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a b s t r a c t

We describe the status of a new time-dependent simulation capability for dense plasmas. The backbone
of this multi-institutional effort e the Cimarron Project e is the massively parallel molecular dynamics
(MD) code “ddcMD,” developed at Lawrence Livermore National Laboratory. The project’s focus is
material conditions such as exist in inertial confinement fusion experiments, and in many stellar inte-
riors: high temperatures, high densities, significant electromagnetic fields, mixtures of high- and low-Z
elements, and non-Maxwellian particle distributions. Of particular importance is our ability to incor-
porate into this classical MD code key atomic, radiative, and nuclear processes, so that their interacting
effects under non-ideal plasma conditions can be investigated. This paper summarizes progress in
computational methodology, discusses strengths and weaknesses of quantum statistical potentials as
effective interactions for MD, explains the model used for quantum events possibly occurring in
a collision, describes two new experimental efforts that play a central role in our validation work,
highlights some significant results obtained to date, outlines concepts now being explored to deal more
efficiently with the very disparate dynamical timescales that arise in fusion plasmas, and provides
a careful comparison of quantum effects on electron trajectories predicted by more elaborate dynamical
methods.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction and overview

Hot dense radiative (HDR) plasmas common to inertial
confinement fusion (ICF) and stellar interiors have high tempera-
ture (a few hundred eV to tens of keV), high density (a few to
hundreds of g/cc) and high pressure (hundreds of megabars to
thousands of gigabars). In addition to the extreme conditions
defining HDR plasmas, the fact that they can be composed of low-Z
(p, D, T, He3, .) and high-Z ions (C, Kr, Xe, Au, .) means there is
a complex interplay of atomic, radiative and thermonuclear
processes that need to be accounted for. Some HDR regimes rele-
vant to this work are located in the temperatureedensity plot, Fig.1.
ll rights reserved.
Information that elaborates various properties of and physical
processes in high energy density matter can be found in recent
proceedings of the conference series “Strongly Coupled Coulomb
Systems” and “Radiative Properties of Hot, DenseMatter,” as well as
the monograph “The Physics of Inertial Fusion” [1].

To be more specific, developing an understanding of HDR
plasmas means understanding the physics of high-Z ions in various
states of ionization, with light ions undergoing thermonuclear
reactions; electrons in various degrees of degeneracy; non-thermal
charged particles depositing energy and momentum; and photons
undergoing scattering, absorption and emission. This is the chal-
lenge confronting those who develop radiationehydrodynamic
codes for astrophysical and ICF applications, their goal being
a robust and accurate tool that can be used to design experiments,
analyze data and explain observations. Due to the complexity of
HDR plasmas and the shortage of validating data in the regimes of
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Fig. 1. The various domains of non-degenerate vs. degenerate matter, and weak vs.
strong plasma coupling in re, T space are compared with the prevalent conditions in
ICF, LCLS and JLF plasmas. Abscissa: electron density re in electrons/cm3; ordinate:
temperature T in eV.
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interest, computational physicists resort to the best available
theoretical models based on kinetic theory of energy exchange,
EOS, transport coefficients and stopping power. The theories often
depend on ad-hoc cut-offs, ignore strong scattering or bound states,
and are vague about treating multiple species. In particular, it is not
obvious how to treat plasmamixtures where, for example, the low-
Z component might be weakly coupled but the high-Z component,
strongly coupled.

Recent advances in high performance computing have opened
another avenue to a deeper understanding of HDR plasmas and at
the same time provided insight into the accuracy of kinetic theory.
Particle-In-Cell (PIC) [2,3] and Molecular Dynamics (MD) [3]
methods have provided the capability of creating virtual non-
equilibrium plasmas, whose properties can be investigated and
diagnosed in ways analogous to those an experimentalist uses to
study a plasma in a laboratory. The virtual plasma method also
provides insight into the micro-physical foundations of widely
accepted theories. And, since strong coupling is not an issue per se,
it provides insight into plasma regimes where current kinetic
theory is not valid.

This paper reviews the Cimarron project, which is using the
massively-parallel MD code ddcMD to investigate numerous time-
dependent phenomena in multi-species HDR plasmas. Why MD?
The HDR plasmas of interest are highly collisional. While both PIC
and MD can be used [4], MD includes Coulomb collisions naturally
whereas PIC has to include some sort of collisionalmodel to account
for short-range collisions. Thus, MD provides greater accuracy and
efficiency for strong collisions. Coulomb forces in ddcMD code are
computed using the particleeparticleeparticleemesh method
(PPPM or P3M) [3]. In this method long-range force terms are
calculated with a particle-mesh (PM) technique (similar to PIC)
while short-range force terms are calculated with explicit parti-
cleeparticle (PP) interactions. The strength of MD is also its biggest
challenge: time scales are dominated by the short intervals between
electroneelectron collisions. (New hybrid approaches for tackling
this problem will be discussed at the end of this paper.) MD is also
limited by the number of particles in a computational box andhence
for HDR plasmas it is restricted to rather small length scales. Limi-
tations aside, given accurate pair potentials ddcMD provides an
accurate numerical solution to the many-body classical particle
dynamics. Key computational features of this code are summarized
in Section 2.

By far, most MD codes do not explicitly treat electrons and
applying MD to a plasma requires much more thought than simply
including the electrons as addtional classical particles in the
simulation. Actual electroneelectron and electroneproton colli-
sions involve quantum interference and diffraction effects at small
distances. At the same time, there is a large-distance collective
effect which manifests itself as Debye screening. This dual-scale
phenomenon is exhibited in the Coulomb logarithm [5] as the
ratio of the Debye length to the thermal de Broglie wavelength. To
characterize these effective interaction features, quantum statis-
tical potentials (QSPs) [6] modify the Coulomb potential at short
range with quantum effects while leaving the long-range behavior
intact. Although QSPs have been used with great success, they are,
by necessity, only approximations for the quantumdynamics of real
electrons and it is not known quantitatively how well they repro-
duce processes relying on aspects of quantum dynamics. QSPs are
discussed in detail in Section 3.

The use of simulations to understand the micro-physics of HDR
plasmas raises the question of how one validates and tests MD. Our
strategy here is two-pronged: (1) make comparisons with other
theoretical/computational results in regimes of moderate density
and Coulomb coupling strength; (2) make comparisons with
experiments that probe regimes where our code should be valid.
Even though these comparisons are being made in regimes not
necessarily of highest interest from an HDR plasma point of view,
they provide confidence in our simulation capability when careful
extrapolations to HDR plasma conditions are undertaken.

Now, in practice, the former kind of comparisons noted above
tend to focus on fully ionized plasmas, and the latter, on partially
ionized plasmas. Thus, in addition to fusion and freeefree radiation
events in burning plasmas, MD simulations of plasmas must also be
able to include the atomic kinetics of ionization and recombination
for ions of heated target materials. Section 4 describes the model
we use to handle quantum processes in a (classical) MD simulation
that incorporates QSPs. For certain test cases mentioned there, this
approach is still problematic.

Section 5 presents a representative set of results for fully ionized
plasmas. These illuminate important features of static (mean) and
dynamic correlations, electroneion energy exchange and stopping
power under HDR conditions.

The two experimental efforts within the Cimarron project are
described in Section 6, togetherwith the current state of our related
validation work. Briefly, (1) experiments have been performed at
the Jupiter Laser Facility (JLF) of proton stopping in heated, well-
characterized carbon targets. (2) Experiments are also being per-
formed at the Linac Coherent Light Source (LCLS). The goal is to heat
solid density matter volumetrically and isochorically using the
ultra-short pulse 2 keV radiation beam. The LCLS pulse is also used
to measure the plasma’s dynamic structure factor S(k,u).

Given the significant capabilities of molecular dynamics for
analyzing non-equilibrium behavior of HDR plasmas, improve-
ments in our MD approach continue to be made. In Section 7, we
look to the future and discuss other methodologies that can be
melded with MD to augment its core capabilities. Under consider-
ation are wave-packet MD, momentum-dependent QSPs, and
kinetic-theory MD (wherein electrons are treated via a quantum
kinetic equationwhile the ions are still treated byclassicalMD). And,
we are exploring the use of density-functional theory for situations
that do not require explicit treatment of electron dynamics.

In Section 8, we return to QSPs, and investigate stringent tests
using exact solutions of the time dependent Schrodinger equation
for electroneion scattering. These studies reveal an important issue
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with QSPs that has received little attention in the literature to
date e we must be cautious in the manner in which we interpret
what the potentials yield.

Finally, in Section 9 we discuss future developments underlying
the physics capability of the MD code. One thrust is moving beyond
QSPs and thereby improving the micro-physics of the electroneion
interaction. The other closely related thrust is enhancing the ability
of the MD code to simulate numerous, tightly coupled physical
processes, especially those in HDR plasmas undergoing thermo-
nuclear burn.

2. Computational methods

2.1. Molecular dynamics methods

Molecular dynamics (MD) is a discrete particle simulation
method developed in the 1950’s by Alder and Wainwright [7].
Though the name suggests and it certainly has been used to study
molecular systems the method has a much broader application: it
has been used to study atomic systems, macro particles and even
nuclear systems with explicit hadrons. The focus of this paper is
how MD is used to simulate hot plasmas in which all the ions and
electrons are treated as explicit particles.

The molecular dynamics method is simply the numerical inte-
gration of equations of motion of a set of particles that are inter-
acting via some potential energy function V. Typically the equations
of motion are the classical Newton’s equation

d2ri
dt2

¼ fi
m
; fi ¼ �ViV (1)

andV is a functiononlyof theparticlepositions. That is,V¼V(r1,.,rN).
However generalizations to both the equations of motion and
potentials to include relativistic, quantum and momentum depen-
dent effects can all be explored.

The strength of theMDmethod is that once the potential energy
function V and the equations of motion have been chosen the
evolution of the system is completely defined. This evolution can be
tracked at the smallest relevant time and length scales and all
particle correlations are measurable. One might say that a virtual
laboratory has been created where all the finest time and length
scales can be observed.

The errors associated with MD are three-fold: potential energy
model, sampling and integration. The simplest of these errors to
understand and control is the integration error. This error is asso-
ciated with the numerical integration scheme and controlled by the
size of the time step, h, used. For instance consider one of the most
common numerical integration methods, the
velocityeVerlet algorithm [8];

riðt þ hÞ ¼ riðtÞ þ viðtÞhþ 1
2

fi
mi

h2 þ O
�
h3
�

viðt þ hÞ ¼ viðtÞ þ
1
2
fiðrðtÞÞ þ fiðrðt þ hÞÞ

mi
hþ O

�
h3
� (2)

Though a relatively low order method (O(h3)) velocity Verlet
preserves (up to roundoff error) the symplectic [9] symmetry of
Hamilton’s equation (the equations of motions). One property of
symplectic integrators, and the reason we chose to use velocity
Verlet in this work, is that the long-time energy drift for a micro-
canonical simulation is very small. Often, it is desirable to control
other average quantities besides the total energy. For instance
temperature or pressure [10]. There are many methods (Andersen
[11], Berendsen [12], Nose-Hoover [13], Langevin [14]) to control
temperature in an MD simulation. Temperature control is of
particular importance for this work and we have chosen to use the
Langevin method. The Langevin method is a stochastic method
where the equation of motion for the velocity in Eq. (2) is modified
by adding a small random (white) noise and a frictional force
directly proportional to vi:

m
d2ri
dt2

¼ fi �
mvi
s

þ
ffiffiffiffiffiffiffiffiffiffi
6mT
s

r
gðtÞ (3)

where g(t) is a three-vector of independent random variables of
unit variances. This particular choice of noise and friction term
ensure that the fluctuationedissipation theorem is obeyed, thereby
guaranteeing “NVT” statistics. The time constant s is somewhat
arbitrary, and is adjusted to provide a suitable rate of thermal
equilibration in the simulation.

The sampling error is associated with the number of time steps
that are completed and hence the total physical time simulated.
Normally MD is used to explore typical properties of a system. The
longer the simulation time the greater number of states explored
and hence the better the sampling. Though in principle this error is
controllable by increasing the simulation time, many systems can
have very long time processes and it may be very computationally
demanding to sample sufficiently.

Perhaps the greatest challenge for reliable MD simulations is to
develop high quality potential energy models. The models may be
simple pair potentials such as LennardeJones [15] and pure
Coulomb or complex many body models such as MGPT [16] or
bond-order [17e19]. Computational intensity may vary from
thousands to millions of floating point operations per particle per
time step. Unfortunately, even themost complexmany body atomic
model potentials sometimes fail to capture all the needed physics
and quantum mechanical methods must be used to evaluate the
potential energy.
2.2. Domain decomposition in ddcMD

In parallel MD codes it is necessary to divide the simulation
volume into domains each of which is assigned to a computer core
(i.e., an MPI task). Because particles near domain boundaries
interact with particles in nearby domains, internode communica-
tion is required to exchange particle data between domains. The
surface-to-volume ratio of the domains and the choice of potential
set the balance of communication to computation.

The domain-decomposition strategy in ddcMD allows arbi-
trarily shaped domains that may even overlap spatially. Also,
remote particle communication between nonadjacent domains is
supported whenever the interaction length exceeds the domain
size. A domain is defined only by the position of its center and the
collection of particles that it “owns”. Particles are initially assigned
to the closest domain center, creating a set of domains that
approximates a Voronoi tessellation. The choice of the domain
centers controls the shape of this tessellation and hence the
surface-to-volume ratio for each domain. The commonly used
rectilinear domain decomposition employed by many parallel
codes is not optimal from this perspective. A better surface-to-
volume ratio in a homogeneous system is achieved if domain
centers form a bcc, fcc, or hcp lattice, which are common high-
density packing of atomic crystals.

