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The success of the self-attention mechanism in classical machine learning models has inspired the
development of quantum analogs aimed at reducing computational overhead. Self-attention inte-
grates learnable query and key matrices to calculate attention scores between all pairs of tokens
in a sequence. These scores are then multiplied by a learnable value matrix to obtain the output
self-attention matrix, enabling the model to effectively capture long-range dependencies within the
input sequence. Here, we propose a hybrid quantum-classical self-attention mechanism as part of
a transformer decoder, the architecture underlying large language models (LLMs). To demonstrate
its utility in chemistry, we train this model on the QM9 dataset for conditional generation, using
SMILES strings as input, each labeled with a set of physicochemical properties that serve as condi-
tions during inference. Our theoretical analysis shows that the time complexity of the query-key dot
product is reduced from O(n2d) in a classical model to O(n2 log d) in our quantum model, where
n and d represent the sequence length and embedding dimension, respectively. We perform simula-
tions using NVIDIA’s CUDA-Q platform, which is designed for efficient GPU scalability. This work
provides a promising avenue for quantum-enhanced natural language processing (NLP).

I. Introduction

A. Motivation

The self-attention mechanism, a cornerstone of the
Transformer architecture [1], has revolutionized numer-
ous machine learning (ML) domains, including natural
language processing (NLP) [2], computer vision [3, 4],
and computational biology [5, 6]. By capturing long-
range dependencies in sequential data, it enables effi-
cient and scalable learning, driving the Transformer’s
widespread adoption. Its versatility has spurred exten-
sive research into refining and extending its applications
within and beyond this framework.

Quantum machine learning (QML) has emerged as a
rapidly growing field [7–12], leveraging quantum compu-
tation to potentially enhance learning and optimization
tasks. This field explores whether manipulating quan-
tum states in Hilbert space outperforms classical vector
operations in deep learning. Inspired by the success of
the self-attention mechanism and the Transformer ar-
chitecture, researchers are increasingly exploring quan-
tum analogs to investigate potential performance gains
achievable through the learning of information encoded
into quantum states. Recently, Loshchilov et al. [13] in-
troduced a normalized transformer with representation
learning on a hypersphere. This approach bears similar-
ity to quantum state evolution, where unitary operators
move states across a hypersphere, suggesting that high-
dimensional normalized representations may offer advan-
tages for quantum self-attention mechanisms.

∗ Contact author:
anthony.smaldone@yale.edu
victor.batista@yale.edu

B. Background

The earliest application of self-attention in QML came
from Li et al. [14], who used classical Gaussian projec-
tions of query and key quantum states for text classifica-
tion. Some works depart from the classical formulation of
the scaled dot-product attention mechanism and “mix”
tokens together in Hilbert space to capture correlations
instead of computing query-key dot products. For in-
stance, Khatri et al. [15] develop a quantum algorithm
of the skip-k-gram NLP technique using linear combina-
tions of unitaries (LCU) and the quantum singular value
transform (QSVT). Zheng et al. [16] encode both query
and key vectors into a parametric quantum circuit (PQC)
and measure the qubits to learn their correlations. Evans
et al. [17] replace the explicit dot product with a PQC
that blends tokens in the Fourier domain via quantum
Fourier transformers (QFTs).

Other efforts focus on quantum analogs of self-
attention and transformers that closely adhere to the
classical framework, preserving the core principles of
their operation. Xue et al. [18] propose an end-to-end
quantum vision transformer; however, reliance of analog
encoding for quantum random access memory (qRAM),
leads to exponential scaling unless binary-tree structured
data is assumed [19], limiting its feasibility for noisy
intermediate-scale quantum (NISQ) and general-purpose
applications. Cherrat et al. [20] introduce a hybrid ap-
proach, learning query and key states with O(d) qubits–
where d represents the embedding dimension–to compute
the squared dot product as an attention score. Mean-
while, Liao and Ferrie [21] and Guo et al. [22] propose
theoretical quantum Transformer models based on algo-
rithms like LCU and block encoding to utilize quantum
linear algebra techniques. While these methods offer im-
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FIG. 1. The proposed hybrid quantum-classical transformer model generates molecules by processing SMILES strings (e.g.,
O=[N+]([O-])c1ccccc1). Each string is split into a sequence of tokens, which are assigned token, positional, and physicochemical
property embeddings. These embeddings pass through a hybrid self-attention mechanism: quantum circuits compute attention
scores, which are combined with classical value matrices. The output then flows through the remaining classical transformer
decoder to predict the next token in the sequence. This enables conditional molecular generation targeting specific physico-
chemical properties.

proved scaling under sparsity assumptions, their quan-
tum resource requirement continues to make them im-
practical for the NISQ era, underscoring the demand for
NISQ-friendly quantum self-attention approaches.

