2)+

i
ℏdp(x−x′),

(S58)

where dx = ⟨x̂⟩, dp = ⟨p̂⟩, and γ = (⟨(x̂ − dx)
2⟩)−1/2. These elements can be Wigner

transformed, as follows

ρW (x, p) = (2πℏ)−1

∫
e

i
ℏpy
〈
x− y

2
|ρ̂|x+ y

2

〉
dy

= (2πℏ)−1

∫ (γ
π

)1/2
e−

γ
2
((x− y

2
−dx)2+(x+ y

2
−dx)2)+

i
ℏ (p−dp)y dy

= (2πℏ)−1e−γ(x2−2xdx+d2x)

∫ (γ
π

)1/2
e−

γ
4
y2+ i

ℏ (p−dp)y dy

= (πℏ)−1e−(γ(x−dx)2+(p−dp)2/(ℏ2γ)).

(S59)

For a given positive constant γα > 0, let z =
(√

γα(x− dx), (p− dp)/(ℏ
√
γα)
)T

, and

σ =

γα/γ 0

0 γ/γα

 . (S60)

We then obtain

ρW (x, p) =
e−zT σ−1z

πℏ

=
e−

1
2
zT σ̃−1z

2πℏ
√

| det(σ̃|)
,

(S61)

where σ̃−1 = 2σ−1.
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Expectation values. Expectation values can be calculated in terms of the Wigner trans-

form, as follows

⟨Ô⟩ = Tr[ρ̂Ô]

=

∫
⟨x̃|ρ̂|x̃′⟩⟨x̃′|Ô|x̃⟩ dx̃dx̃′

=

∫ 〈
x− y

2
|ρ̂|x+ y

2

〉〈
x+

y

2
|Ô|x− y

2

〉
dxdy,

(S62)

where x̃ = x− y
2
and x̃′ = x+ y

2
. Therefore,

⟨Ô⟩ =
∫ 〈

x− y

2
|ρ̂|x+ y

2

〉∫ 〈
x+

y′

2
|Ô|x− y′

2

〉
δ(y − y′) dy′ dxdy

=
1

2πℏ

∫ ∫ 〈
x− y

2
|ρ̂|x+ y

2

〉
e

i
ℏpy

∫ 〈
x+

y′

2
|Ô|x− y′

2

〉
e−

i
ℏpy

′
dy′ dy dxdp

=

∫
ρW (x, p)

∫ 〈
x+

y′

2
|Ô|x− y′

2

〉
e−

i
ℏpy

′
dy′ dxdp

=

∫
ρW (x, p)

∫ 〈
x− y′

2
|Ô|x+ y′

2

〉
e

i
ℏpy

′
dy′ dxdp

=

∫
ρW (x, p)OW (x, p) dxdp,

(S63)

where OW (x, p) =
∫ 〈

x− y′

2
|Ô|x+ y′

2

〉
e

i
ℏpy

′
dy′. In particular, the expectation value ⟨α|ρ̂|α⟩

is given by

⟨α|ρ̂|α⟩ =
∫
ρW (x, p)Wα(x, p) dxdp, (S64)

with |α⟩ defined according to Eq. (S32), and

Wα(x, p) =

∫ 〈
x− y′

2
|α
〉〈

α|x+ y′

2

〉
e

i
ℏpy

′
dy′

= 2e−γα(x−qα)2e−(p−pα)2/(γαℏ2),

(S65)

with γα = mω/ℏ, qα = ⟨α|x̂|α⟩, and pα = ⟨α|p̂|α⟩, corresponding to the value α =√
γα/2qα + i(2γα)

−1/2ℏ−1pα, according to Eq. (S28). Analogously, we introduce β =
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√
γα/2x+ i(2γα)

−1/2ℏ−1p, from which we conclude that

2|β − α|2 = γα(x− qα)
2 + (p− pα)

2/(γαℏ2), (S66)

which shows that

Wα(x, p) = 2e−2|β−α|2 . (S67)

Substituting Eqs. (S61) and (S67) into Eq. (S64), we find:

⟨α|ρ̂|α⟩ =
∫

e−
1
2
zT σ̃−1z

πℏ
√

| det(σ̃)|
e−2|β−α|2 dxdp

=
1

π
√

| det(σ̃)|

∫
e−

1
2
β†σ̃−1βe−2|β−α|2 d2β.