In addition to setting the communication cost, the domain
decomposition can also control load imbalance. Because the
domain centers in ddcMD are not required to form a lattice,
simulations with a non-uniform spatial distribution of particles
such as occurs with high-Z impurities can be load balanced by an
appropriate non-uniform arrangement of domain centers. The
flexible domain strategy of ddcMD allows for the migration of the
computational work between domains by shifting the domain
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centers. As any change in domain center positions affects both load
balance and the ratio of computation to communication, shifting
domain centers is a convenient way to optimize the overall effi-
ciency of the simulation. Given an appropriate metric (such as
overall time spent in MPI barriers) the domains can be shifted on-
the-fly in order to maximize efficiency.
2.3. Dealing with Coulomb interactions

When selecting the potential energy function to describe
a plasma it is tempting to simply treat the electrons and ions as bare
Coulomb particles; unfortunately, this is ill-advised on several
grounds. From a practical point of view, one is faced with the
“Coulomb Catastrophe Problem” in which electrons will eventually
recombine into classical bound states that are infinitely deep. Not
only does this provide an arbitrarily large amount of energy, the
time step must be arbitrarily small to resolve the motion of an
electron that is deep in the attractive Coulomb well. Other issues
arise from a physics perspective.We know that density fluctuations
are suppressed at wavelengths shorter than the thermal de Broglie
wavelength, which depends upon Z. This affects the static and
dynamic structure factors discussed in Sections 5.1 and 5.3. Also, for
some applications of interest, such as warm dense matter
(including fast ignition) experiments, the electrons can be partially
degenerate. Finally, the electrons also display important diffractive
effects, which modify the screening properties and, in the extreme,
even the proper formation of bound states.

To account for all of these issues, the workhorse method has
been the use of Quantum Statistical Potentials (QSPs). The use of
QSPs was pioneered by Hansen and co-workers, who investigated
a variety of equilibrium and non-equilibrium plasma properties
[20e24]. Because the validity of QSPs impacts the believability of
any MD simulation that incorporates them, the physics underlying
QSPs is discussed in some detail in Section 3. Also discussed there is
the important point that QSPs are rigorously derived only for
equilibrium plasmas; hence, their applicability to non-equilibrium
situations requires careful consideration.

Because QSPs modify the Coulomb potential only at short range
(and only for the electrons) we are forced to confront the condi-
tional convergence issues associated with a potential that behaves
as 1/r at long range. Fortunately, a variety of well-known, accurate
and efficientmethods for calculating long-range electrostatic forces
exists: Ewald summation, fast multipole methods [25], and real-
space multigrid methods [26,27] to name a few. Here we limit
the discussion to Ewald type methods, in particular the very effi-
cient PPPM approach [3,28].

The idea behind an Ewald-type approach is to split the Coulomb
interaction into a short-range term and a smooth long-range term.
This can be accomplished byadding and subtracting to each charged
particle a screening charge distribution centered at the particle
location. For example if Gaussian screening charges are used

riðrÞhqi
�
a2=p

�3=2
exp

�
� a2ðr� riÞ2

�
(4)

the Coulomb potential energy can be written as

V ¼1
2

XN
i¼1

XN
jsi

(
qiqjerfc

�
arij=

ffiffiffi
2

p �
rij

þ
Z Z

riðrÞrjðr0Þ
jr�r0j drdr0

)

� affiffiffiffiffiffiffi
2p

p
XN
i¼1

q2i :

(5)

The first term in this expression is short-ranged so it can be cut
off at finite r and calculated in O(N) time using standard MD
techniques for short-ranged potentials such as neighbor lists or link
cells. The QSP corrections can be easily incorporated into this term.
The second term contains the long-range character of the interac-
tion and gives rise to a smooth charge distribution r(r) that can be
solved efficiently in Fourier space. To enable the use of fast Fourier
transforms (FFTs) we assign the charge density onto an appropriate
mesh, with the mesh spacing d. The third term is usually referred to
as the self energy. Boundary conditions at infinity can lead to
additional terms which vanish in our application. With appropriate
choices made for the short range radial cut-off (rc f a�1) and the
resolution of the mesh used to solve the long range part, the PPPM
method successfully reduces the overall scaling of the algorithm
from O(N2) to O(NlogN).

2.4. Scaling PPPM to large N systems

When applied to systems with a large number of particles on
massively parallel computers, the respective scalability of the
short- and long-range force terms is very different. For the long-
range terms the global communication typically needed to
compute three-dimensional FFTs poses a significant scaling chal-
lenge. To overcome this problem we have developed a heteroge-
neous decomposition strategy inwhich the available processes are
divided into two subsets. One subset computes the short-range
explicit pair forces, the other handles the terms involving FFTs. A
detailed description of this method is available in Ref. [29]. These
two subsets do not need to contain the same number of proces-
sors. In particular, the size of the FFT subset can be chosen to be
a small fraction (typically 5e10%) of the available cores. This
greatly reduces scalability demands placed upon the FFTs. In
practice the relative sizes of the subsets is a run-time parameter
that can be used to optimize the time-to-solution for a given
problem.

To investigate weak scaling behavior we performed a series of
runs using 232 to 278,528 tasks and approximately 9400 particles
per task. In each run we set the number of mesh tasks to approx-
imately 6% of the total number of tasks. We found that the value of
a that minimized run time (for constant ad) is a function of the
number of tasks. For 232 tasks a minimumwas found at a¼ 2.4 and
for 278,528, a ¼ 2.063. We have not optimized run time for each
point in the weak scaling study, but rather have interpolated a from
the smallest to the largest simulation.

Efficiency at full scale has fallen off by roughly 15%
compared to perfect scaling. This is a considerable accomplish-
ment considering that the number of tasks is nearly 300,000
while other PPPM implementations typically experience 30% fall
off at task counts of 10,000e30,000 [30]. Hence, our heteroge-
neous decomposition strategy has extended the weak scaling
range by a factor of nearly 10.

3. Quantum statistical potentials

3.1. Basic concepts

Statistical potentials have been used in studies of plasmas for
many years, and details of their derivation can be found in Jones
and Murillo [6] as well as references cited therein. Here, we review
their derivation starting from the quantum partition function at
finite temperature, T ¼ 1/b in energy units. In this case, a quantum
system is described by the finite-temperature density matrix [31].
In the basis of the particle positions, {R}, the density matrix can be
written as

rðR;R0; bÞ ¼
X
s

JsðRÞe�bEsJ*
s ðR0Þ; (6)
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where Js and Es are the eigenfunctions and eigenvalues of the full
system Hamiltonian. The partition function of the quantum system
is the trace of the density matrix:

QhTr
�
e�bĤ

�
¼
Z

dRrðR;R;bÞ: (7)

A semiclassical equation for the N-body system is obtained by
multiplying the partition function by a particular form of unity [6],

Q ¼ C
C

Z
dRrðR;R; bÞ

¼
Z

d3Np

ð2pZÞ3NN!
e

P
i
�bp2

i
=2m
Z

dR
rðR;R; bÞ

C
: (8)

This expression shows that if an appropriate form of the second
factor of Eq. (8) can be defined, the quantum partition function of
Eq. (7) can be sampled through classical MD. The term r(R,R;b)/C is
analogous to the interaction term in classical MD. At the temper-
atures of interest in this study, determination of an accurate form of
this second term is straightforward.

In general, we cannot solve Eq. (6) exactly for an N-body system.
An approximation that is commonly used in path integral Monte
Carlo is to factorize the Hamiltonian to obtain a product of terms
that can be calculated exactly [32]. At very high temperature, this
type of factorization of the density matrix becomes very accurate.
As T / N, b / 0, hence the partition function can be written as
a product of the kinetic and potential terms [33],

e�bĤze�bK̂ e�bV̂ ; (9)

where the kinetic term contains contributions from all particles in
the N-body system,

K̂ ¼ �
XN
i¼1

Z2

2mi
V2
i ; (10)

and V̂ is the total interaction. The kinetic term can thus be written
as a product of N free-particle kinetic terms, the form of which is
exactly known [32]. Since the interaction potentials relevant to the
systems we study here are written in terms of sums over pair
interactions, an accurate form of the interaction potential term in
the density matrix is obtained by writing the potential term as
a product of the pair density matrices for each pair of particles. The
density matrix thus takes the form

rðR;R0; bÞz
"YN
i¼1

rFðri; r0i;bÞ
#"Y

i<j

r2
�
rij; r0ij; b

�
rF
�
rij; r0ij; b

�
#
; (11)

where

rFðri; r0i; bÞ ¼
 
2pbZ2

mi

!�3=2

exp

"
�mijri � r0ij2

2Z2b

#
(12)

is the free particle density matrix and r2ðrij; r0ij; bÞ=rFðrij; r0ij; bÞ is the
non-ideal part of the pair density matrix for each pair of particles ij;
this, we discuss below. This approximation results in errors of order
b3, which is quite small at the temperatures in this study [32].

Returning to Eq. (8) and having obtained an accurate expression
for r(R,R

0
;b), an appropriate expression for C must be defined. At

very high temperatures, the quantum and classical momenta are
equal, hencewe define C ¼ Q

irFðri; r0i;bÞ. Then the final expression
for the partition function becomes
Q ¼
Z

d3Np

ð2pZÞ3NN!
e

P
i
�bp2

i
=2m
Z

dR
Y
i<j

r2
�
rij; rij;b

�
rF
�
rij; rij; b

�: (13)

It follows that we can define the effective, temperature depen-
dent statistical Coulomb potential for a pair of particles, UC(rij,b),
from the second factor in Eq. (13),

UC�rij; b� ¼ �1
b
log

"
r2
�
rij; rij; b

�
rF
�
rij; rij; b

�
#
: (14)

In order to calculate this quantity, one must calculate the diag-
onal elements of the pair density matrix. The diagonal part of
rF(rij,rij;b) is a constant, ð2pbZ2=mijÞ�3=2, where mij is the reduced
mass for the pair of particles. For a two-body (pair) problem, such
as electroneelectron, nucleuseelectron, or nucleusenucleus scat-
tering, the Schrödinger equation can be solved exactly so that all
{Js} and {Es} are known, and r2ðrij; r0ij; bÞ can be computed exactly
from Eq. (6). The only numerical difficulty comes from the fact that
at very high temperatures the number of states that must be
included in the sum becomes prohibitively large. For Coulomb
systems, an efficient method for calculating the pair density matrix
was developed by Pollock [34]. We use both the Pollock method
and the matrix squaring method [32,35,36] to compute the exact
pair densities used in this study.

In order to make the derived statistical potentials amenable to
use in our classical MD code, we then fit the potentials to an
analytical form previously derived by Kelbg [37] and improved by
Filinov et al. [38],

U
�
rij;b

� ¼ qiqj
rij

2
641�e

�
�

rij
lij

�2

þ ffiffiffiffi
p

p rij
lijgij

 
1�erf

"
gij

rij
lij

#!375: (15)

Here lij and gij are treated as temperature dependent fitting
parameters. For the high temperature hydrogen studies presented

here, gij¼ 1 and lij is the thermal de Brogliewavelength, l2ij ¼
Z2b

2mij
. A

comparison of the computed statistical potentials and their fits for
an electroneproton pair is shown in Fig. 2.
3.2. Pauli potential

Next, we consider various formulations of the Pauli potential.
The Pauli potential was, in fact, the first QSP to be developed.
Shortly after the development of quantum mechanics, Uhlenbeck
and Gropper [39] sought a method by which one could use the
equation of state to distinguish Bose and Fermi gases. In doing so,
they noted that the usual classical potential used in the partition
function should be replaced by

UeeðrÞ ¼ UC
eeðrÞ � b�1ln

�
1� exp

�� r2=L2
UG

��
hUC

eeðrÞ þ UUGðrÞ;
(16)

where the upper/lower sign is for bosons/fermions and
LUG ¼ Z=

ffiffiffiffiffiffiffiffiffi
meT

p
. In what follows, we will only consider fermions.

This result can be readily obtained exactly from the pair density
matrix for two non-interacting plane waves with the appropriate
symmetrization of the two-particle wavefunction. Because this
result is obtained for two particles, it represents a low density
approximation [6]; note that Eq. (16) does not have an explicit
density dependence. Lado showed how to extend this result to the
spin averaged case [40], which, for the electronic (spin-1=2
fermions) case, has the form



Fig. 2. Comparison of effective potentials for an electron-proton pair calculated from
Eq. (14) (red) using the matrix squaring method. The fitted potential from Eq. (15) is
shown as black dashed lines. The dashed blue curve is the Coulomb potential. The
effective potential is shown for eight different temperatures (from top to bottom: T ¼
86 eV, 172 eV, 345 eV, 689 eV, 1.4 keV, 2.8 keV, 5.5 keV, 11 keV). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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uPL ðrÞ ¼ �b�1ln
�
1� 1

2
exp

�
� r2=L2

H

��
; (17)

where LH ¼ Z=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pmeT

p ¼ LUG=
ffiffiffiffi
p

p
.

Historically, the forms Eqs. (16) and (17) are not the most
common in use. For example, Hansen and co-workers [20] used the
form

uPHðrÞ ¼ b�1lnð2Þexp
�
� ½plnð2Þ��1r2=L2

H

�
(18)

originally suggested by Deutsch, Minoo and Gombert [41,42].
Note that this result differs from Eq. (16); however, we see that

Eq. (18) has been adjusted such that uPHð0Þ ¼ uPL ð0Þ and
limr/0r�1duPHðrÞ=dr ¼ limr/0r�1duPL ðrÞ=dr, while retaining
a form with an analytic Fourier transform, which is useful in inte-
gral equations. Hansen and co-workers also use a diffraction
potential quoted by Deutsch et al., originally suggested by Dunn
and Broyles [43],

UC
abðrÞ ¼ qaqb

r
½1� expð�r=LDÞ�: (19)

Different authors have used different definitions of LH and LD; our
calculationswith “Dunn-Broyles”potentials actually use Eqs. (18) and
(19) with numerical coefficients taken to agree with Hansen [20].