In this work, we introduce a novel quantum-classical
hybrid self-attention mechanism, integrated into a trans-
former decoder for molecular generation. This approach
uses O(log d) qubits and CNOT gates to learn all embed-
dings, as well as query and key representations, quantum
mechanically. Unlike prior methods, it directly yields
attention scores without squaring the dot product. We
further incorporate positional embeddings and establish
a general framework for additional embeddings, such as
physicochemical molecular features, enabling control over
generated molecular properties. Our results demonstrate
that this hybrid model performs on par with classical
baselines in SMILES validity, uniqueness, novelty, and
property-targeted molecular generation.

II. Framework

A. Classical Attention Score Calculation

For a given input sequence of tokens {x1, x2, . . . , xn},
each token xi is mapped to an embedding ei via a learned
embedding matrix. Positional embeddings pi are added
to preserve token order, yielding the final input embed-
dings:

zi = ei + pi, (1)

where the embedding dimension is d (i.e., dim ei =
dimpi = d). Additional embeddings can enhance next-
token prediction and condition the model to generate
data with specific properties during inference. These are
incorporated by summing κ additional vectors ci,v with

the token and positional embeddings, as in:

zi = ei + pi +

κ∑
v=1

civ (2)

following established practice [23].
The input embeddings are then linearly projected into

query (Q), key (K), and value (V) matrices:

Q = ZWQ, K = ZWK , V = ZWV , (3)

where Z = [z1, z2, . . . , zn]
⊤ stacks the input embeddings,

and WQ, WK , and WV are learned weight matrices.
The scaled dot-product attention mechanism [1] com-
putes attention scores across all token pairs as:

Attention(Q,K,V) = A(Q,K)V, (4)

with

A(Q,K) = softmax

(
QK⊤
√
dk

)
(5)

where dk is the dimension of the key vectors.

B. Learning Attention Scores with Quantum States

In the attention matrix A, each element ai,j is the scaled
dot product of the i-th query vector qi and the j-th key
vector kj , followed by a softmax operation (see Equation
5). In this work, we use quantum circuits to compute in-
dividual attention scores. We learn representations of the
embedding vectors zi, query vectors qi, and key vectors
ki as quantum states, denoted |qi⟩ and |kj⟩, and deter-
mine their inner product ⟨qi|kj⟩. The value matrixV and



3

subsequent operations, however, remain classical. Figure
2 illustrates our hybrid quantum-classical self-attention
framework. The next subsection details the quantum cir-
cuit used to compute A’s matrix elements.

1. Quantum Encoding of Token and Positional Information

Similar to the classical framework, we construct an em-
bedding matrix to assign token embeddings θei

, where
each vector’s entries are scaled to [0, π] and its dimen-
sion equals the number of learnable parameters m in the
ansatz Ue, which prepares the quantum state |ei⟩ for each
token. In this work, we define learnable positional encod-
ing angles θpi

, initialized to zero. The states |ei⟩ and |pi⟩
are prepared by applying unitaries Uei = Ue (θei

) and
Upi = Up (θpi

) to initial states:

Ue (θei
) |0⟩⊗

log d
2 = |ei⟩ , Up (θpi

) |0⟩⊗
log d

2 = |pi⟩ . (6)

Just as the elements of the token and positional em-
beddings are learned classically, the parameters of the
unitary operators Uei and Upi are learned as well. These
states are prepared independently, yielding the compos-
ite state Ψ1 as shown in Figure 4 which encodes token
and positional information for a sequence:

Ψ1 = |ei⟩ ⊗ |pi⟩ = |zi⟩ . (7)

All PQC ansatzes in this work use a single layer of Ry

gates followed by an entangling layer of CNOT gates as
shown in Figure 3.

2. Learning Query and Key States

The separable quantum states of token and positional
encodings are entangled via a PQC Uq, resulting in a
quantum state analogous to a query vector.

Ψ2 = Uq |zi⟩ = |qi⟩ (8)

An ancilla qubit in the |+⟩ state is introduced, and
the entire circuit is conditionally reversed under its con-
trol. If the ancilla qubit is in the |0⟩ state, the working
register remains |qi⟩. If the ancilla qubit is in the |1⟩
state, the working register is reset to |0⟩⊗ log d

as shown
in Equations 9 and 10

Ψ3 = CU†
q

( |0⟩+ |1⟩√
2

⊗ |qi⟩
)

=
|0⟩ |qi⟩+ |1⟩ |zi⟩√

2
(9)
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v
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FIG. 2. Quantum self-attention layer combining QK⊤ calcu-
lated with quantum circuits and a classically computed value
matrix V (Equation 3). Quantum token embeddings θe, posi-
tional angles θp, and learnable parameters θq, θk are used in
the unitary U as the circuit that evolves the quantum states
depicted in Equations 7 – 12. Each quantum circuit produces

an attention score, thus there are n2+n
2

instances of U with
their respective angles to ensure a fully populated masked
attention matrix. The expectation value of the Pauli-X ob-
servable on the ancilla qubit (equivalent to a Hadamard trans-
form and measurement in the computational basis as shown
in Equations 13 and 14) is obtained and represents the dot
product between query and key vectors. The original trans-
former implementation [1] scales attention scores by 1√

dk
to

maintain a variance of 1. Since the dot products herein are
obtained from the expectations of the quantum subsystems,
they are bound on the closed interval [−1, 1]. To maintain a
variance of 1, they must be scaled by

√
dk. The scaled values

are stored in the masked attention matrix, softmax is applied
to the rows, and the resulting matrix is multiplied with V.