(S68)

For simplicity, let us consider the case where dx = dp = 0. Using that |β−α|2 = (β−α)†(β−

α) = β†β − β†α− α†β + α†α = β†β − 2α†β + α†α, we obtain

⟨α|ρ̂|α⟩ = e−2α†α

π
√

| det(σ̃)|

∫
e−

1
2
β†(σ̃−1+4)βe4α

†β d2β

=
2e−2α†α√

| det(σ̃−1 + 4)|| det(σ̃)|
e

1
2
4α†(σ̃−1+4)−14α

=
2e−α†(2−8(σ̃−1+4)−1)α√
| det(σ̃−1 + 4)|| det(σ̃)|

.

(S69)

Moreover, a short calculation shows that 2 − 8(σ̃−1 + 4)−1 = (σ + I2/2)
−1, as well as√

| det(σ̃−1 + 4)|| det(σ̃)| = 2
√

| det(I2/2 + σ)|. Therefore, we finally conclude that

Q(α) = π−1⟨α|ρ̂|α⟩

= π−1 e−α†(σ+I2/2)−1α√
| det(σ + I2/2)|

,
(S70)

which, when generalized to an M -mode Gaussian, gives Eq. (S57).
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2 Output Probabilities of an M-mode Gaussian

In this section, we obtain the output probability distribution

Pr(n̄) = Tr

[
ρ̂

M⊗
j=1

|nj⟩⟨nj|

]
(S71)

for an M -mode input Gaussian, corresponding to occupation numbers of output modes n̄ as

described by the tensor product of number state operators ˆ̄n =
⊗M

j=1 n̂j, where n̂j = |nj⟩⟨nj|

measures the probability of observing nj photons in output mode j.

Substituting Eq. (S57) and Eq. (S54) into Eq. (S53), we obtain

Pr(n̄) =

∫
1√

| det(σQ)|
e−

1
2
α†σ−1

Q α+α†α
M∏
j=1

1

nj!

∂2nj

∂njαj∂njα∗
j

δ2αj, (S72)

and integration by parts yields

Pr(n̄) =
1√

| det(σQ)|

M∏
j=1

1

nj!

∂2nj

∂njαj∂njα∗
j

e
1
2
α†(I2M−σ−1

Q )α

∣∣∣∣∣
αj=0

. (S73)

We note that

α†(I2M − σ−1
Q )α = αT

 0 IM

IM 0

 (I2M − σ−1
Q )α, (S74)

since is defined as α = (α1, . . . , αM , α
∗
1, . . . , α

∗
M)T . Hence,

Pr(n̄) =
1√

| det(σQ)|

M∏
j=1

1

nj!

∂2nj

∂njαj∂njα∗
j

e
1
2
αTKα

∣∣∣∣∣
αj=0

, (S75)
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where we used

K =

 0 IM

IM 0

 (I2M − σ−1
Q ), (S76)

as previously defined. In particular, for the specific case of measuring nj ∈ {0, 1} photons

at each output mode, with N =
∑M

j=1 nj, we obtain

Pr(n̄) =
1√

| det(σQ)|
∂2N∏M

j=1 ∂
njαj∂njα∗

j

e
1
2
αTKα

∣∣∣∣∣
αj=0

=
1√

| detσQ)|
∂2N∏N

l=1 ∂αl∂α∗
l

e
1
2
αTKα

∣∣∣∣∣
αl=0

,

(S77)

where in the second row the indices l = 1, . . . , N correspond to the output modes with

nj = 1. To evaluate Eq. (S77), we introduce Faà di Bruno’s formula in Sec. 3, showing that

it can be evaluated, as follows

Pr(n̄) =
1√

| det(σQ)|

(2N−1)!!∑
j=1

N∏
k=1

Kµj(2k−1),µj(2k)

=
1√

| det(σQ)|
Haf(KS),

(S78)

where µj ∈ S2N (symmetric group of 2N elements) define the indices of measured photons

(bright modes) corresponding to perfect matching j (of which there exist (2N)!/(2NN !) =

(2N−1)!!), and KS is the submatrix of K corresponding to the indices of measured photons.