Lado has further extended these forms to dense systems [40]. In
this formulation, an integral equation must be solved numerically;
this has been done, and a fit has been given [6] for ease of use.
However, we must be cautious in extending the diffractive and Pauli
potentials to higher order when they are treated separately. In the
true electronic structure problem, these two aspects of quantum
mechanics cannot be treated separately. Recently, an approach has
been developed [44] that largely overcomes this shortcoming.

3.3. Limitations of quantum statistical potentials

Despite the fact that the QSPs appear as corrections to the real,
physical potential, as in Eq. (16), their use in dynamical applications
is questionable. It has been generally argued that one should not
refer to these additional terms as potentials (or forces) [45], a point
that has been emphasized in the context of dense plasma physics
[6]. We find three important weaknesses with the QSP approach:
(1) particle interactions are treated on average, not distinguishing
slow from fast particles; (2) the quantum modifications do not
account for changes in the shape of the wavefunction during
a collision; and (3) Pauli blocking does not involve momentum
eigenstates; rather, it appears as a separation in coordinate space.
For these reasons, we have explored several alternatives to the QSPs
that are closer to the true dynamical solution that we seek. These
methods, which include momentum-dependent potentials, wave
packet molecular dynamics, and kinetic-theory molecular
dynamics, are described in Section 7; some informative electron
trajectory comparisons are presented in Section 8 to quantify the
first two weaknesses noted above.

4. Small ball description of atomic and nuclear physics

Classical molecular dynamics faces difficulty when it is neces-
sary to consider quantum processes such as emission/absorption of
X-ray photons, thermonuclear fusion or atomic ionization/recom-
bination. At least when expressed in classical language, such
quantum events are governed by probabilities and are not
described by deterministic (classical) equations. At present our best
method to deal with these situations is a hybrid Monte Carlo (MC)/
Molecular Dynamics (MD) scheme, dubbed “Small Ball” (SB).

Quantum or semiclassical cross-sections sx may be used to
describe the various processes “x” that are considered to occur
during a close collision. When the classical MD brings an electron-
ion pair to within a specified, small distance RB, control is passed to
a subroutine that forms conditional probabilities P{x}, given by the
expression

Pfxg ¼ sx

pR2B
: (20)

It is easy to enforce detailed balance on the process rates
described by this algorithm. Moreover, this algorithm gives
a prediction independent of the choice of the small-ball radius RB, at
least over a restricted range of radii: Insofar as the arriving particle
flux is simply multiplied by the projected area of the small sphere,
the radius RB cancels out of the event rate. But, if too large a radius
RB is chosen, the sphere will frequently contain more than one
target, making it necessary to devise some scheme to handle multi-
center collision events. On the other hand, if too small a radius is
chosen, the enhancement of flux at the sphere’s surface, as repre-
sented by the pair distribution geiðRBÞ > 1, will be incorrect. (Pair
distributions are defined and discussed in Section 5.1.) This is
because the QSPs and, hence, the pair distributions arising in the
MD simulation have no knowledge of extended charge distribu-
tions about nuclei that are produced by their bound electron(s).
Given these constraints, we believe that the inequalities

0:5ai < RB < 0:8ai; (21)

where ai ¼ ð3=4priÞ1=3 is the WignereSeitz (ion-sphere) radius,
bracket reliable choices of the SB radius for atomic processes.

The Small Ball method was first employed to calculate radiation
generation in hot dense plasmas [46e48]. Here, Kramers’ semi-
classical cross-section sK is used to calculate radiation emission and
absorption processes. MC tests decide the photon energy Zu and
decide between absorption and emission, guided by conditional
probabilities obtained from the cross-section. TheMD code predicts
a radiation spectrum that relaxes to the expected black-body
distribution. Work in progress resolves bremsstrahlung emission
(absorption) into individual angular momentum contributions.



Fig. 3. Evolution in time of the mean charge state Z in a xenon plasma as computed
with Cretin using different maximum principal quantum numbers, as described in the
text.

Fig. 4. Evolution in time of the mean charge state Z in a carbon plasma as computed
with Cretin and with ddcMD. The lower part of the figure is for an ionizing plasma,
demonstrating reasonable agreement between Cretin w/o continuum lowering
(dashed curve) and ddcMD with the SB algorithm (dotted curve). The solid curve gives
Cretin results including the effect of continuum lowering. The upper part of the figure
is for a recombining plasma. Here, ddcMD is not using SB and the recombination
proceeds classically, occurring much faster than the atomic kinetics results obtained by
omitting any excited states (dashed curve). The solid curve shows Cretin results ob-
tained including the effects of excited states.
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In order to provide a consistent treatment of all the various
processes that can occur in a given electron-ion collision, the SB
algorithm is being used for non-radiative scattering events, too.
Present efforts are focused on the issue of charge-state distribu-
tions in dense, partially ionized matter produced by intense X-ray
or proton beams (see discussion of experiments and relevant
simulations in Section 6). To model plasma ionizationwithminimal
atomic kinetics, we have adapted the bottleneck approximation
[49], which requires one to keep track only of ionization and
recombination events to/from a few low-lying states; bounde-
bound transitions (radiative or collisional) among these states are
ignored, as are all transitions involving bound states above the
bottleneck. The bottleneck itself is identified as the lowest state for
which the radiative lifetime exceeds the (inelastic) collisional life-
time, and in a hydrogenic approximation this state has principal
quantum number

n* ¼
"
2:6� 1018cm�3Z6

re

�
T

13:6eV

�1=2
#1=9

: (22)

Atomic processes included, to date, are (1) electron impact
ionization and its inverse, three-body recombination; (2) X-ray
ionization and subsequent Auger transitions; (3) radiative recom-
bination. We use a scaled Mott cross section for collisional ioniza-
tion events [50]; it is reasonably accurate and, importantly, it is an
expression differential in the energy of the ejected electron
(information needed subsequently by the MD routines). This same
energy information is also required for the calculation of three-
body recombination probabilities. X-ray ionization is based on
atomic subshell photoionization cross sections [51]. Auger events
are determined by an MC step from the Auger lifetimes [52]. And,
for radiative recombination, we use the Milne relation (detailed
balance) to obtain ground state cross sections from accurate
photoionization formulae. Cross sections for recombination to
excited states (below the bottleneck) use hydrogenic formulae.

The bottleneck approximation works particularly well for these
dense systems. Fig. 3 demonstrates the efficacy of this concept
using Xe at an electron density of re ¼ 1026 cm�3, conditions
appropriate to ICF. The Xe was initialized with 10 bound electrons
at t ¼ 0. The evolution of the ionization state at a fixed temperature
of 10 keV was calculated with the atomic kinetics code Cretin [53],
using atomic models incorporating bound states up to a maximum
principal quantum number nmax.. Varying nmax from 2 to 10
produced only two discrete evolution tracks e for nmax ¼ 2 (solid
line) and for nmax � 3 (dashed line), in agreement with the estimate
from Eq. (19) of n* ¼ 2.5. The concordance with the bottleneck
approximation is partially due to continuum lowering, as only a few
bound states exist for any giving ionization stage under these
conditions. However, omitting continuum lowering from the series
of calculations produces results which also strongly support the
bottleneck approximation. For comparison purposes, the dotted
curve in Fig. 3 shows the evolution for nmax ¼ 5 in the absence of
continuum lowering. The overall evolution remains similar to that
for nmax � 3 with continuum lowering, but with differences that
could impact spectroscopic predictions of some plasma
simulations.

Test comparisons with Cretin show that the SB algorithm
together with the bottleneck approximation yield credible results
for solid-density plasmas. Fig. 4 shows the evolution of a carbon
plasma with a density of 2.2 g/cm3, held at a temperature of
Te ¼ 50 eV, both with the atomic kinetics and the MC/MD code.
These conditions are relevant to LCLS and JLF plasmas described in
Section 6. The results in the lower part of Fig. 4 are for an initially
singly-ionized plasmawhich collisionally ionizes. The dashedotted
curve shows the results from the MC/MD code, while the solid
curve show atomics kinetics results which include both continuum
lowering and excited states. The dashed curve shows results from
the atomic kinetics code without continuum lowering. This more
closely matches the physics currently incorporated in the MC/MD
code. The agreement supports the concept of the SB algorithm,
while emphasizing the importance of incorporating continuum
lowering into SB. This task is in progress.

The upper portion of Fig. 4 is for a carbon plasma under the same
conditions, which is initially completely stripped and proceeds to
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recombine. The solid curve shows atomic kinetics results including
excited states, while the dashed curve omits excited states. The
omission of excited states is to more closely match the physics of
the MD code, which here does not use the SB algorithm but evolves
classically, with recombination measured by looking at the resi-
dence time of an electron around the nearest ion. The atomic
kinetics results do include continuum lowering, which in this case
affects the final charge state but not the recombination time scale.
The comparison highlights a known, important issue e namely, the
tendency of the classical charged system to exhibit prompt many-
body relaxation whereby some electrons obtain energies well
below that of the actual electron-ion ground state (this happens in
spite of the use of “regularized” QSPs). Because this relaxation
occurs on a timescale shorter than that characteristic of actual
quantum recombinations, work is underway to develop
a prescription that precludes the counting of spurious “classical
recombinations”.

The Small Ball algorithm also is being used to calculate ther-
monuclear reaction rates for DT plasmas. The constraints on the
small ball radius, comparable with Eq. (20), are different in the
nuclear case. The radius RN should be chosen so that RN is large
compared with the (ion) de Broglie wavelength and the classical
distance of closest approach of a DT pair in a head-on collision, and
small compared with the ion sphere and Debye radii. This ensures
that classical physics may safely be used for r > RN, and that multi-
particle effects may be neglected for r < RN. By virtue of the latter,
the correlations gii0(r) have converged to a constant multiple of
exp½�bUii0ðrÞ�. (The difference between the total correlation func-
tion h and the direct correlation function c has attained its r / 0
limiting value.) Within this range of radii the calculated event rate
discussed below is independent of the radius. Practical values of RN
are around 10�11 cm z 10�2ai, much smaller than for atomic
processes. In a plasma with a sufficiently small G, the quantity
hii0 ðrÞ � cii0 ðrÞ is negligible everywhere, and the upper limit on RN
becomes moot.

A large-scale ddcMD run was made for a hydrogen plasma, and
the events in which a proton pair approached within a distance RN
of each other were simply counted. Five million particles were
included, and for this simulation we used RN ¼ 0:01�A. The gas
temperature was hot for a fusion plasma before ignition, 5 keV, but
the density was a realistic 1025 cm�3. The proton mass was scaled
down by a factor 100 to increase the event rate. The simulation ran
for 0.166 fs. The number of events countedwas 77,115, which agrees
within statistical error with the expected number based on the HNC
pair correlation at r ¼ RN. This event rate could be turned into
a fusion rate by applying the conditional probability P{x}, in which
sx is taken to be the nuclear reaction cross section. Additional
corrections are needed in the center-of-mass energy of the pair, and
in the relation between impact parameter and angular momentum,
owing to the potential energy of repulsion at r ¼ RN, before the SB
algorithm can be applied. The conditional probability is found to be
of order 10�6, owing to the nuclear radius being much smaller than
RN. This emphasizes the fact that it is very challenging to obtain any
fusion events unless MD simulations are performed for much
longer times than those typically required for dense plasma studies.

5. A sampling of simulation results

5.1. Pair distribution functions and static equilibrium properties

Molecular dynamics simulations are widely used to compute
macroscopic properties from microscopic models. Linear response
theory and the fluctuation dissipation theorem can identify the
relevant correlation functions for the desired property [54]. MD
simulations for these microscopic quantities then include higher-
order terms in the interaction potential, and so go beyond
analytic perturbation theory. However, they are subject to statis-
tical errors, which must be managed in practice by increasing the
system size and computational effort. On the other hand, analytic
methods are free of this complication and also provide insight and
independent assessment of the numerical results.

For example, the thermodynamic potential for a system of N
particles at temperature T,

F ¼ hF̂i ¼ 3
2
NT þ

	
V � T

vV
vT



; (23)

is calculated in terms of (canonical time- or ensemble-averaged)
expectations of potential energies, Vab, summed over pairs of
particles i and j of species a and b, respectively,

V ¼
X
iajb

Vab

�
riajb

�
: (24)

(Note that there is a correction to the internal energy for
a temperature-dependent potential, dV/dT s 0, which comes from
the derivative of the partition function, Q ¼ R

e�bH . For simplicity,
this term is not evaluated here.)

In some cases, sampling errors can be mitigated by substituting
different statistical mechanical identities for the same quantities. A
direct approach to equation of state parameters like pressure,
compressibility, and heat capacity would be to take numerical
derivatives of F(T,V), but finite differencing compounds the vari-
ance from individual simulations. More sophisticated approaches
relate thermodynamic parameters to the expectation of micro-
scopic correlation functions. Pressure is obtained from the virial
[3]:

P ¼ T
N
U
� 1
6U

*X
iajb

0Fiajb$riajb

+
(25)

where U is the volume, and the Fiajb ¼ �VVabðriajbÞ are interpar-
ticle forces. Heat capacity is derived from fluctuations in internal
energy:

CV ¼
hF̂2i �

D
F̂
E2

T2
� T

*
v2V
vT2

+
: (26)

Note that evaluating vF=vT from Eq. (23) yields an additional
correction from the T-dependence of V. Isothermal compressibility
cT for the binary ionic fluid is obtained from the k / 0 limit of
density fluctuations ([21], Section 10.2, [55], Eq. 2.3.13):

rTcT ¼ �qaqb

xbxb
�
qa � qb

�2 lim
k/0

SNNðkÞ; (27)

this expression involves concentrations xa ¼ Na/N, charges qa,
particle number density rNðkÞ ¼ P

araðkÞ and charge density
rZðkÞ ¼ P

aqaraðkÞ, plus the total number static structure factor
SNN(k). For different combinations of number and charge,

SABðkÞ ¼ U
Z

dre�ir$khdrAðrÞdrBð0Þi; (28)

in which A and B may be N or Z. Eq. (27) is obtained from a more
complicated expression involving SNN, SNZ and SZZ and reduces to
this form owing to charge neutrality [21, Chapt. 10].