Ψ4 = CU†
ei

(
CU†

pi

( |0⟩ |qi⟩+ |1⟩ |zi⟩√
2

))
=

|0⟩ |qi⟩+ |1⟩ |0⟩⊗ log d

√
2

(10)
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FIG. 3. Structure of the parametric quantum circuits used in
this work.

where CU = |0⟩ ⟨0|⊗I+|1⟩ ⟨1|⊗U and I is the identity
operator.

Analogous to the preparation of |zi⟩ in Equation 7, |zj⟩
is prepared with the difference being all PQCs are con-
trolled by the ancilla qubit. This controlled preparation
ensures the modified Hadamard test yields a real-valued
dot product ⟨qi|kj⟩ between query and key states. After
preparing |zj⟩, a controlled PQC CUk transforms it into
|kj⟩, applied only when the ancilla is in |1⟩, resulting in
the state:

Ψ5 = CUpj

(
CUej

(
|0⟩ |qi⟩+ |1⟩ |0⟩⊗ log d

√
2

))
=

|0⟩ |qi⟩+ |1⟩ |zj⟩√
2

(11)

Ψ6 = CUk

( |0⟩ |qi⟩+ |1⟩ |zj⟩√
2

)
=

|0⟩ |qi⟩+ |1⟩ |kj⟩√
2

. (12)

A final Hadamard gate is applied to the ancilla qubit,
which transforms the state to:

Ψ7 =
|0⟩ ⊗ (|qi⟩+ |kj⟩) + |1⟩ ⊗ (|qi⟩ − |kj⟩)

2
. (13)

The ancilla qubit is measured yielding an expectation
value of

⟨Ψ7|
(
Z ⊗ I⊗ log d

)
|Ψ7⟩ = Re ⟨qi|kj⟩ , (14)

which is equivalent to the classical analog of the i, j-th
entry of the QK⊤ matrix, where Z is the Pauli-Z gate.

Because each attention score is computed by an inde-
pendent quantum circuit, this process can be parallelized
across multiple quantum processing units (QPUs). For
next-token prediction, where the upper triangle of the

QK⊤ matrix is masked, a maximum of n2+n
2 − 1 unique

quantum circuits are required in the worst-case scenario.
This “worst case” occurs because circuits with identical
parameters, which produce the same results, need not be
recomputed, thus eliminating redundancy. Moreover, the
first circuit, corresponding to a1,1, need not be executed

since its softmax output is always 1 due to masking.

3. Extension to Additional Embeddings

Beyond token and positional encodings, our method
can incorporate additional embeddings. To mirror the
classical approach of equal embedding dimensions, we
choose all Hilbert subspaces for each embedding to be
of equal dimension. Thus, to form the quantum state
|z̃i⟩, which includes token, positional, and κ additional
embeddings, we prepare

|z̃i⟩ = Ue (θei
) |0⟩⊗(

log d
κ+2 ) ⊗ Up (θpi

) |0⟩⊗(
log d
κ+2 ) ⊗

κ⊗
v=1

Ucv (θcv) |0⟩⊗(
log d
κ+2 ) . (15)

We note that the κ + 2 term arises because the total
number of qubits (log d) is divided into registers of equal
size for each embedding–two registers for tokens and po-
sitions, along with κ additional registers. Here, we in-
corporate κ = 1 additional embeddings for physicochem-
ical properties, detailed in Section IIIA. Frequently, ad-
ditional embeddings like molecular properties (c) use the
same embedding vector for each sequence element. For
this case, Equation 2 reduces to

zi = ei + pi +

κ∑
v=1

cv = ei + pi + c. (16)

Likewise, the quantum circuit can be simplified when
embeddings are uniform across the sequence. Instead of

reversing the entire register to |0⟩⊗ log d
under control,

as in Equations 9 and 10, subspaces with uniform em-
beddings remain unchanged, as they are identical across
query-key pairs. This simplification yields the circuit in
Figure 6, where

Ψ̃1 =
|0⟩ |qi⟩+ |1⟩ |0⟩⊗

2 log d
3 |c⟩√

2
(17)

Ψ̃2 = CUpj

(
CUej

(
Ψ̃1

))
=

|0⟩ |qi⟩+ |1⟩ |kj⟩√
2

. (18)

The term 2 log d
3 arises because, as explained in Equa-

tion 15, the quantum registers for each embedding are
designed to have equal sizes. Consequently, with token,
positional, and an additional κ = 1 embedding represent-
ing molecular properties, there are three working quan-
tum registers. Two of these three registers (the token
and position quantum states) have been reversed under
control.
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FIG. 4. Quantum circuit used to create query and key states from a given quantum token and positional encoding to produce
an attention score when measured. Uei/Uej and Upi/Upj are the unitaries that create the token and positional encoding of the
i/j-th token into the quantum state. Uq and Uk are the unitaries to learn query and key representations of the quantum states
containing token and positional information. The mathematical description of states Ψ1 to Ψ7 are found in Equations 7 to 13.
The expectation value on the ancilla qubit yields the desired query-key dot product Re ⟨qi|kj⟩.