We observe that Pr(n̄) is directly proportional to the number of perfect matchings associ-

ated with the observed modes with indices n̄ when A is the adjacency matrix of the complete

graph of modes, K = A⊕2 = c(A ⊕ A), and KS the submatrix of K corresponding to the

observed modes. Therefore, the number of perfect matchings can be obtained by sampling

from a Gaussian distribution with covariance σQ = σ + I2M/2.
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3 Faà di Bruno’s formula

Equation (S75) can be evaluated as discussed by Kruse et al,2 using Faà di Bruno’s formula

∂n

∂x1 · · · ∂xn
f(y) =

∑
π∈Pn

f (|π|)(y)
∏
B∈π

∂|B|y∏
l∈B ∂xl

, y = y(x1, x2, . . . , xn), (S79)

where Pn is the set of partitions of n indices {1, 2, . . . , n}, while |π| is the number of blocks

of partition π, and |B| is the number of elements in block B.

Example 1. A simple example with n = 3 illustrates Eq. (S79) as applied to computing

∂3

∂x1∂x2∂x3
f(y), with y = y(x1, x2, x3). The set P3 of possible partitions of indices {1, 2, 3}

includes one partition π1 with one block π1 = {{1, 2, 3}} (|π1| = 1, one block of size three);

three partitions with two blocks, including π2 = {{1, 2}, {3}}, π3 = {{1, 3}, {2}}, π4 =

{{2, 3}, {1}} (|π2,3,4| = 2); and finally one partition with three blocks π5 = {{1}, {2}, {3}}

(|π5| = 3). Hence, |P3| = 5 and we obtain

∂3

∂x1∂x2∂x3
f(y) = f ′(y)

∂3y

∂x1∂x2∂x3
+ . . .

f ′′(y)

(
∂2y

∂x1∂x2

∂y

∂x3
+

∂2y

∂x1∂x3

∂y

∂x2
+

∂2y

∂x2∂x3

∂y

∂x1

)
+ . . .

f ′′′(y)
∂y

∂x1

∂y

∂x2

∂y

∂x3
.

(S80)

Analogously, to evaluate Eq. (S77), we use n = 2N , x = α, y = 1
2
αTKα, and f(y) = ey. Note

that in this case f (|π|)(y) = f(y) for all partitions. It is important to note that the function

1
2
αTKα is quadratic in α, so all derivatives of third order or higher vanish. Furthermore,

the argument of Eq. (S77) is evaluated at αl = 0, so all first order derivatives also vanish.

This leaves only the partitions for which |B| = 2 for all blocks, which implies |π| = N (i.e.,

perfect matchings, the partitions of 2N indices into N blocks of pairs can be interpreted as
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permutations of the 2N photon indices). Therefore, we obtain

∂n

∂x1 · · · ∂xn
f(y) =

∂2Ne
1
2
αTKα∏N

l=1 ∂αl∂α∗
l

= e
1
2
αTKα

∑
π∈PM

∏
B∈π

∂2y∏
l∈B ∂xl

, (S81)

where PM ⊂ P2N denotes the subset of perfect matchings. Using that the second-order

derivatives of y can be expressed in terms of the matrix elements of K, we finally get

Pr(n̄) =
1√

| det(σQ)|
∂2N∏N

l=1 ∂αl∂α∗
l

e
1
2
αTKα

∣∣∣∣∣
αl=0

=
1√

| det(σQ)|

(2N−1)!!∑
j=1

N∏
k=1

Kµj(2k−1),µj(2k)

=
1√

| det(σQ)|
Haf(KS),

(S82)

Example 2. A simple example, with N = 2, shows how the partitions that contribute

to Eq. (S81) can be interpreted as permutations of the photon indices. Let us assume that

M = 4 and N = 2 photons are measured in the last two output modes 3 and 4. We then have

α = {α3, α4, α
∗
3, α

∗
4}. We label the indices as follows: {α3 → 1, α4 → 2, α∗

3 → 3, α∗
4 → 4}.