The equilibrium properties described below are obtained from
ensemble averages of instantaneous correlation functions. Conse-
quently, thermostatted and mass-scaled simulations are possible,



Fig. 5. Pair distribution functions for hydrogen at a density of 1025/cc and temperature
of 1 keV using the Dunn-Broyles and Deutsch potentials [20]. The black curves show
the HNC functions; the symbols show the related MD results. Explicit error bars are
shown at small r, where they are larger than the symbol sizes.
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wherein temperature is maintained by an external bath and the
protonmass is reduced from the physical value. Classical coordinate
distributions are independent of both modifications. Mass-scaling
is advantageous because the time required to sample diverse
phase space configurations is set by the slowest particles, while the
simulation time step is limited by the fastest particles. Therefore,
the dynamics are evaluated here with the proton mass reduced to
mp/1000 while the quantum statistical potentials for protons and
electrons, Vpp and Vep, are calculated using the physical mass, mp.

Alternatively, the internal energy can be computed from the pair
distribution functions and the potentials [54, Section 13-3], [20]:

F ¼ 3
2
NT þ

X
ab

Urarb
2

Z
drgabðrÞ

�
VabðrÞ � T

vVabðrÞ
vT

�
: (29)

Now,

gabðrÞ ¼ 1
rarb

*X0

iajb

dðr � Riaðt0ÞÞd
�
r � Rjbðt0Þ

�+
(30)

involves an average over the simulation time, t0. In this case the
static structure factor is ([55], Eq. 2.3.6):

SabðkÞ ¼ dab þ
ffiffiffiffiffiffiffiffiffiffi
rarb

p Z
dreik$r

�
gabðrÞ � 1

�
: (31)

Such expressions are useful for analytic methods that obtain an
approximate pair distribution function from the pair-potentials,
like the hypernetted-chain (HNC) method [54]. Other expectation
values can also be replaced by an integral over g(r), e.g.:

P ¼ N
U
T � 1

6

X0

ab

rarb

Z
drr

vVab

vr
gabðrÞ: (32)

In the case of pressure, there is noT-dependent correction. There
would be a density-derivative term if the QSPs were r-dependent,
but the forms considered here are not.

Table 1 shows the internal energy, compressibility, and heat
capacity for hydrogen plasmas in four different states. For
comparison purposes, all of the calculations that are reported here
exclude the corrections for the T-dependent potentials. Data are
obtained by MD and HNC methods, using the DunneBroyles
statistical potential for quantum diffraction and the Deutsch term
for Pauli exclusion among electrons [20]. Only the excess values or
corrections from ideal gas results are shown, otherwise these
weak-coupling systems are dominated by the ideal gas behavior.
The agreement is good for the weak coupling cases. Fig. 5 shows
the pair distribution functions for one pressure/density case. The
agreement is indicative of the weak-coupling limit and of
adequate statistical sampling for the MD. In principle, the EOS
parameters including temperature corrections may be calculated
from these numerical results and the analytic form of the poten-
tials. The predicted static thermodynamic properties will be very
Table 1
Thermodynamic parameters for equilibrium hydrogen plasma from MD, xa ¼ 1=2,
qp ¼ �qe ¼ 1. All results exclude the correction terms of hvV=vTi and hv2V=vT2i in
Eqs. (23) and (26). Density r is in units of 1025/cc, temperature T is in keV. Extensive
quantities are expressed per hydrogen atom. The HNC compressibility is obtained
from the direct correlation functions and [21], Eq. 10.2.25.

r T DF (HNC) DF (MD) cV ðMDÞ ½1=rTcT � 1�ðHNCÞ
0.125 0.25 �0.03255 �0.03288(1) 0.0164 �0.009856
1.0 0.50 �0.02666 �0.02665(1) 0.0166 0.002658
1.0 1.00 �0.01028 �0.01028(1) 0.00668 0.0001575
8.0 2.00 �0.00506 �0.00504(1) 0.00779 0.01215
similar as well, since they are simply given by averages over these
functions.

5.2. Temperature relaxation

The electroneion temperature equilibration rate is important in
ICF research because thermonuclear burn in capsules containing DT
plus high-Z dopants is expected to take place at least partly out of
equilibrium [1]. In order to better understand temperature equili-
bration in general, we have used our MD capability with different
statistical potentials to compute the electroneion relaxation time,
sei, for two plasmas: fully-ionized hydrogen, and a fully ionized
hydrogen plasma doped with 10 atomic percent Arþ18. For
simplicity we consider temperature equilibration only in the
absence of radiation.

The legacy theoretical result for sei is the LandaueSpitzer (LS)
relaxation rate [5],

1
sei

¼ 8
ffiffiffiffiffiffiffi
2p

p
riZ2i e

4

3memic3

�
Te

mec2
þ Ti
mic2

��3=2

lnlei; (33)

where 1/sei is the rate at which the electron temperature, Te
changes given an ion temperature, Ti, according to (assuming
a single species of ions),

dTe
dt

¼ Ti � Te
sei

: (34)

Here,me andmi are electron and ion masses, Zi is the ion charge,
Te and Ti are electron and ion temperatures, and re and ri are the
number densities. The ln lei factor is the so-called Coulomb loga-
rithm, equal to the logarithm of the ratio of maximum to minimum
impact parameters in an effective two-body scattering event, ln
(bmax/bmin). In LS, bmax is taken to be a Debye screening length, and
bmin is set equal to themaximumof ðl-e; b0Þ, where l-e is the electron
thermal de Broglie wavelength and b0 is the classical distance of
closest approach (also called the Landau length) which roughly
equals Zie2=Te. Other more modern theories for sei exist as well
[56,57]; all predict relaxation rates which are similar to LS (as long



Fig. 6. dTe=dt for H along an isochore at a density, r ¼ 1025 1/cc. MD results (magenta
symbols) and result from generalized Lenard-Balescu calculations of various types are
also presented (see text). The electron-ion coupling is Gei ¼ 50 eV=T < 1.
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as the temperatures are high enough for the individual species
statistics to be classical), but with slightly different choices of lnlei.
We can use MD simulations to differentiate between these candi-
date theories, as well as to study physics which is beyond the realm
of weak plasma coupling, where LS and related approaches apply
[57e59].

Simulations for these two-temperature problems are initialized
by first placing the particles on a regular interpenetrating lattice,
imparting random velocities from two-temperature Max-
welleBoltzmann distributions, and then propagating them with
individual Langevin thermostats at the species temperatures. In
order to rid the simulations of unphysical initial correlations (such
as those imposed at the very outset), the system is allowed to
evolve with the masses of the different species set to be nearly
equal (so the resulting equilibration is fast). After this initial
equilibration, the masses and velocities are adjusted, and the
thermostat is re-applied. Relaxation is allowed to happen again
though some aspects are slower now with more disparate masses.
This process is repeated several times until no transient behavior is
evident, at which point the systemwith its desired mass ratios and
initial species temperatures is allowed to evolve microcanonically.

Time-steps for the MD are small, consistent with the fast elec-
tron motion and the steepness of Coulomb-like potentials at the
short ranges probed in the closest encounters. For the sei studies
with the quantum statistical potentials, we find that time-steps in
the range of 10�4e10�5 fs are sufficient [59e61].

In some cases, particularly ones in which one or more high-Z
element is considered, we find it beneficial to use scaled ion
masses: mscaled ¼ a$mphysical, where a < 1. This reduces the total
simulation time since more similarly massed species relax faster. If
we assume that this is a simple kinematic effect, the physical
answer can then be recovered by multiplying the resulting simu-
lation time by 1/a (see the prefactor in Eq. (33)). However, onemust
be careful: changing the relative masses of the equilibrating species
can alter the extent to which each individual species participates in
screening the interparticle interactions at large distance. This can
then affect the bmax within the Coulomb logarithm. For instance, in
a hydrogen plasma, the protons respond too slowly to screen the
eep interaction in any meaningful way during temperature equil-
ibration [57]. But in an electronepositron plasma, both species
would participate equally in the screening. The figure of merit here
is the ratio of ion to electron plasma frequencies. Since this is
proportional to Zi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meri=mire

p
, one must be especially cautious

when Zi is large, since then the scaled-mass ion can easily have
a plasma frequency which approaches that of the electrons when it
would not otherwise do so for the physical mass ratio.

5.2.1. Hydrogen plasma
Fig. 6 shows the absolute value of the initial (t ¼ 0) slope of the

electron temperature, dTe=dt, as a function of Te(t ¼ 0), for 2-
temperature H simulations along the r ¼ 1025 1/cc isochore. For
each case, we choose Tp(t¼ 0)¼ 0.8Te(t¼ 0).Magenta squares are the
MD results as computedwith theDunneBroyles statistical potentials
[20], and with 512,000 electrons and 512,000 protons in each simu-
lation cell. Themaximum in dTe=dt at Tew 1 keV comes from the fact
that dTe/dt f Tp � Te f Te, together with: bmax w lDebye f Te,
bminwl-ef1=

ffiffiffiffiffi
Te

p
, and the Te-dependence of the LS-prefactor in Eq.

(33) (note that at these temperatures and for Zi ¼ 1; l-e > b0, so
bmin ¼ l-e is appropriate). All other symbols indicate the results [61]
of various versions of the generalized LenardeBalescu (GLB)
approach presented in Ref. [57]. In GLB, plasma screening and
quantum diffraction are explicitly taken into account, so the effective
Coulomb logarithm isdeterminedwithout theneed foradhoc cutoffs,
as in LS. The connected red symbols show the results of the quantum
version of GLB with the inter-particle interactions taken to be pure
Coulomb, andwith static localfield corrections (LFC’s) to theplasma’s
polarization set equal to zero [61]. This should be the correct answer
at sufficiently weak coupling, and we note that it agrees extremely
well with the quantum limit of another modern theory, BPS [56].

Though the MD results approach the quantumeCoulomb GLB
predictions at high-Te, they are systematically below them at all
temperatures. We have seen this for other densities as well. The
reason for this can be understood by considering the classical
(Z / 0) version of GLB where the Coulomb potentials are replaced
by the DunneBroyles potentials. The results of this calculation
(again, setting LFC’s ¼ 0) are indicated by the connected green
symbols. These are in far better agreement with the MD. Thus, we
see that for this problem, classical MDwith statistical potentials has
its limits: The replacement of the pure Coulomb interaction by the
DunneBroyles potential, together with the use of classical rather
than quantum dynamics, reduces dTe/dt by roughly 10e15 % in this
regime. This largely explains the lower effective lnlei’s we saw in
MD results with DunneBroyles, in comparison to various theoret-
ical approaches, in an earlier work on H plasmas [59]. Though the
softening of the statistical potentials at short distance is meant to
account for the salient features of quantum diffraction in a classical
simulation, the true time-dependent quantum problem is different,
of course. Still, it is encouraging that as Te is increased, quan-
tumeCoulomb and statistical potential GLB results approach each
other, indicating that MD of this sort should actually yield the
proper results for sei in the limit of weak-coupling.

One somewhat surprising conclusion to be drawn from the
results of Fig. 6 is that the approximation of static LFC’s is likely
a worse approximation than simply setting the LFC’s equal to zero.
The connected blue symbols represent the results of Z/0 GLB with
static LFC’s derived from the Hypernetted Chain (HNC) approxi-
mation with these same DunneBroyles potentials [61]. These are
significantly further from the MD results than are the classical GLB
results with LFC’s ¼ 0 (green symbols). It is not clear yet as to why
this is the case, nor is it known if this is also true for quantum
plasmas, where bona fide quantum diffraction is taking place.

The improved statistical potentials of the modified-Kelbg
variety, introduced in Section 3, produce results for sei which are
considerably more in line with our expectations for the pure-
Coulomb quantum case, at least at weak coupling. The connected
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sky-blue symbols in Fig. 6 show classical GLB results using these
potentials. Preliminary MD calculations with these potentials
indicate similar answers. Above Te ¼ 500 eV (below this, the use of
a statistical potential derived from a pair density matrix, as re-
ported in Sections 3.1,3.2, is of questionable validity), these results
are in strikingly good agreement with quantum pure-Coulomb GLB.
This suggests that classical MD performed with the modified-Kelbg
potential should be considerably closer to the quantum result than
MD using the DunneBroyles form. We therefore learn that con-
structing statistical potentials by optimizing agreement with
known static properties can producemore accurate results for time-
dependent properties as well, at least in theseweakly-coupled cases
where we expect GLB to be accurate for these properties.

At stronger couplings, the differences between MD results for H
using various statistical potentials can be smaller than the differ-
ences between candidate theories of sei, such as LS, BPS, and other
many-body theoretical approaches [62]. Here, MD with statistical
potentials can be a powerful tool, though we must be cautious in
using it in situations where the coupling is strong enough so that
the spurious appearance of classical bound states may poison the
result. We refer the reader to Ref. [59] for a discussion of stronger
coupling in H, and the use of classical MD to discriminate between
various models for lnlei (see in particular Fig. 2 of that work).

5.2.2. Ar-doped hydrogen plasma
Wenext consider a plasma consisting of hydrogen admixedwith

ten atomic percent fully ionized argon. The H density is taken to be
rH h rp ¼ 1025 1/cc, so the Arþ18 and electron densities are
rAr ¼ 1024 1/cc and re ¼ 2.8� 1025 1/cc. The simulation cell contains
560,000 electrons, 200,000 protons, and 20000 Ar ions. The initial
temperatures are chosen to be Te ¼ 4.46 keV, and
Tp ¼ TAr ¼ 6.61 keV. In these conditions, the Ar would indeed be
fully stripped, so we neglect the complication of bound states in
this study. Mass-scaling for the Ar and p ions is used:
a ¼ aAr ¼ ap ¼ 0.01; in the discussion that follows, we consider this
systemwithout rescaling the results to correspond to the associated
a ¼ 1 values.