C. Quantum Gradient Calculation

1. Parameter Shift

The inability to access intermediate quantum states
significantly complicates traditional backpropagation via
reverse-mode automatic differentiation for PQCs com-
pared to classical methods [24]. The parameter shift
rule offers an approach for computing exact gradients of
PQCs. The expectation value of an observable Ô (e.g., a
Pauli operator) is given by

f(θ) = ⟨0|U†(θ)ÔU(θ)|0⟩ (19)

and the parameter shift rule computes its derivative
with respect to θ as follows

∂f(θ)

∂θ
=

1

2

[
f
(
θ +

π

2

)
− f

(
θ − π

2

) ]
. (20)

This approach computes the gradient by evaluating
f (θ) at shifted values θ ± π

2 , avoiding the need for fi-
nite differences but introducing an overhead of two cir-
cuit evaluations per parameter. As a result, its computa-
tional cost scales linearly with the number of parameters,
rendering it impractical for large-scale QML models and
motivating alternative methods.

2. Simultaneous Perturbation Stochastic Approximation

To address the parameter shift method’s linear scal-
ability with parameter count, we employ approximate
quantum gradient calculations via the simultaneous per-
turbation stochastic approximation (SPSA) algorithm
[25]. SPSA seeks a parameter vector x ∈ Rm that mini-
mizes

min
x
f(x) = min

x
Eξ [F (x, ξ)] , (21)

where F : Rm → R depends on the parameter vector
x ∈ Rm and a noise term ξ. SPSA approximates the
gradient ∇f(x) as follows:

∇f(x) ≈ f(x+ ϵ ·∆)− f(x− ϵ ·∆)

2ϵ∆
, (22)

where ∆ is an m-dimensional vector with elements ran-
domly chosen as ±1, and the perturbation step ϵ is set
to 0.01 in this work.

SPSA requires just two PQC evaluations regardless of
parameter count, making it ideal for the NISQ era. Con-
vergence analysis [26] indicates that larger batch sizes
yield more stable updates by reducing gradient variance,
aligning well with our training approach using a batch
size of 256.

D. Complexity Analysis

1. Computational Complexity

The time complexity of the classical calculation of the
attention matrix A in Equation 5 is O(n2d) stemming

from the multiplication of Q and K⊤ which are matrices
of dimensions n × d and d × n, respectively. Under the
assumption of efficient preparation of quantum states,
this modified-Hadamard test approach produces each in-
ner product ⟨qi|kj⟩ inO(1) time compared to the classical
O(d), leading to a complexity of O(n2) for the population
of A. In practice, we prepare states with O(log d) depth,
bringing the overall practical complexity to O(n2 log d).
It is important to note that preparing quantum states
in O(log d) time may result in highly structured states.
Specifically, low depth circuits are likely to produce quan-
tum states with sparse amplitudes or pattern-like struc-
tures, which could make direct comparisons to classical
algorithms that are designed for dense and unstructured
data less equitable.
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FIG. 5. Architecture of the hybrid quantum-classical trans-
former decoder where embeddings are learned both quantum
and classically. QK⊤ is computed with quantum circuits and
V is computed classically. Embedding and parameter (learn-
able position) matrices of dimension n× dim θe = n× dim θp
and n × d are defined for a given input sequence to obtain
quantum parameters (orange) and classical (pink) parame-
ters of the model, respectively. The query and key angles are
learned and used to transform the quantum embedding states
into quantum query and key states. Modified-Hadamard
tests are performed, and the output of the masked quantum-
classical hybrid attention mechanism (teal) is a matrix of di-
mensions n× d.

2. Query Complexity

The measurement of the ancilla qubit produces a
Bernoulli random variable where the probability of mea-

suring 1 is given by p0 =
1+Re⟨qi|kj⟩

2 . Thus, the Cher-
noff–Hoeffding theorem demonstrates Re ⟨qi|kj⟩ can be
found in O

(
1
ϵ2

)
query complexity with additive error ϵ.

However, since Re ⟨qi|kj⟩ = 2p0−1 is obtained by measur-
ing the ancilla qubit in the |0⟩ state, quantum amplitude
amplification can be performed to improve query com-

plexity to O
(
1
ϵ

)
. To illustrate this, the final state before

measurement as described in Equation 13 can be written
equivalently:

Ψ7 =
|0⟩
2

⊗ (|qi⟩+ |kj⟩) +
|1⟩
2

⊗ (|qi⟩ − |kj⟩) =
√
p0 |ψgood⟩+

√
1− p0 |ψbad⟩ . (23)

In this form, it is clear to see that a quadratic speed
up in query complexity can be achieved using amplitude
amplification with Grover operator

G = RΨ7
Rgood (24)

where the reflector RΨ7
is the unitary that prepares

the entire Hadamard-test circuit Ψ7 = RΨ7 |0⟩⊗(log d+1)
,

and the reflector Rgood is the Pauli-Z gate since the an-
cilla qubit is always in state |0⟩ for |ψgood⟩. While we
leave the implementation of amplitude amplification to
future researchers, we note the overall practical complex-
ity of the attention score calculation may be reduced to

O
(

n2 log d
ϵ

)
.