The perfect matchings are given by

• πPM1 = {{1, 2}, {3, 4}}

• πPM2 = {{1, 3}, {2, 4}}

• πPM3 = {{1, 4}, {2, 3}}

We therefore conclude that

∑
π∈PM

∏
B∈π

∂2y∏
l∈B ∂xl

= y
(2)
1,2y

(2)
3,4 + y

(2)
1,3y

(2)
2,4 + y

(2)
1,4y

(2)
2,3

=
∂2y

∂α3∂α4

∂2y

∂α∗
3∂α

∗
4

+
∂2y

∂α3∂α∗
3

∂2y

∂α4∂α∗
4

+
∂2y

∂α3∂α∗
4

∂2y

∂α4∂α∗
3

= K3,4K7,8 +K3,7K4,8 +K3,8K4,7.

(S83)

S19



We note that the index combinations of the partial derivatives in the first row can be mapped

into permutations corresponding to perfect matchings. These permutations (Fig. S1) can be

written in vector format as µ1 = (1, 2, 3, 4), µ2 = (1, 3, 2, 4) and µ3 = (1, 4, 2, 3), also denoted

as σ1 = id, σ2 = (23), and σ3 = (243). Note, that the blocks are ordered from left to right

corresponding to their block indices from lowest to highest and the numbers within a block

are also in increasing order, so µj(2k − 1) < µj(2k + 1) and µj(2k − 1) < µj(2k).

!!,#!$,% !!,$!#,% !!,%!#,$
!!,#!$,% !!,%!#,$!!,$!#,%

! =

!! =
!""
!#"
!$"

!"# !"$ !"%
!## !#$ !#%
!$# !$$ !$%

!%" !%# !%$ !%%

Figure S1: Top: Index combinations as perfect matchings of a graph with four nodes. Bot-
tom: Construction of the 2× 2 submatrix KS from the 8× 8 symmetric matrix K = A⊕2 for
two photons measured in the last two output modes 3 and 4.

4 Covariance matrix of squeezed and rotated state

The goal of Appendices 4 and 5 is to prove Eq. 13 in the main text, which establishes

a relationship between the covariance matrix of the M -mode squeezed and rotated state,

σ, and the graph adjacency matrix A. In this appendix, we first give the expression of σ

expressed according to the squeezing parameters and the M -mode rotation matrix U that

defines the linear interferometer. Then in Appendix 5 we show how A⊕2 = cA ⊕ cA is

identified as the so-called kernel matrix K, which one-to-one correspond to the covariance

matrix σ.
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Recall the definition of the squeezing operation

Ŝ(r) = e(−r(â)2+r(â†)2)/2, (S84)

where the real-valued r is referred to as the squeezing parameter. We aim to show that the

action of the squeezing operator on the creation and annihilation operators are equivalent

to the following linear Bogoliubov transformation

 â
â†

 7→

cosh(r) sinh(r)

sinh(r) cosh(r)


 â
â†

 =

 â
′

(â′)†

 . (S85)

To proof this relationship, we derive the following

Ŝ(r)†âŜ(r) = cosh(r)â+ sinh(r)â†. (S86)

We set

Â = (r(â)2 − r(â†)2)/2, (S87)

so that Ŝ(r)† = eÂ. Then, using the Baker–Campbell–Hausdorff formula, we have

Ŝ(r)†âŜ(r) = eÂâe−Â

=
∞∑
k=0

1

k!
[Â, [Â, . . . [Â, â] . . . ]],

(S88)

where each term contains k commutators. Noting that

[Â, â] =
1

2
[r(â)2 − r(â†)2, â] = râ†,

[Â, â†] = râ,

(S89)
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we have

[Â, . . . [Â, â] . . . ]] =


rkâ if k is even,

rkâ† if k is odd.

(S90)

Then we obtain

Ŝ(r)†âŜ(r) = â

∞∑
k=0

r2k

(2k)!
+ â†

∞∑
k=0

r2k+1

(2k + 1)!

= âcosh(r) + â†sinh(r).