Fig. 7 showsMD results for the time-dependent temperatures of
this system using the DunneBroyles potentials. We remind the
reader that the results for the physical (a ¼ 1) system would
correspond to dividing the time scale by a. Note first that the
relaxation is highly asymmetric; the final equilibrated temperature
Fig. 7. Time-dependent temperatures of the (mass-scaled!) Ar-doped H plasma (see
text) as computed by MD with the Dunn-Broyles potentials. Also plotted are the results
of Landau-Spitzer with judiciously chosen Coulomb-logarithms.
is far closer to Te(t ¼ 0) than to Tp(t ¼ 0)hTAr(t ¼ 0). This is simply
because the heat capacity of the electron subsystem is much larger
than the heat capacities of the ions, since re is quite a bit bigger than
rp and rAr. Note next that even though we have chosen TAr ¼ Tp
initially, the Ar and proton temperatures quickly separate. This is
because: (1)mAr is quite a bit larger thanmp (mAr ¼ 39.6mp), and 2)
the eeAr energy transfer rate, per collision, is quite a bit higher than
the eep transfer rate, since ZAr [ 1. Finally, notice that the
resulting equilibrated temperature is slightly higher than that
predicted by LS, also shown in Fig. 7. Since LS and all related
approaches conserve kinetic (rather than total!) energy, this indi-
cates the effects of time-varying potential energy in the simulations.

This potential energy effect can be understood as follows: Since
ZAr¼ 18, the AreAr coupling is ratherhigh (even though rAr¼ 0.1rp).
Thus, the screened Ar subsystem possesses a sizable Coulombic
potential energy, particularly when the ions are cold. In this simu-
lation, the Ar start hot, so the AreAr positional correlations are less
important and the resulting potential energy is high (as in, less
negative). At the end of the relaxation, when the Ar temperature has
been driven down to just above the initial electron temperature, the
AreAr positional correlations are more pronounced and the plasma
lowers its potential energy. Since total energy is conserved, the
decrease in potential energy with simulation time t is exactly
balanced by an increase in kinetic energy. This is thenmanifested in
the rise in the final values of (Te,Tp,TAr), as compared to LS and other
theories which have no explicit potential energy contributions. This
effect has been predicted [63] and recently derived in a rigorous
fashion frommany-body theory [64]. Modeling of this system using
these and related theoretical methods is underway [61]. We also
refer the reader to a recentMD study inwhich this effectwas seen in
an idealization of an SF6 plasma [60].

The thin lines in Fig. 7 show results from LS for this plasma,
where we have chosen the arguments of lep, leAr, and lpAr by
appealing to physical intuition. At these temperatures, the electron
de Broglie wavelength is considerably larger than the eep Landau
length. Thus we take bminðe; pÞ ¼ l-e. Since l-e is comparable to the
eeAr Landau length, we again choose bminðe;ArÞ ¼ l-e, though we
note that LFC’s resulting from strong eeAr correlations (and going
beyond a simple LS picture) could be relevant here. For bmin (p,Ar),
we take the corresponding peAr Landau length since this is
considerably greater than the proton de Broglie wavelength.

The choices for bmax are a bit more difficult. For eep, the choice of
bmax¼ electronDebye length is clear;we know that this is the proper
choice for pure H [57], and the plasma frequency of the Ar ions is
similar to that of the protons (since upfZ=

ffiffiffiffiffi
m

p
), so their response

time should also be slow enough to prevent their participation in
screening the eep interaction during the duration of a typical scat-
tering event. For peAr,we choose bmax¼ total Debye length, since the
very fast electrons will surely respond and screen and the only
slightly more sluggish p and Armay as well (for our choice of rAr and
a, p andAr plasma frequencies are very similar, and each is 7e8 times
lower than the electron plasma frequency). For bmax(e,Ar), we again
choose the electron Debye length, since the eeAr interaction time is
set primarily by the fast electron motion. The comparisons in Fig. 7
suggest that these choices are reasonable. Note, however, that LS
invokes the static screening hypothesis; for each pair of species, we
are forced to choose the best static screening length for bmax. GLB
calculations for this system, in which the self-consistent dynamical
screeningof the coupled3-speciesplasma is considered, are currently
underway [61]. It bears repeating, however, that even this approach,
by itself, will not account for the potential energy-driven shift in the
final equilibrated temperature mentioned above.

In general, temperature equilibration in plasmas consisting of H
(or DT) þ high-Z dopants will have the features seen here: asym-
metric relaxation due to re > ri, and shifts in the equilibrated



F.R. Graziani et al. / High Energy Density Physics 8 (2012) 105e131116
temperature due to potential energy resulting from large ZeZ
coupling. Our results for pure H show us how well we should
expect to predict the true quantum result for the eep channel of the
energy transfer using classical MD with various statistical poten-
tials. MD of this type performed on both pure H and H þ higher-Z
dopants allows us to include many-body correlations that may be
particularly important when the ZeZ coupling is high. In any real
plasma of this type, however, one must deal with the problem of
time-dependent ionization in the high-Z ion, since many ions will
not be fully stripped throughout the course of the equilibration.
This is an active research area we are currently pursuing.

5.3. Dynamic structure factor and energy transport

The dynamic structure factor for a homogeneous, stationary
system,

Sabðk;uÞ ¼ 1
N

Z
dteiut

Z
dre�ik$r

D
draðr; tÞdrbð0;0Þ

E
; (35)

is the time-dependent generalization of Eq. (28). If the density
fluctuations are Fourier transformed to dr(k,t), then by means of
the convolution theorem (neglecting a constant term) one obtains

Saaðk;uÞ ¼ 1
N

Z
dteiuthdraðk; tÞdrað�k;0Þi (36)

Spectral features in S(k,u) reveal the excitation spectrum of the
plasma. For example, the peak in Fig. 8 shows the electron plasma
excitation for a hydrogen plasma with r ¼ 1025/cc and T ¼ 10 keV.

The k¼ 0 limit corresponds to up ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4preq2e=me

q
¼ 178 fs�1. (This

run used mass scaling, mp ¼ 100*me, in order to make the ion-
acoustic wave period more commensurate with the duration of
the run.)

Eq. (36) applies to equilibrium situations, where the expected
correlation function is not time-dependent. In explicitly non-
equilibrium problems (such as slow temperature relaxation), it
can be useful to filter the time series so that the Fourier transform is
restricted to a finite time interval. For example, the time series in
the integrand of Eq. (35) can be multiplied by a low-pass Gaussian
filter centered at time t

0
before applying the frequency transform.

This provides an estimate of the evolving correlation function at
time t

0
that can be compared to analytic predictions, as employed in
Fig. 8. Dynamic structure factor versus frequency for k=kD ¼ 0:126 in a hydrogen
plasma at r ¼ 1025 /cc and T ¼ 1 keV.
Sec. 5.2.2. The time-resolved behavior of the r ¼ 1025/cc and
T ¼ 1 keV equilibrium plasma is shown in Fig. 9, using a Gaussian
with a width of 3.3 radians/fs. The time-integration of this quantity
would approximate to the results of Fig. 8. Time-dependent anal-
yses of this sort will be used in future studies.

Spectral properties of S(k,u) determine the energy transfer rates
between charged particles of different species. Density fluctuations
in subsystems of ions and electrons are coupled by the Coulomb
interaction and systematically transfer energy when they are
resonant in k and u. The fluctuationedissipation theorem relates
the structure factor and the spontaneous thermal fluctuations to
the spectral representation of the density response, Im(c(k,u)) or
Im(ε�1(k,u)) for each of the subsystems. The overall energy transfer
rate is governed by the product of these quantities, integrated over
k and u.

Microscopically, the stopping power, dE/dx, of a charged
projectile in a plasma depends on the instantaneous force on the
projectile from electrons and ions, due to the electric field from the
charge density response induced by the moving projectile ([65], Eq.
(39)):

dE
dx

¼ Z2e2

ð2pÞ3
Z

dk
k$v
k2

Im
�

1
εðk;k$vÞ

�
: (37)

Equivalently in a particle picture, dEk(t)/dt¼ vproj$Fproj in term of
the velocity vproj of the projectile and the force Fproj acting on it. In
practice, the direct MD approach for the total stopping power is to
explicitly record the projectile kinetic energy, Ek(t), and trajectory,
x(t); it is then straightforward to derive dE(x)/dx.

S(k,u) also determines the elastic and inelastic scattering rate, R,
of, e.g., an incident photon or particle beam ([65], Eq. (40)),

Rðk;uðkÞÞ ¼ 1
Z2

jVðkÞj2Sðk;uðkÞÞ; (38)

where u(k)¼k$v and V(k) is, e.g., the Coulomb interaction. The
processes represented by Eqs. (37) and (38) are central to the
validation experiments discussed in Section 6. Note that the
symmetry of the response function implies this symmetry of the
dynamic structure factor

Sabð�k;�uÞ ¼ e�Zu=TSbaðk;uÞ; (39)
Fig. 9. Time-resolved dynamic structure factor shows energy fluctuations in the long-
wavelength plasma oscillation. x -axis: frequency u in fs�1; y -axis: time in fs from an
arbitrary origin.



Fig. 11. OCP wake field due to a Z ¼ �10 projectile (“anti-neon”) in an electron gas
with Gee ¼ 10: The projectile is centered in the upper third of the field of view, moving
upwards. The density response is shown in grayscale with the wake trailing behind.
The log of the energy transfer field, lnðF,je) is shown in color, truncated at a small
value.
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which comes into play in interpreting x-ray Thomson scattering
spectra as in Section 5.3.2; Eq. (39) is an expression of detailed
balance.

5.3.1. Charged-particle stopping
Fig.10 shows dE=dx versus velocity for a single Z¼�10 projectile

with themass of aneonnucleus in a one component electronplasma
at strong coupling, Gee ¼ 10. A statistical potential is not used as
there are no classical bound states for the repulsive interactions;
instead the simulation is performed for a pure Coulomb interaction.
TheMDconsists of 128,000 particles in a cubic cell of L¼ 1075Å. The
projectile trajectory is angled within the box to avoid overlapping
the wake field from adjacent, periodic replicas of the central
projectile. A Langevin thermostatwith 60 fs time constant is applied
to the electrons to keep the temperature steady. Projectile simula-
tions are initialized for 100 fs to allow any transients to decay; the
full simulations are 400 fs in duration. The projectile kinetic energy
typically changes by a few percent over the entire simulation.
Stopping values are computed from the energy difference at 100 fs
intervals. The solid points and error bars show the mean stopping
and standard deviations from the three samplings.

The stopping behavior shows the expected trends versus vproj/
vth. In the slow projectile limit, dE/dx is linear in v, analogous to
a viscous drag term in Brownian motion ([65], Eq. (42)). The
analytic Bohr result for the OCP,

dE
dx

¼
 
Zprojeup

vproj

!2

ln

 
mv3proj

Zproje2up

!
; (40)

is a linearized dielectric model that applies in the high velocity
limit. Fig. 10 also shows the results for other analytic models [66]:
Bohr with the Chandrasekhar correction, and with an additional
correction due to Peter and Meyer-ter-Vehn. These approximations
tend to overestimate the peak in dE=dx. Better agreement can be
obtained by accounting for multiple scattering processes [67].

A characteristic wake field is shown in Fig. 11, for the same
parameters as in Fig.10. vproj=vth lies near the peak in dE=dx in Fig.10.
There is a faint artifact in the density response along the central axis
preceding the projectile. The density is time- and cylindrically-
averaged to reduce noise, but this axis is averaged over
Fig. 10. Stopping dE=dx versus projectile velocity fromMD (solid symbols) and analytic
models (curves) for a Z ¼ �10 projectile in an electron gas of G ¼ 10. The electron
thermal velocity is vth ¼ ðkT=meÞ1=2 ¼ 1:38Å /fs. dE=dx is expressed in units offfiffiffi
3

p
G3=2kT=lD ¼ 2:466 eV/ Å with lD ¼ 2:42Å. The three models are indistinguishable

for this case.
a comparatively small volume. The screening cloud surrounding the
projectile is clearly visible in black; some plasma turbulence intrudes
behind the projectile. The energy transfer for fast projectiles is
dominated by a sharp peak immediately ahead of the projectile,
which corresponds to the region of strong binary scattering. The
magnitude of the energy transfer to the plasma falls off rapidly
behind the projectile; the tail is made visible by the logarithmic
scale. The transfer alternates in sign due to OCP collective oscilla-
tions. This highly peaked distribution is a consequence of the
singular Coulomb interaction for this model with charges of the
same sign. The usual statistical potential would soften the short
range interaction to account for quantum diffraction over a thermal
distribution. This thermal-average softening of non-equilibrium
scattering would then underestimate the strong, short-range inter-
action and would distort both the predicted stopping and straggling.

A comparable dE=dx result is shown for a repulsive model of an
alpha particle in Fig. 12. The OCP target is of the same density, but
withGee¼ 1. These simulations are for 64,000 particles in a periodic
system of L ¼ 853 Å and a Langevin thermostat with a 100 fs time
constant. The MD stopping for this lighter projectile and higher
temperature shows a larger variance representative of the essen-
tially stochastic particle scattering. Most of the variability in the
energy loss is due to collisions at small impact parameters. Over
long times compared to the characteristic rate of small impact
parameter collisions, the energy loss will have a normal distribu-
tion around the mean dE/dx. This reveals the so-called straggling
that causes a monoenergetic beam to stop at a range of depths.
Again, note that the effect of these collisions on both dE/dx and the
straggling would be underestimated if QSPs were used.