III. Experiments

A. Dataset & Features

We employ the QM9 dataset [27], a benchmark of 133,885
small organic molecules represented as SMILES strings
[28], as the basis for our study. The SMILES are canon-
icalized with RDKit [29] and duplicates were removed
leaving 133,798 remaining datapoints. After preprocess-
ing, the dataset was split into training and validation sets
at a 20:1 ratio. From the dataset, we extracted nine key
physicochemical features using RDKit: molecular weight
(MW), number of hydrogen bond acceptors (HBA), num-
ber of hydrogen bond donors (HBD), number of rotatable
bonds (nRot), number of rings (nRing), number of het-
eroatoms (nHet), topological polar surface area (TPSA),
logP (partition coefficient), and the number of stereo-
centers (Stereo). To incorporate these descriptors as ad-
ditional embeddings into our quantum-classical hybrid
model, we transform them via a classical linear layer from
9 dimensions to dim θe = dim θp. We then scale the batch
linearly between between 0 and π to produce θc for quan-
tum circuit encoding. The SMILES strings are tokenized
by breaking them into meaningful substructures, such
as atoms, rings, branches, and bond types, and convert-
ing them into a sequence of discrete tokens that can be
mapped to a high-dimensional embedding vector. The
QM9 SMILES strings consist of 30 unique tokens, along
with padding, start-of-sequence, and end-of-sequence to-
kens, resulting in a total vocabulary size of 33.

B. Benchmarks & Trainings

We trained two models in this study: one learning
SMILES strings using only text sequences, and an-
other incorporating physicochemical embeddings for con-
ditional molecular generation. For the sequence-only
setup, we assigned 3 qubits to each of the token and
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FIG. 6. Quantum circuit in the hybrid quantum-classical self-attention mechanism. The circuit learns all embeddings, query and
key representations, and produces a query-key dot product upon repeated measurement. Uc is a set of angles representing the

physicochemical property embeddings. Mathematical descriptions of Ψ̃1 and Ψ̃2 are found in Equations 17 and 18, respectively.

positional registers. For the condition-based setup, we
allocated 2 qubits to each of the token, positional, and
physicochemical registers, maintaining 6 working qubits
across both configurations.

We compared the quantum-classical model’s perfor-
mance to that of fully classical models with equivalent
architectures. All training setups employed one decoder
layer and one attention head. The quantum model com-
puted attention scores using 6 active qubits, producing a
Hilbert space of dimension 26 = 64, and thus we set the
classical token and positional embedding vectors to 64
dimensions. We also trained a classical model with equal
parameter counts, denoted Classical–eq, for further com-
parison. Since each PQC ansatz uses a single layer of
Ry gates, the number of learnable parameters per regis-
ter matches the qubit count—3 for token and positional
registers in sequence-only training ( log 64

2 = 3, Equation
6), and 2 for token, positional, and physicochemical reg-

isters in condition-based training ( log 64
3 = 2, Equation

15). To match the parameter count between the Quan-
tum and Classical–eq models, the weight matrices WQ

and WK (Equation 3) have shapes 3 × 2 and 2 × 3 for
sequence-only and condition-based setups, respectively,
yielding 6 parameters each for query and key transfor-
mations. All models in this work use 64-dimensional
embeddings for the value matrix WV . To summarize,
the total number of parameters for the hybrid quantum-
classical model (Quantum), fully classical model with an
equal number of parameters (Classical–eq) model were
47,704 and 48,307 for the sequence and condition-based
models, respectively. The fully classical model with an
equivalent architecture to the Quantum model but with
traditionally sized query-key weight matrices WQ and
WK of shape 64 × 64 (denoted as Classical) has 55,713
and 56,535 parameters for the sequence and condition-
based model, respectively. To fairly evaluate the perfor-
mance of these models, we initialized shared parameters

across all models with identical random values.

We implemented the machine learning components us-
ing PyTorch [30]. All models underwent training for 20
epochs with the AdamW optimizer [31], set to a learning
rate of 0.005 and weight decay of 0.1. We applied gra-
dient clipping with a maximum norm of 1.0 per layer to
stabilize gradients and used cross-entropy loss as the ob-
jective function. To support a batch size of 256, we con-
ducted quantum circuit simulations with CUDA-Q [32],
an open-source QPU-agnostic platform designed for ac-
celerated quantum-classical supercomputing. All quan-
tum simulations were performed using the state-vector
simulator available in CUDA-Q. Training times for a sin-
gle epoch on a CPU versus a single GPU are shown in
Table I, with a single GPU achieving a speedup of 1.34
over the CPU. Distributing simulations across four GPUs
further yielded a speedup of 3.84 relative to one GPU.
Consequently, we utilized four NVIDIA A100 GPUs on
NERSC’s Perlmutter supercomputer to accelerate train-
ing with this large batch size.