(S91)

We now show that the covariance matrix of single mode squeezed state is

σ′(r) =
1

2

cosh2(r) + sinh2(r) 2cosh(r)sinh(r)

2cosh(r)sinh(r) cosh2(r) + sinh2(r)

 . (S92)

For the first element of the squeezed state covariance matrix σ′
11, we substitute in the defi-

nition of the covariance matrix in Eq. 3 in the main text

σ
′

11 =
1

2
⟨{â′

, (â′)†}⟩

=
1

2
⟨â′

(â′)† + (â′)†â
′⟩

=
1

2
⟨(cosh(r)2 + sinh(r)2)(ââ† + â†â) + 2sinh(r)cosh(r)(ââ+ â†â†)⟩

=
1

2
(cosh(r)2 + sinh(r)2)⟨ââ† + â†â⟩+ sinh(r)cosh(r)⟨(ââ+ â†â†)⟩

=
1

2
(cosh(r)2 + sinh(r)2),

(S93)

where the last equality uses ⟨ââ† + â†â⟩ = 1 and ⟨ââ⟩ = ⟨â†â†⟩ = 0 for the vacuum state.

Note that all averages are taken for the vacuum state density matrix since the creation and
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annihilation operators are in the Heisenberg representation. Similarly,

σ
′

12 =
1

2
⟨2â′

â
′⟩

= ⟨(cosh(r)â+ sinh(r)â†)(cosh(r)â+ sinh(r)â†)⟩

= ⟨cosh(r)2(ââ) + sinh(r)2(â†â†) + 2sinh(r)cosh(r){â†, â}⟩

= sinh(r)cosh(r).

(S94)

The derivation for the other two elements of σ
′
are analogous. Gathering all elements we

obtain Eq. (S92).

Next, we show that applying anM -mode rotation, specified by anM×M unitary rotation

matrix U , on the single-mode squeezed states specified by Eq. (S92), results in a state with

the following covariance matrix

σ =

U 0

0 U∗

σsque
U∗ 0

0 U


T

, (S95)

where σsque is the generalization of Eq. (S92) to M modes, as shown in Eq. 24 in the main

text. To prove this, we first write a given 2M × 2M covariance matrix σ̃ in the following

block form

σ̃ =

B G

D C

 , (S96)

where all four blocks are M ×M matrices. We now show that an M -mode rotation specified

by the M ×M unitary matrix U would rotate the covariance matrix to be

σ̃
′
=

U 0

0 U∗

 σ̃
U∗ 0

0 U


T

=

B′
G

′

D
′
C

′

 , (S97)
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where B
′
= UBU †, C

′
= U∗CUT , G

′
= UGUT , D

′
= U∗DU †. As derived in Eq. 28 in the

main text, theM -mode rotation linearly combines allM original annihilation/creation oper-

ators to obtain the rotated annihilation/creation operators, with the combination coefficients

specified by elements of U

â
′

k =
M∑
j=1

Ukj âj,

(â′k)
† =

M∑
j=1

U∗
kj â

†
j.

(S98)

According to the definition of the covariance matrix in Eq. 3 in the main text, an element

σ
′
ij of the upper-left block B (1 ≤ i, j ≤ M) of the rotated covariance matrix σ

′
, can be

expanded as

σ̃
′

ij =
〈
{â′

i(â
′
j)

†}
〉
/2

=
〈
â

′

i(â
′
j)

† + (â′j)
†â

′

i

〉
/2

=
1

2

〈(
M∑
l=1

Uilâl

)(
M∑

m=1

U∗
jmâ

†
m

)
+

(
M∑

m=1

U∗
jmâ

†
m

)(
M∑
l=1

Uilâl

)〉

=
1

2

M∑
l,m=1

UilU
∗
jm

〈
âlâ

†
m + â†mâl

〉
=

M∑
l,m=1

Uilσ̃lmU
†
mj

= (UBU †)ij,

(S99)

which proves B
′
= UBU †. The same procedure is carried out for C, G and D to prove

Eq. (S97). In particular, with σ̃ = σsque, we have

σout =

U 0

0 U∗

σsque
U∗ 0

0 U


T

, (S100)
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as in Eq. 30 in the main text.