In a neutral electroneion plasma, there is a second peak in the
stopping due to ion scattering. Like the electron peak, it will occur
for a projectile velocity at a few times thermal velocities of the
much slower target ions. This makes the energy split, or the
percentage of energy deposited into electrons versus ions, strongly
velocity dependent. The energy transport calculation shown in



Fig. 12. Stopping dE=dx versus projectile velocity for a repulsive Z ¼ �2 projectile
(”anti-helium”) in an electron gas with Gee ¼ 1. The electron thermal velocity is
vth ¼ ðkT=meÞ1=2 ¼ 1:38Å /fs. dE=dx is expressed in units of

ffiffiffi
3

p
G3=2kT=lD ¼ 2:466

eV/ Å with lD ¼ 2:42Å.

Fig. 13. Comparison of energy loss models for carbon at 20 eV and 2.267 g/cm3. Blue
diamonds: ddcMD with frozen C2þ ions; green triangles: ddcMD with C6þ ions; black
line: result from SRIM2008; red squares: ddcMD with C2þ plus a bound electron
contribution (4/6 of SRIM result). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 11 can be repeated for the forces on the ions separate from the
electrons. Thus the energy split can be quantified in regimes
where classical MD is applicable, including strong-coupling
situations.

However, stopping in partially ionized matter is complicated by
the presence of bound core electrons; core dynamics are not strictly
addressed by classical MD simulations with QSPs. Bound states are
prevalent in warm dense plasmas, and they are expected even in
hot, burning plasmas when there are high-Z impurities present. A
complete simulation of a burning neutral plasma thus requires
some quantum-corrected analog of a statistical potential to prevent
singular binding of classical point charges plus an explicit treat-
ment of bound electron degrees of freedom. Such improvements
are already being explored.

In the meantime, the predictions from the standard classical MD
model are of interest even before a complete capability for
quantum bound states is in place. Warm dense carbon applications
are particularly relevant, as there are particular experiments (see
Section 6.1) to compare the simulations against. Two MD models
for warm dense carbon are considered here in particular. The first is
a C2þ model. The point ions in the simulation have the carbon mass
but a charge ofþ2 to simulate the doubly-ionized atom. This model
approximates the number of free electrons for the expected ioni-
zation of a carbon plasma at T ¼ 20 eV (approximately 2.2 per
carbon). Strictly, the free electrons are semi-degenerate for exper-
iments at these temperatures, while the MD is restricted to a non-
degenerate approximation. For fast projectiles, the proton-C
potential is not of concern; most of the stopping is due to the
protoneelectron interaction. A more serious approximation is that
the core electrons are held rigid and do not participate in screening
or stopping at all. Accordingly, a classical C6þ model is also
considered. This model uses the conventional C statistical potential
at 20 eV, and it includes the core electrons as classical bound states.
The reliability of the resulting gCe(r) is not considered, nor is the
lack of discrete energy levels for the bound states.

C2þ MD calculations are performed for 64,000 C2þ atoms at
a density of 2.267 g/cm3 at T¼ 20eV; C6þ simulations are for 24,000 C
atoms at the same density and temperature. The resulting proton
stopping power is shown in Fig. 13 along with the results of an SRIM
calculation [68]. (SRIM is Stopping and Range of Ions in Matter,
a commercial softwarepackage.) BothMDcalculationsunderestimate
dE/dx as compared to the SRIM model. Much of the deficit can be
attributed to the treatment of the core contribution to the overall
stopping. If the BetheeBloch model is used for the bound electron
contribution, then the MD C2þ stopping is in reasonable agreement,
slightly below the SRIM model (see Fig. 13). The MD results are also
affected by the use of the (softened) statistical potential for the elec-
troneproton interaction. If the proton, electrons, and C2þ particles are
all given the same sign and their scattering is treated with the
Coulomb potential, the peak stopping of the C2þ curve is almost
doubled inmagnitude (not shown). Again, if the BetheeBloch bound
state contribution is added, the resulting stopping power would be
slightly higher than the SRIMmodel, still in reasonable agreement. As
expected, thepresence of quantumbound electrons requires a careful
account of their dynamic response functions and of the effective
potentials that couple the particles in the system.

5.3.2. Scattering of a probe beam
The essence of a photoneplasma scattering experiment is that

a probe beam characterized by k1 and u1 is scattered into a beam k2
and u2 with a differential cross section [69,70]

ds
dUdu2

fSeeðk1 � k2;u1 � u2Þ: (41)

At a given scattering angle q, the magnitude k of k2 � k1 is
approximately k ¼ 2k1sin(q/2) since the frequency shift is �u. The
spectrum of scattered radiation in a fixed direction arises from the
u-dependence of See(k,u), and shows resonant features associated
with Langmuir (plasmon) waves and ion-acoustic waves. The
asymmetry with respect to u2 > u1 versus u2 < u1 that can be
derived from Eq. (39) allows one to infer the electron temperature
[71]. The frequency positions of the resonances gives information
about the electron density (from upe) and the ion temperature
(from the ion-acoustic frequency). The frequency-integrated
intensity scattered in a particular direction is given by

If
ds
dU

fSeeðkÞ; (42)

so the angular distribution conveys information about the static
structure factor. For a crystalline sample, the angular distribution is
multiplied by the factor jP

ion
expðik$rionÞj2 expressing the ioneion



Fig. 14. Schematic of the proton energy loss experiment. The blue arrows depict the
two proton beams. The reddish rectangle represents the carbon target. FDI is the
interferometric diagnostic used to measure the surface expansion velocity of the
heated target. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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correlations, which limits the scattering essentially to those direc-
tions satisfying the Bragg condition. In this case it is the relative
intensities of the different Bragg reflections that contain See(k)
information.When and if the crystal melts, then the intensity peaks
at the Bragg angles are broadened and diminished.

6. Experiments and validation

The experimental validation of our computational Molec-
ulareDynamics/Monte Carlo capability is significantly complicated
by the limited phase-space regime that is accessible to both
simulations and experiments. The experimental preparation of
a well-characterized high-density plasma state continues to be
challenging. Different methods have been proposed to excite solid-
density materials, including heating by laser [72] and particle
beams [73,74]. One of the main issues is the evolution of the
material during the heating process, which can lead to ill-defined
states of matter. In the Cimarron project, we have used two
different approaches in parallel to heat and probe solid-density
matter: intense, ultra-short pulses of X-rays from the Linac
Coherent Light Source (LCLS), and proton beams generated from
thin foils irradiated with intense, ultra-short optical laser pulses at
the Jupiter Laser Facility (JLF). Both of these approaches allow one
to heat micron-sized samples to temperatures greater than 10 eV
sufficiently rapidly that the density remains that of the cold solid.

6.1. JLF experiment

The goal of this experiment was to measure the energy loss, dE/
dx, of protons propagating through material heated to warm dense
matter (WDM) conditions, which is to say, a solid in which the
temperature is comparable with or somewhat higher than the
Fermi temperature. For normal density carbon, this means
a temperature around 20 eV. For energetic ions, the energy loss of
the projectile is dominated by collisions with electrons in the target
[68]. In our experiment, the target was polycrystalline graphite. At
WMD conditions, the carbon atoms are partially ionized, so that
both the remaining bound electrons and the free, plasma electrons
contribute to the energy loss of the protons moving through the
target. Since the degree of ionization depends on the temperature,
the relative contributions of the bound and free electrons also
change with temperature. In addition, the total energy loss of
a protonwith a given incident energy depends strongly on the areal
density of the target. Therefore, in a stopping experiment with
a plasma target, one needs to characterize the temperature, density
and thickness of the plasma and use a technique that minimizes
spatial and temporal gradients. In addition, one needs to measure
the energy distribution of both the incident and the transmitted
ions to be able to infer dE/dx.

In view of these requirements, we chose a “pump-probe”
technique for our initial experiment [75], sketched in Fig. 14. We
used an intense, energetic proton beam to heat a micron-sized solid
target, and then sent a second, independent proton beam through
the heated target. Both proton beamswere generated by irradiating
thin metal foils with intense, 2 ps-long pulses from the Titan laser
at the JLF in Livermore. It has been well established over the last
decade that such irradiation produces energetic, highly collimated
ion beams that propagate perpendicular to the rear surface of the
irradiated foils [76]. The protons are accelerated from a very thin,
hydrogen-containing contaminant layer on the surface of the foils.
Furthermore, the ions are accelerated to their asymptotic velocities
in less than 10 ps when the laser pulse duration is in the range
0.1e5 ps. This allows for rapid, volumetric heating of solid samples.
In our experiment, the distance between the proton source and the
heated carbon target was only 200 mm to maximize the proton
fluence on the target (hence the resulting temperature) and to
minimize the temporal spreading of the short-duration proton
beam due to time-of-flight (hence the heating time).

The temperature of the heated carbon sample, about 13 eV, was
inferred from a measurement of the expansion velocity of the
target surface. We used time- and space-resolved interferometry
(TASRI) to measure the surface velocity [77,78]. The temperature
extracted from the TASRI data was consistent with the results of 1D
hydrodynamic simulations of the proton-heated carbon target.
These simulations used as input the known target geometry, and
the energy distribution and divergence of the heating proton beam,
which we measured on separate laser shots. The simulations
showed that the temperature of the heated sample reached 14 eV in
about 15 ps, and then remained approximately constant for 80 ps.
During this time, there was minimal expansion of the target, so that
it remained at its original, solid density.

The proton beam used to probe the heated carbon sample was
generated by irradiating a separate 25 mm Au foil with a second
2 ps-long laser pulse. The relative timing of the two laser pulses was
adjusted so that the probe proton beam passed through the carbon
target while it was at the maximum temperature. Wemeasured the
energy distribution of the incident and transmitted protons using
a recently developed, novel magnetic spectrometer [79]. In the
experiments reported here [75], we obtained the incident and
transmitted proton spectra on different laser shots, which means
that shot-to-shot variation was a major source of error for the
inferred value of dE/dx. We recorded energy spectra of the protons,
which passed through the heated carbon target, for a range of
thicknesses between 2.5 and 17 mm. Fig. 15 shows examples of the
incident and transmitted proton spectra. A simple comparison of
the peak positions in the two spectra gave 84 � 20 eV/nm as an
estimate of dE/dx at a projectile energy of 500 keV. For comparison,
the value for cold polycrystalline graphite, with a density of 1.7 g/
cm3, is 60 eV/nm [68].

Simple ionization models suggest that the degree of ionization
of carbon at 15 eV is roughly Z¼ 2.2. A ddcMD calculation of proton
stopping in a 20 eV C plasmawith two free electrons (but no bound
electrons, just a structureless Cþ2 ion) gave 21 eV/nm at 475 keV,
a value about four times smaller than the experimental estimate.



Fig. 15. Spectra of the incident (red) and transmitted (blue) protons obtained with the
magnetic ion spectrometer. The target was a 2.5 mm thick polycrystalline graphite foil,
which was volumetrically heated by another proton beam. The two spectra were
recorded on different laser shots. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 16. Bragg diffraction peak of graphite excited by the LCLS pulse.
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This strongly suggests that the contribution of the bound electrons
to the stopping at WDM conditions is important. Indeed, as dis-
cussed in connection with Fig. 13, adding a bound electron contri-
bution, calculated with the BetheeBloch model [68] for these
conditions, to the ddcMD result gave 85 eV/nm, which is close to
the experimental estimate. Clearly, simulationmodels must include
a treatment of the bound electrons and their contribution to ion
stopping in partially ionized plasmas. This improvement is in
progress.

6.2. LCLS experiment

Particularly useful to excite solids are X-ray beams, since they
penetrate solid-density materials and their absorption properties
are relatively well understood. Short duration X-ray pulses offer the
additional advantage that the material does not undergo macro-
scopic changes during the heating process. Therefore, short-pulse
X-ray beams can be used to generate uniform, dense plasmas of
known energy density.

At the same time, owing to their large penetrating power, X-ray
beams can also be used to characterize dense plasmas through
X-ray scattering. Until recently, X-ray sources have not been suffi-
ciently bright for this application. Recently, a major breakthrough
has been achieved with the advent of X-ray free-electron lasers
(XFELs), that provide sub-100 fs X-ray pulses between 500 eV and
10 keV with pulse energies in excess of 3 mJ. These pulses can be
focused to a diameter of 1 mm and smaller. The first EUV free
electron lasers became operational at DESY in Hamburg, Germany
in 2003 [80]. The Linac Coherent Light Source (LCLS) is the first
XFEL that has produced X-ray pulses up to 10 keV since 2009 [81].
We recently used the highly penetrating, ultra-short, high-intensity
LCLS radiation to isochorically excite solid-density graphite into the
WDM regime, hot enough that we can simulate the experiment.
During the heating pulse the sample reached a solid density,
strongly coupled plasma state. We then probed the sample using
Bragg and Thomson scattering from the same X-ray radiation,
providing information about the ultrafast dynamics of the graphite
electron and ion system. An extensive set of data with varying
pulse length and fluence were collected. Fig. 16 shows the Bragg
reflection from single-crystal graphite, which can be used to char-
acterize the materials dynamics. The Bragg peak intensity is
strongly dependent on the atomic order and ionization state of the
ions. Fig. 17 shows simulation results of the lattice dynamics for
a 70 fs-long pulse, for pulse parameter similar to the ones
encountered in the experiment. The simulations suggests that
initial atomic motion occurs within tens of fs, and that the graphite
transforms into a plasma at the end of the pulse. This experiment
constitutes the first X-ray characterization of X-ray-induced
plasmas at sub-ps timescales. Analysis of this data is in progress.