TABLE I. The training time for a single epoch on the QM9
dataset with the condition-based Quantum model using a
batch size of 256. Runtimes for the full training are extrap-
olated from the average runtime over 4 batch updates. The
GPUs and CPU used here are NVIDIA A100s and an AMD
EPYC 7763, respectively.

Hardware Epoch Time (hrs)
CPU 41.28
1 GPU 30.85
4 GPUs 8.03
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IV. Results

A. Evaluation of SMILES String Learning &
Generation

Training and validation loss curves for the sequence-
based and condition-based models are presented in Fig-
ure 7. For performance evaluation, we used the epoch
with the lowest validation loss per model for inference,
reporting next-token accuracy on the validation set as the
ratio of correctly predicted tokens (highest output prob-
ability matching the true token) to total tokens. The va-
lidity, uniqueness, and novelty percentages from 100,000
inference queries to the trained models are reported. The
results in Table II for the condition-based model used
the mean values of each physicochemical property in the
training set to construct the property embedding vec-
tor during inference, as it produced the greatest rate of
valid and unique SMILES (shown as V × U in Table II)
across all models. The results using the mean, median,
and mode of each property to guide the conditional gen-
eration were tested and are shown in Table A1 in the
appendix.

The decrease in V × U—from 55.1–56.2% for the
sequence-only model to 18.5–20.3% for the condition-
based model arises from the trade-off between structural
validity and diversity when optimizing for property con-
straints. The condition-based model samples molecules
from a more narrow chemical space to satisfy both struc-
tural and physicochemical constraints. The benefit of
incorporating property embeddings is reflected in the im-
proved next-token prediction accuracy across all models,
increasing from 61.6–62.4% to 68.0–69.9%. Across all
metrics in both the sequence-only and condition-based
trainings, the quantum and classical models exhibited
comparable performances.

B. In-Distribution Modeling Performance

Following SMILES generation (Section IVA), we eval-
uated models trained with physicochemical embeddings
for their ability to reproduce the training set’s property
distribution. The first row of Table III presents the mean
values of the nine molecular properties in the training
set. To assess how well each model aligns with this dis-
tribution, we performed inference using the epoch with
the lowest validation loss per model– consistent with Sec-
tion IVA– employing a physicochemical embedding vec-
tor based on these mean property values. After 100,000
queries, we computed the properties of all valid SMILES
strings and reported their averages in the upper sec-
tion of Table III for each model. Bold values in each
column indicate the model generating valid molecules
closest to the target mean. Results revealed compara-
ble performance across models, with the quantum model
producing molecules nearest to the target means for 3
of 9 properties: hydrogen bond acceptors (HBA), het-
eroatoms (nHet), and logP (octanol-water partition co-
efficient). The Classical–eq model excelled at generating
molecules with on-target molecular weights (MW), while
the Classical model outperformed others for the remain-
ing five properties: hydrogen bond donors (HBD), rotat-

able bonds (nRot), rings (nRing), topological polar sur-
face area (TPSA), and number of stereocenters (Stereo).

C. Out-of-Distribution Modeling Performance

The middle and bottom sections of Table III examined
the models’ ability to generate molecules beyond the
training distribution. For each experiment, we set the
target for one property two standard deviations above
and below the mean (µ ± 2σ), imputing the other eight
properties from the training data using the k-nearest
neighbors (k-NN) method in scikit-learn [33].
For targets 2σ above the mean, the quantum model

generated molecules closest to the targets for four prop-
erties: nRing, nHet, LogP, and Stereo. The Classical–
eq model matched three properties (MW, HBD, TPSA),
while the Classical model outperformed others on two
(HBA, nRot). Below the mean by 2σ, the quantum
model excelled at HBD, nRot, TPSA, and LogP; the
Classical–eq model at MW and nHet; and the Classical
model at HBA and Stereo. Notably, all models generated
molecules with zero rings equally well. To assess whether
skewed distributions disproportionately affect any model,
we repeated the experiment using median ±1.5 IQR tar-
gets, where IQR is the interquartile range. Results in
Table A2 confirm further that all models exhibit com-
parable performance in generating molecules beyond the
training distribution.

D. Comparison of Attention Maps

To visualize and qualitatively compare the features
learned by the attention mechanisms, attention maps for
an example molecule shown in Figure 8a, are presented in
Figures 8b – 8d. While the aggregate quantitative perfor-
mance of the models is similar, it is evident that they do
not learn the same features to the same extent. This
divergence in feature learning highlights the potential
utility of hybrid quantum-classical self-attention mech-
anisms. Combining quantum and classical self-attention
heads could enhance the extraction of a broader range of
sequence features compared to relying solely on either.
Such an approach could improve downstream task per-
formance, an avenue for future research.