5 Kernel matrix for the N-mode rotated state

The goal of this section is to prove Eq. 13 in the main text. First, we show that the squeezed

state covariance matrix σ′(r), derived as in Eq. (S92), corresponds to the kernel matrix K(r)

that has the following form

K(r) =

tanh(r) 0

0 tanh(r)

 , (S101)

where the kernel matrix K of a Gaussian state is defined according to its covariance matrix:

σQ = σ + I/2,

K = X(I − σ−1
Q ),

X =

0 1

1 0

 .
(S102)

According to Eqs. (S92) and (S102),

σ′
Q(r) = σ′(r) + I/2

=
1

2

cosh2(r) + sinh2(r) + 1 2cosh(r)sinh(r)

2cosh(r)sinh(r) cosh2(r) + sinh2(r) + 1


=

 cosh2(r) cosh(r)sinh(r)

cosh(r)sinh(r) cosh2(r)

 .
(S103)
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Taking the inverse of the matrix,

(σ′
Q(r))

−1 =
1

cosh4(r)− sinh2(r)cosh2(r)

 cosh2(r) −cosh(r)sinh(r)

−cosh(r)sinh(r) cosh2(r)


=

1

cosh2(r)

 cosh2(r) −cosh(r)sinh(r)

−cosh(r)sinh(r) cosh2(r)


=

 1 −tanh(r)

−tanh(r) 1

 ,
(S104)

and substitution in the definition for K yields

K(r) =

0 1

1 0



1 0

0 1

−

 1 −tanh(r)

−tanh(r) 1




=

tanh(r) 0

0 tanh(r)

 .
(S105)

The results above are for 1-mode squeezed states. Generalizing to M -single-mode squeezed

states is trivial since all modes are unentangled with each other. In that case, we have

IM − σ−1
M−squeezed,Q =

 0
⊕M

j=1 tanh(rj)⊕M
j=1 tanh(rj) 0

 (S106)

, (S107)

and the M -mode squeezed state kernel matrix is

KM−squeezed =

⊕M
j=1 tanh(rj) 0

0
⊕M

j=1 tanh(rj)

 . (S108)

S26



Now we show that the covariance matrix of the N -mode squeezed state in Eq. (S100) corre-

sponds to the following kernel matrix

K = c(A⊕ A) =: A⊕2, (S109)

where the adjacency matrix A is decomposed according to Takagi’s factorization as

A = U

(
1

c

M⊕
j=1

tanh(rj)

)
UT , (S110)

where 1/c is a constant greater than the largest singular value of A, ensuring that every

scaled singular value can be represented by the form of tanh(rj). We begin by setting

Ũ =

U 0

0 U∗

 , (S111)

so that Eq. (S100) becomes

σ = Ũσ′(r)Ũ †. (S112)

The corresponding matrix σQ = σ + I/2 can be written as

σQ = σ + I/2

= Ũσ′(r)Ũ † + ŨIŨ †/2

= Ũ (σ′(r) + I/2) Ũ †

= Ũσ′
Q(r)Ũ

†.

(S113)

Moreover, since Ũ is unitary,

σ−1
Q = Ũσ′

Q(r)
−1Ũ †. (S114)
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Therefore,

I − σ−1
Q = I − Ũσ′

Q(r)
−1Ũ †

= Ũ
(
I − σ′

Q(r)
−1
)
Ũ †

= Ũ

 0
⊕N

j=1 tanh(rj)⊕N
j=1 tanh(rj) 0

 Ũ †

=

U 0

0 U∗


 0

⊕N
j=1 tanh(rj)⊕N

j=1 tanh(rj) 0


U † 0

0 UT


=

 0 U
⊕N

j=1 tanh(rj)U
T

U∗⊕N
j=1 tanh(rj)U

† 0

 ,

(S115)

where the third equality is obtained according to Eq. (S106). The kernel matrix K =

X2M

(
I2M − σ−1

Q

)
is then

K =

 0 IM

IM 0


 0 U

⊕M
j=1 tanh(rj)U

T

U∗⊕M
j tanh(rj)U

† 0


=

U∗⊕M
j=1 tanh(rj)U

† 0

0 U
⊕M

j=1 tanh(rj)U
T


= cA∗ ⊕ cA

= c(A⊕ A)

= A⊕2,

(S116)

since A is real.
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