7. New directions for MD simulations of plasmas

7.1. Motivations

Ideally, to simulate the hot dense plasmas discussed in this
paper, we would like to solve the many-body time-dependent
Schrödinger equation (TDSE). This is a practical impossibility so the
traditional approach has been to rely on MD with QSPs. MD
provides an accurate numerical solution to the many-body classical
particle dynamics. It is a valuable tool for investigating the variety
of complex non-equilibrium processes of hot dense matter
[46,47,57,82]. It handles strongly coupled ions exactly and strongly
coupled electrons depending on the form of the potential chosen.
However, the method suffers from two serious drawbacks that
need to be solved if thismethod is to be used reliably to inform us of
the accuracy of theoretical treatments of hot dense matter. First,
when used for non-equilibrium plasma simulations, QSPs may not
be accurate. In other words, within the traditional MD framework,
the fidelity to quantum mechanics is limited. Second, and perhaps
more serious, is that explicit electron dynamics leads to a time step
limitation that is a small fraction of the inverse of the electron
plasma frequency, and this is too small to make simulating fusion
plasmas feasible.

In this section we explore ideas for alternative treatments. The
first of these is orbital-free density functional theory, in which ions
are treated with classical MD and hence can be strongly coupled.
This method works when electron dynamics may be ignored; ions
in the plasmamay be weakly or strongly coupled. Hence, it is useful
for is an important but restricted subset of the problems we are
interested in. Wave packet molecular dynamics (WPMD) offers the



Fig. 17. Molecular dynamics simulation of the lattice structure of graphite exposed to
an LCLS pulse.
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distinct advantage of naturally incorporating quantum effects
through the equations of motion. However, the extension of these
methods to include radiative and atomic effects is still an area of
research. While helping to address the QSP problem, they do not
Table 2
Four methods of treating electron dynamics within an ion MD code are compared.

Method Strongly
-coupled
ions

Strongly-coupled
electrons

True electron
dynamics

Fermi distrib
function

Statistical
potentials

Yes Yes. Accuracy depends
on model chosen

No No

OF-DFT Yes Somewhat, depending
on functional chosen

No Yes

Wave-packet
molecular
dynamics

Yes Yes Yes Somewhat,
depending
on particular
choice of
antisymmetr

Kinetic-theory
molecular
dynamics

Yes Somewhat. Moderate
coupling achieved
through non-linear
numerical solution.
Extensions possible

Yes Yes
address the time step issue discussed above. Kinetic theory
molecular dynamics (KTMD) is a recent development and is based
on leveraging the strengths of kinetic theory and MD for hot dense
matter. The idea is to use a kinetic theory for the electrons and to
treat the ions with MD. This method treats the quantum diffraction
and interference effects through a quantum Wigner treatment of
the electrons. The time step issue is resolved by solving the
quantum kinetic equations for the electrons using an implicit time-
stepping algorithm that is commensurate with the ion time scale.
We emphasize that all of these are currently active areas of
research. These alternatives are summarized in Table 2, which
shows the advantages and disadvantages of each method. The
remainder of this section is devoted to a discussion of these
alternatives.
7.2. Orbital-free density functional theory

When calculating phenomena that do not require an explicit
treatment of the electron dynamics, the Born-Oppenheimer
approximation may be invoked, and the electronic structure can
be calculated adiabatically given an ion configuration at every time-
step. This is often referred to as quantum molecular dynamics
(QMD), as MD is used to evolve only the ions. In almost all cases, the
electronic structure arises from the solution of the Kohn-Sham
orbitals within the context of density functional theory (DFT). The
QMD method is computationally very expensive in comparison to
other MD models for several reasons, including the fact that it
employs many more, complex-valued functions that must be
sampled on a fine mesh in reciprocal space, over many Brillouin
zones. Worse is the enforcement of orbital orthonormality.
However, the key limitation for computing the properties of high
energy density materials is that the number of orbitals needed
becomes prohibitively large as the temperature increases. To date,
most QMD calculations are performed at zero temperature, with
some in the few electronevolt range. To our knowledge, the highest
temperature ever simulated using QMD is T ¼ 250 eV, but this was
a very difficult calculation that involved only four atoms [83].

A promising alternative to the approaches mentioned above is
to return to the seminal theorems of DFT. In the original formula-
tion of DFT, the basic variable is the density ne(r), which is a single
real variable. Brillouin-zone sampling is not necessary since the
density is computed in real space. The essential feature of what
Hohenberg and Kohn proved was that this variable is, in principle,
the only variable that is needed [84], however the proof is only one
of existence and does not reveal the explicit forms. In particular, the
ution Atomic physics Pauli blocking

Yes, in static limit. Main limitation is
pair approximation, and independence
of diffraction and Pauli

Somewhat. Static Pauli
potentials account for
effective repulsion

Somewhat, at extended Thomas-Fermi level Electrons not dynamical

y

Yes, but severely limited by Gaussian ansatz
and approximate treatment of exchange

Yes, but limited by
particular choice of
antisymmetry
(e.g., pair vs. full
determinant)

Yes. Limited by kinetic model used,
but contains atomic physics at least at
the Thomas-Fermi level

Yes. Pauli blocking does
not occur at mean-field
level (WP system), but
can be included in
collision terms
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kinetic energy proved to be quite difficult to find as a functional of
the density; it was this problem that led to the re-introduction of
orbitals, and the KohneSham approach. Here, we return to the
original, orbital-free DFT (OF-DFT) approach for three reasons. First,
there has been substantial progress in finding kinetic energy
functionals. Second, employing the density leads to much faster
computational algorithms, which in turn makes it possible to
simulate larger systems for longer periods of time. Third, for warm
to hot dense matter, most of the subtle details of electronic struc-
ture are reduced due to thermal effects, and less precise functionals
are needed.

Generally speaking, the equations to be solved are given by

1
4p

V24 ¼ neðrÞ �
X
i

Zidðr� RiÞ; (43)

€Ri ¼ �ZiV4;
dU
dne

¼ 0; (44)

where we have denoted the position of the ith ion as Ri with
nuclear charge Zi and the electric potential as 4. The entirety of the
modeling is contained in accurately expressing the grand canonical
potential U[ne]. The principal objective of this task will then be to
develop a form of this potential which describes all the key physical
processes while still maintaining a minimal computational
complexity.

Shortly after Hohenberg and Kohn developed DFT for zero-
temperature systems [84], Mermin extended the basic theorems
to finite temperature [85]. In particular, these results show that the
correct electron density is obtained by minimizing the grand
canonical potential,

U½ne� ¼ Fe½ne� þ 1
2

ZZ
dr dr0

neðrÞneðr0Þ
jr� r0j (45)

þ
Z

dr½vextðrÞ � m�neðrÞ þ Fxc½ne�; (46)

When this expression is minimized (dU[ne]/dne(r)¼0), the
resulting EulereLagrange equation yields the correct electronic
density. In this expression, the first term on the right is the free
energy of a non-interacting electron gas, and this term is the most
difficult to determine in OF-DFT approaches. The next term
describes the classical portion of the electroneelectron interaction.
The third term includes the interaction of the electrons with the
nuclei in the molecular dynamics simulation as well as the chem-
ical potential m and is used to ensure the correct average density in
the variational approach. The fourth and final term is the exchange-
correlation contribution, which includes all quantum corrections
missing from the other terms.

Suppose we neglect the exchange-correlation contribution,
Fxc[ne], and use a form for Fe[ne] from a uniform electron gas; such
an approximation is expected to be accurate for highly compressed
matter. The uniform gas free energy is

FezFTF½ne� ¼
ffiffiffi
2

p

p2b5=2

Z
dr
�
hI1=2ðhÞ �

2
3
I3=2ðhÞ

�
(47)

with neðrÞ ¼
ffiffiffi
2

p

p2b3=2
I1=2ðhÞ; (48)

where as before b ¼ 1/T is the inverse temperature, h ¼ bm is the
degeneracy parameter, and IpðhÞ is the usual Fermi integral of
order p defined by
IpðhÞh
ZN
0

xpdx
1þ ex�h: (49)

Note that, as long as the electron density is nearly uniform, this
scheme applies to materials of any nuclear composition (e.g.,
mixtures) at any temperature. In fact, this is nothing more than the
ThomaseFermi model cast in terms of the language of DFT, which
has been applied to hot dense systems since the seminal work of
Feynman, Metropolis, and Teller at Los Alamos during the
Manhattan Project [86]. Their method can be applied here such that
the resulting electron density is connected with many, potentially
different ions that are evolved using molecular dynamics. Such
amethod has been used to simulate densematter from T¼ 0.1 eV to
T ¼ 5000 eV [87]. It is important to note that this method is an all-
electron, finite temperature method.

The ThomaseFermi approximation, while enjoying many
successes, has several well-known shortcomings such as predicting
singularities in the density at ion centers, which is not only
unphysical but also leads to numerical instabilities [87,88]. We
propose to improve upon Eq. (47) by allowing for slowly-varying
inhomogeneities. This can be done by including a finite-
temperature gradient correction which yields the proper linear
response in the long-wavelength limit [89]

FezFTF½ne� þ FGC
h
ne; jVnej2

i
(50)

where FGC ¼ � 1
24

Z
dr

d
dh

�
dh
dne

�



Vnej2: (51)

This correction changes the resulting EulereLagrange equation,
which minimizes the functional, from an explicit expression of the
electron density to a non-linear partial differential equation. While
this adds some computational complexity, it resolves the singular
densities and thus improves numerical stability. A further correc-
tion could be made to yield the exact linear response to all orders.
One way to do this is to calculate the polarization function of the
existing model, subtract this inherently inaccurate contribution off
and then add on the exact linear response through the correct
polarization function [90]

FezFTF þ FGC þ FLR; (52)

where FLR ¼
ZZ

dr dr0neðrÞc�1
modelðr� r0Þ

�
ZZ

dr dr0neðrÞc�1
LR ðr� r0Þ (53)

This again complicates the EulereLagrange equations, although
computationally it only involves additional convolutions already
being calculated. In Fig. 18, results from Ref. [90] are presented
showing that systematic improvements to the kinetic energy func-
tional yield more accurate results when compared to full DFT calcu-
lations. Here, all approximations are made at zero-temperature,
whereKDFT is theDFTdata,KLR represents a functionalonlycontaining
linear response, KTFW is ThomaseFermi (TF) with the so-called
Weizsäcker correction, which is functionally similar to FGC, and
finally KTFLR is TF corrected for exact linear response and gradient
corrections as in Eq. (52). Note that as rs goes to zero, i.e., the limit of
high densities, KTFLR produces the most accurate results.

7.3. Wave Packet Molecular Dynamics

In general, the time-dependent Schrödinger equation (TDSE) is
very difficult to solve for a many-body system. However, we can



Fig. 18. Comparison of kinetic energy functional approximations with self-consistent
DFT data for H in jellium [90]. KDFT e DFT, KLR e pure linear response, KTFW e

Thomas-Fermi (TF) with Weizsäcker term and KTFLR e TF corrected for exact linear
response. The density parameter rs ¼ ai=a0.
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reduce the computational complexity via the use of a time-
dependent variational principle (TDVP) [91e93]. To use this
method, one must first define an action to vary. There are several
possible choices [94]. Here, we discuss the stationary action
principle

d

Z
dt
	
j





iZ vvt � Ĥ




j



¼ 0: (54)

The wave function is then written in terms of a finite number of
time-dependent variational parameters.

jji ¼ jZðtÞi ¼ jz1ðtÞ; z2ðtÞ;.; znðtÞi: (55)

One then varies with respect to Z* to derive the equations of
motion. Such equations of motion may require matrix inversion to
solve, lead to too many equations, and/or have non-analytic terms.
This motivates one to seek simple forms for jji that are still able to
model the requisite physics.

Heller [95] was the first to recognize that restricting the
dynamics of a wave function to the Hilbert space consisting of
Gaussian wave packets is a powerful semiclassical approximation.
It is powerful in the sense that it leads to easy to evolve wave
functions and easy to interpret results. The semiclassical approxi-
mation here is different than the usual Z expansion. Instead, the
classical approximation is identified with particles having exact
positions and momenta, so this semiclassical approximation is that
particles have approximate positions and momenta (the centers of
the Gaussian wave function in its position and momentum repre-
sentations, respectively) but do not violate the Heisenberg uncer-
tainty principle. For quadratic potentials, this approximation is
exact. Errors become largewhen thewidth of the packets is large or
when third and higher derivatives of the potential become
significant.

Wave Packet Molecular Dynamics (WPMD) is a simple way to
implement quantum mechanics in a molecular dynamics code.
WPMD extends the point particle dynamics to a dynamics of the
Gaussian wave packet position, momentum, and width. It incor-
porates uncertainty in position andmomentum consistent with the
Heisenberg uncertainty principle and few-body exchange effects
can be added while interference effects are still poorly treated.

The first application ofWPMD to plasma physics was by Klakow,
Toepffer, and Reinhard [96,97] and reviews are given by Littlejohn
[98] and by Feldmeier and Schnack [91]. Such simulations were and
are important because they offer a dynamic replacement of
quantum statistical potentials as well as amodel that can be used to
interpret molecular dynamics in a fully quantum mechanical way.

The equations of motion within the Gaussian restricted wave
packet formalism of WPMD yield:

_RI ¼ PI

mI
; _ri ¼

pi
me

; _gi ¼
hi
me

; (56)
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_hi ¼
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where rij ¼ ri�rj, riJ ¼ ri�RJ, rIJ ¼ RI�RJ, rIj ¼ RI�rj, gij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2

i þg2
j Þ

q
,

mI is the mass of ion I, and me is the electron mass. The indices i,j
range over all the electrons and I,J range over all the ions. The
trajectories from these equations of motion are softened in a similar
fashion to a statistical potential. One difference is that the softening
parameter (gi) is itself dynamic instead of the static thermal de
Broglie wavelength used in statistical potentials. However, this
comparison is not exactly a fair one. The positions and momenta
mean different things (expectation values versus values in an
ensemble used to sample the quantum partition function) and the
softening arises due to these different interpretations.