V. Limitations & Conclusions

Our primary contribution is demonstrating that quan-
tum states and learnable unitary evolutions can replace
classical self-attention components in a generative model,
achieving a NISQ-friendly solution that maintains per-
formance parity with fully classical models. Addition-
ally, we introduce a novel method for incorporating posi-
tional encodings to enhance the model’s ability to learn
sequence-based information, alongside the integration of
supplementary embeddings, such as molecular proper-
ties. This approach enabled targeted molecular gen-
eration, producing molecules with desired properties,
thus demonstrating the potential of hybrid quantum-
classical architectures for generative tasks. Notably, we
achieved comparable performance between our quantum
and classical baselines while training with the Simulta-
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TABLE II. Performance of each model at the epoch with the lowest validation loss. Quantum denotes the quantum-classical
hybrid model. Classical–eq denotes a fully classical model with an equal of number learnable parameters as the Quantum
model. Classical denotes a fully classical model with an equivalent architecture as the Quantum model, but with traditionally
sized weight matrices. Accuracy % is the percentage of tokens correctly predicted. Validity % is the percentage of generated
sequences that create a valid mol structure in RDKit out of 100,000 queries to the trained model. The product of validity (V)
and uniqueness (U) shows the percentage of model queries which result in unique compounds. Novelty % is the percentage of
valid and unique SMILES strings that do not appear in the training set.

Model Loss Accuracy % Validity % Uniqueness % V×U % Novelty %
Quantum 0.634 62.0 68.6 81.9 56.2 52.6

Sequence Only Classical – eq 0.639 61.6 69.4 79.4 55.1 53.9
Classical 0.632 62.4 72.5 81.2 55.9 52.0
Quantum 0.397 69.9 50.5 38.8 19.6 69.6

Property Embeddings Classical – eq 0.386 68.3 50.7 40.0 20.3 70.4
Classical 0.414 68.0 38.5 48.0 18.5 71.2

TABLE III. Conditional generation results. The top section demonstrates how well each model is able to generate molecules
targeting the mean values of each property from the training data. The middle and lower sections indicate a target that is
above and below the mean value for each property by 2 × the standard deviation (σ), respectively. For each model, the average
value for that property of all valid generated molecules are shown. In the middle and lower sections, each numerical entry
represents the result from an inference experiment where only that property was specified and the remaining 8 properties were
imputed from the training data with k-nearest neighbors. Bold values indicate which model generated molecules closer to the
target value. Quantum indicates the quantum-classical hybrid model, Classical – eq denotes the fully classical model with an
equal number parameters as the Quantum model, Classical denotes the fully classical model with an equivalent architecture to
the Quantum model, but with traditionally sized weight matrices. All inferences were performed with the epoch that possessed
the lowest validation loss for each model.

MW HBA HBD nRot nRing nHet TPSA logP Stereo
Mean 122.77 2.23 0.83 0.92 1.74 2.47 37.16 0.30 1.71

Quantum 125.13 2.31 0.55 0.63 2.05 2.37 32.58 0.30 2.11
Classical – eq 123.42 2.15 0.55 0.55 2.03 2.21 31.74 0.46 1.98

Classical 128.04 2.15 1.00 0.79 1.67 2.19 34.53 0.52 1.81
Mean + (2× σ) 137.88 4.34 2.50 3.10 4.16 4.84 79.67 2.30 4.77

Quantum 135.73 3.95 2.79 2.71 3.74 4.82 81.61 2.24 4.46
Classical – eq 137.12 3.98 2.75 2.52 3.62 4.76 78.03 2.36 4.34

Classical 136.09 4.05 2.90 2.91 3.53 4.78 83.44 2.37 4.27
Mean - (2× σ) 107.66 0.12 0.00 0.00 0.00 0.10 0.00 -1.71 0.00

Quantum 112.83 0.63 0.15 0.11 0.00 0.05 0.55 -1.74 0.41
Classical – eq 112.12 0.58 0.19 0.11 0.00 0.06 0.67 -1.49 0.26

Classical 113.33 0.30 0.33 0.11 0.00 0.06 0.66 -1.46 0.15

neous Perturbation Stochastic Approximation algorithm.
Since parameter-shift gradients are computationally ex-
pensive, and backpropagation remains a common criti-
cism of quantum neural networks, demonstrating com-
petitive performance using SPSA is a promising result.

Despite these advances, our method has limitations
to consider. The primary bottleneck in a self-attention
mechanism’s complexity is its quadratic scaling with
sequence length, O(n2d). Our proposed method re-
duces the attention matrix computation time complex-
ity to O(n2 log d) but fails to address the dominant n2

quadratic scaling term. Additionally, the complexity
to multiply the attention matrix and value matrix still
scales O(n2d). While prior quantum transformer and
self-attention formulations suggest further reductions are
theoretically possible [21, 22], they demand quantum re-

sources impractical for the NISQ era, reinforcing our fo-
cus on NISQ compatibility over exhaustive complexity
optimization. We defer exploring additional attention
heads, decoder layers, and more expressive ansatzes to
future research. Remarkably, both the Quantum and
Classical–eq models, with as few as two learnable param-
eters for tokens and positions, effectively learn SMILES
strings. We hope these findings spur further development
of practical, NISQ-ready designs that balance efficiency
and performance for generative modeling.

VI. Data Availability

The datasets and code to reproduce the fig-
ures and results from this work are available at
https://github.com/anthonysmaldone/Quantum-
Transformer.

https://github.com/anthonysmaldone/Quantum-Transformer
https://github.com/anthonysmaldone/Quantum-Transformer
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(a) Sequence-only training loss (b) Sequence-only validation loss

(c) Condition-based training loss (d) Condition-based validation
loss

FIG. 7. Learning curves for the training and validation losses
of the quantum-classical model (Quantum), the fully classical
model with an equal number of parameters to the quantum-
classical model (Classical – eq), and the fully classical model
with an equivalent architecture but with traditionally sized
weight matrices (Classical). To better illustrate the model’s
learning progress, the validation curves (7b, 7d) display the
3-epoch moving average of the loss.

(a) O=[N+]([O-])c1ccoc1 (b) Quantum

(c) Classical – eq (d) Classical

FIG. 8. Attention maps of O=[N+]([O-])c1ccoc1 for
the quantum-classical hybrid model (Quantum) (8b), the
fully classical model with an equal number of parameters
(Classical–eq) (8c), and the fully classical model with an
equivalent architecture as the quantum-classical model but
with traditionally sized weight matrices (Classical)(8d). All
attention maps were computed using the model parameters
from the epoch with the lowest validation loss per condition-
based model.
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TABLE A1. Inference performance of each model at the epoch with the lowest validation loss, where the conditions used for
generation are chosen from the Mean, Median, and Mode of those properties from within the training data. Quantum indicates
the quantum-classical hybrid model, Classical – eq denotes the fully classical model with an equal number parameters as the
Quantum model, Classical denotes the fully classical model with an equivalent architecture to the Quantum model, but with
traditionally sized weight matrices. Validity % is the percentage of generated sequences that create a valid mol structure in
RDKit out of 100,000 queries to the trained model. The product of validity (V) and uniqueness (U) shows the percentage of
model queries which result in unique compounds. Novelty % is the percentage of valid and unique SMILES strings that do not
appear in the training set.

Model Validity % Uniqueness % V×U % Novelty %
Quantum 50.5 38.8 19.6 69.6

Mean Classical – eq 50.7 40.0 20.3 70.4
Classical 38.5 48.0 18.5 71.2
Quantum 70.2 14.5 10.2 66.3

Median Classical – eq 80.3 14.5 11.6 66.3
Classical 70.9 23.1 16.4 75.2
Quantum 73.8 21.7 16.0 95.1

Mode Classical – eq 65.8 22.6 14.9 94.6
Classical 64.9 28.0 18.2 95.4

TABLE A2. Conditional generation results. The top section demonstrates how well each model is able to generate molecules
targeting the median values of each property from the training data. The middle and lower sections indicate a target that is
above and below the median value for each property by 1.5 × interquartile range (IQR), respectively. For each model, the
average value for that property of all valid generated molecules are shown. In the middle and lower sections, each numerical
entry represents the result from an inference experiment where only that property was specified and the remaining 8 properties
were imputed from the training data with k-nearest neighbors. Bold values indicate which model generated molecules closer to
the target value. Quantum indicates the quantum-classical hybrid model, Classical – eq denotes the fully classical model with an
equal number parameters as the Quantum model, Classical denotes the fully classical model with an equivalent architecture to
the Quantum model, but with traditionally sized weight matrices. All inferences were performed with the epoch that possessed
the lowest validation loss for each model.

MW HBA HBD nRot nRing nHet TPSA logP Stereo
Median 125.13 2.00 1.00 1.00 1.00 2.00 35.82 0.28 2.00
Quantum 122.51 1.93 1.24 0.70 1.00 1.94 35.58 0.24 2.17

Classical – eq 124.51 1.95 1.26 0.81 1.00 1.97 34.89 0.33 2.05
Classical 123.55 1.96 0.70 0.84 1.00 2.04 31.51 0.53 1.58

Median + (1.5 × IQR) 134.07 3.50 2.50 2.50 2.50 3.50 81.29 2.23 6.50
Quantum 131.98 3.08 2.61 2.05 2.39 3.23 71.37 2.14 5.29

Classical – eq 134.31 3.32 2.96 1.99 2.25 3.37 86.42 2.27 5.32
Classical 134.66 3.50 2.50 2.29 2.12 3.70 81.63 2.47 5.12

Median - (1.5 × IQR) 116.19 0.50 0.00 0.00 0.00 0.50 0.00 -1.66 0.00
Quantum 116.09 1.07 0.23 0.15 0.00 0.45 0.92 -1.60 0.21

Classical – eq 119.34 1.12 0.48 0.13 0.00 0.77 0.87 -1.58 0.24
Classical 116.22 1.14 0.16 0.11 0.00 0.81 1.02 -1.41 0.10
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