The right hand side of Eq. (59) has two different termswhichmay
give opposite behaviors. The first term represents a repulsion from
having zerowidth. If the position is knownverywell, themomentum
must be, by the Heisenberg uncertainty principle, very uncertain. So
the particle can head off in any direction, e.g. spread. This is the only
term that exists for a free particle and so it must eventually spread.
Dependingon temperature and density, the second termmayormay
not be strong enough to keep the widths from diverging.
7.4. Kinetic theory molecular dynamics

As discussed earlier, a limiting aspect of MD as applied to elec-
troneproton plasmas is the restriction of the time step to electron
collision time scales. For plasmas in the HDR regime, this means
fractions of a fs. Ion electron collisions happen on a much longer
time scale (factor of mp/me) and thermonuclear burn on an even
longer time scale of nanoseconds. Therefore, trying to run simula-
tions of dense burning plasmas becomes impractical. It was
recognized early on in the development of MD that the large
discrepancy between the electron and ion time scales could
be used to the computational physicist’s advantage. In both
BorneOppenheimer MD [99] and CareParrinello MD [99,100], it is
assumed that the electrons adapt rapidly to the changes in the ion
positions and momenta. In the case of BorneOppenheimer MD, the
electron configuration is always assumed to be in a ground state
which is computed from a stationary Schrodinger equation. Elec-
tron “dynamics” is a result of the effect of the classical ion dynamics
on the electrons. In other words, the ground state electron
configuration is updated with every change in the ion positions and
momenta. In CareParrinello MD, there is recognition of the
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separation of fast (electron) and long (ion) time scales. This trans-
lates into an adiabatic separation of energy scales. The beauty of
their approach is that the electroneion plasma can be mapped onto
an equivalent classical description consisting of dynamic ions and
electron orbitals.

The philosophy behind KTMD is based on several observations
about HDR plasmas. First, the electrons are non-degenerate and
weakly coupled. Second, the ions can be weakly or strongly
coupled. KTMD attempts to take advantage of these properties
along with the observations that: (1) MD is very good at moving
classical particles around and computes their correlations exactly
(2) Kinetic theory is well developed for weakly coupled plasmas.
Hence, the approach of KTMD is to describe the electron dynamics
fully with a kinetic equation and leave the ion dynamics to MD.
HDR plasmas exhibit quantum effects at short distances and clas-
sical screening behavior at long distances. Therefore, the starting
point for a kinetic theory description of the electron dynamics will
be the Wigner equation with exchange effects ignored [101e103].

The process for deriving the relevant KTMD equations is
straightforward although the calculations themselves are lengthy. For
this paper, a description of the derivation is given; a separate longer
paper will provide more details. The approach is based on starting
with a Quantum Liouville (Wigner) equation for Ne þ Np particles in
a plasmawhere Ne refers to the number of electrons and Np refers to
the numberof protons. This equation is used to construct the reduced
Wigner distribution function for Np protons. A closure scheme is
required and it is assumed that higher order correlation functions can
be written as a symmetrized sum of one-particle Wigner functions
and pair correlation functions. This quantum Liouville description of
the ion dynamics is used as the basis for the MD simulation and it
describes the pushing of classical particleswith effective forces [104].
The electron kinetic equation is derived from a single particle density
operator. In the limit of weak coupling, a closed set of equations for
the one particle electronWigner function and the electroneelectron
and electroneproton pair correlation functions can be derived. This
was done by Guernsey [104e106].

The numerical aspects of solving the KTMD equations are non-
trivial. The approach we are taking is to first start with the
quantum Vlasov form coupled to the Poisson equation. In this
system, the pair correlations vanish. There are a vast number of
classical methods for discretizing the quantum Vlasov system, such
as particle-in-cell (PIC) [2], particleeparticleeparticle-mesh (P3M)
[3], and the Eulerian (gridded Vlasov) [107] methods. However, the
primary concern in the choice of a specific method for tackling the
KTMD equations is that the quantum interaction term contains
length scales that are in general much shorter than those typically
associated with the methods mentioned above. The ideal method
will be one that combines the simplicity and computational effi-
ciency of the classical methods with the efficiency and accuracy to
handle multiple length and timescales. It is well known that the
VlasovePoisson system is dissipative [108,109], meaning that the
quantum initial distribution will relax toward a Maxwellian
distribution in time. Therefore, wemust invoke a collisional term to
effectively drive the distribution function toward some quantum
equilibrium distribution. The subtlety here is that this equilibrium
is time-dependent; each self-consistent time step taken within the
KTMD method will lead to different equilibrium distribution. A
starting point for this is a simple BhatnagareGrosseKrook (BGK)-
type [110] collision model.

8. Comparisons of different methods for single electron
dynamics

It is impossible to solve the TDSE formillions of particles in a real
plasma, but an accurate solution is possible for a few electrons and
protons. Therefore it is useful to make a comparison between
various methods of interest (including the workhorse QSP) and the
exact quantum mechanical solution for few body collisions. Here
we consider (binary) electroneproton scattering and a single
electron scattering from many protons. Such comparisons can
inspire improvements in the approximate methods, as well as help
us to understand which quantum effects dominate the physical
systems of interest. Besides QSPs, our comparisons involve: (1)
machine-accuracy (called “exact”) solutions generated by the SOFT
method; (2) a method (WCD) that preserves the initial properties of
the wavefunction, but does not include interference; and (3)
a method (WPMD) that employs simple Gaussian wavefunctions.
The first two of these are described below;WPMDwas described in
Section 7.3.

8.1. Exact TDSE: Split Operator Fourier Transform method (SOFT)

For single-electron problems, the Schrödinger equation is

iZ
v

vt
jðrÞ ¼

�
p̂2

2me
þ VðrÞ

�
jðrÞ; (60)

VðrÞ ¼ �
X
m

eqm
jr� Rmj; (61)

where the sum is over all fixed scattering centers of charge qm,
located at positions Rm. Eq. (58) is solved by repeated application of
the propagation operator for a time step Dt, approximated by the
split operator [111e115]
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(where again Z ¼ 1 for convenience). The Split Operator Fourier
Transform (SOFT) method takes advantage of this factorization by
applying the first operator in position space, the second in
momentum space, and the third in position space because these
operators are, respectively, diagonal in these spaces. The basis
change from coordinate space to momentum space and vice versa
is effected by forward and backward Fast Fourier Transforms on an
equidistant grid.

The complex wave function j(t) at time t is represented on the
grid

rak ¼ ra0 þ k$Dx; k ¼ 1;.;128

where a enumerates the three Cartesian directions. Here
r10 ¼ �4 Å, r20 ¼ r30 ¼ �5 Å, and Dx ¼ 10=128 Å, small enough to
correctly represent themomenta of thewave function at the energy
range given (1 keV and below). The time step chosen is Dt ¼ 10�4fs
to accurately resolve the electron dynamics.

8.2. Wigner classical dynamics (WCD)

In this approach to improving the description of particle
dynamics, one replaces a single point particle by a distribution of
point particles whose density in phase space reproduces the
quantum density. A classical propagation of these particles can then
illuminate whether the width of the wave function is the dominant
quantum effect in the process studied.

Given a three-dimensional Gaussian wave function as an initial
single particle state (in this subsection we set Z ¼ 1),

j0ðrÞ ¼
�
2ps2r

��3=4
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(63)
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with initial position r0 and initial momentum p0, the initial phase-
space density is given by the Wigner distribution [116]

Pðr;pÞ ¼ 1
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where the uncertainty relation gives srsp ¼ 1=2.
This six-dimensional Gaussian distribution in coordinate and

momentum space was used for the Monte-Carlo initialization of
a distribution of point particles whose particle density reproduces
the quantum-mechanical density [117]. To performWigner Classical
Dynamics [118], these particles were propagated due to Newton’s
equations of motion using the VelocityeVerlet method [119]. A
complication arises when an electronic particle experiences a close
encounter with a proton e the gradient of the Coulomb potential
then becomes divergent. To solve this problem, the analytic solution
of the Kepler problem for this two-body problem is applied to
position and momentum, which are then updated according to the
gradients of the Coulomb potential due to the remaining protons.

Using an adaptive time step to converge the energy drift, this
mixed method performs faster than standard integrators. It is
different from existing variable regularization schemes popular in
astrophysics [120e125] in that it does not require keeping track of
variable and time transformations or alignment of time steps
between the regularized and the remaining part of the system. It
can thus be treated as a black box method that can be added to
existing dynamics codes easily. The algorithm used for the solution
of the Kepler problem and its implementation are based on
a vectorial solution [126]. The mixed analytic solution with
numerical update method is described and its performance
analyzed in detail in a separate publication [127]. The test particles
in the WCD method do not interact, a feature that offers obvious
parallelizability.
Fig. 19. Comparison of trajectories for a single electron scattering from a single proton.
Shown are expectation values of the position evaluated using exact quantum
mechanical SOFT (solid red), approximate quantum mechanical WPMD (dashed
green), and quantum-classical WCD (dashed blue) methods, versus positions of clas-
sical single particles in the Coulomb (dotted blue) and Dunn-Broyles statistical
potentials (dashed black). The electron energy is 9.2 eV and the results shown corre-
spond to QSP at plasma temperatures 18.4 eV, 9.2 eV, and 4.6 eV. It can be seen that
agreement of QSP trajectories with those of quantum methods depends on the
temperature as well as the impact parameter. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
8.3. Binary scattering

We first consider an electron scattered by its interaction with
a (fixed) proton, and compare in detail various classical and
quantum trajectory results. In the classical view, the electron
samples the interaction only at points on the trajectory, while in the
quantum view, it continually samples the Coulomb interaction over
an extended region (the wave packet).

We show in Fig. 19 electron trajectories given by the Dunne-
Broyles QSP for three different plasma temperatures. These are
compared, in each case, with classical trajectories for a pure
Coulomb potential and with various quantum expectation values of
the electron position. In all cases, the initial total electron energy is
9.2 eV, and for SOFT, WCM andWPMD the initial condition is given
by Eq. (63), with width sr ¼ 0.05 Å, position x ¼ �1 Bohr, and
impact parameter y in increasing multiples of 0.2 Bohr.

It can be seen that, as the QSPs are constructed to attempt to
emulate quantum dynamics, all QSP trajectories curve less sharply
around the proton (indicated by the black cross) than do their
classical, pure Coulomb counterparts. However, the QSP trajectories
curve more sharply than the quantum mechanical trajectories.
Fig. 19 shows that the agreement of the QSP trajectory with the
exact result (SOFT) is best at the lowest temperature, 4.6 eV. Even
for this temperature the agreement is fairly good only at the largest
impact parameter and the final time, and not as good at interme-
diate time. The QSP trajectory with the medium impact parameter
agrees well with SOFT in the scattering region but not at long times.
This demonstrates that it is not possible to match qualitative
quantum behavior with the QSP point particles, as agreement of the
trajectories depends on the temperature as well as the impact
parameter. In the QSP model the particles have no width but the
interaction potential is softened. The other methods, by contrast,
feature finite-radius particles that interact with the Coulomb
potential. Fig. 19 shows that these methods give trajectories that
agree well with the exact result despite having no adjustable
temperature parameter.

Overall, we note that for what should be the same interaction
(same initial conditions), different results are obtained with QSPs.



Fig. 20. Contour plots of initial density, integrated over the z coordinate. Coordinate
axes are in Angstroms. Contours are drawn at percentages of the maximum density
found at 1�s, 2�s and 3�s from the center of a Gaussian. Small black dots represent
initial positions of particles for the Wigner Classical Dynamics (WCD) method. Proton
coordinates are shown as black dots, larger for protons closer to the z ¼ 0 plane in
which the initial wave function is centered.
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This is due to the problematic assumption that a temperature can
be associated with a single electron. In an MD simulation, different
energy electrons interact with nuclei through the same potential
corresponding to an average temperature. However, electrons of
the same energy that are propagated in MD simulations of different
temperature interact with the nuclei through different potentials,
which leads to different outcomes of the scattering events.

The exact quantum trajectory follows a softened trajectory with
respect to the single particle classical result. This is due to the
electron sampling the potential over the range of its width, and is
qualitatively similar to the QSP result. However, the reason for the
softening of the trajectory in the statistical potential is distinct from
that in the quantum mechanical case. The positions and momenta
in QSP dynamics are not real positions and momenta. These virtual
dynamics are constructed solely to get the right statistics in thermal
equilibrium. Therefore, individual trajectories should not be used to
make any statements about observables, such as radiation
produced by the acceleration of electrons.

Wenowcompare SOFT,WPMD,andWCD. For these comparatively
low energies, WCD yields trajectories following those from the exact
SOFTmethodmore closely than the ones fromWPMD. This is because
the electrons in the current WPMD approach are represented by
isotropic Gaussianwave packets. Hence they can neither deform into
anisotropic densities, nor bifurcate into bound and unbound compo-
nents. Both of these degrees of freedom are open for the multiple
particles representing the electron density in the WCD approach,
allowing for the observed improvement of the trajectories. This is in
spite of WCD using only classical equations of motion, indicating
a dominance of width effects (sampling of different portions of the
potential) when switching from classical to quantum dynamics.

8.4. Quantum pinball

To gain a better understanding of the dominant quantum effects
in electron dynamics in a plasma, scattering of a single electron
from a disordered array of protons was simulated using SOFT,
WPMD, and WCD. This test is different from electroneproton
scattering in that interference may occur between components of
the wave function scattered off different scattering centers.
Quantum cross sections are therefore not additive, potentially
resulting in deviations from a classical prediction.

A cluster of 125 protons, spanning 5� 5� 5 Å3, corresponding to
a plasma density of

rplasma ¼ 1�A
�3 ¼ 1024cm�3

was placed centrally at the coordinate origin. Electronic wave
packets were placed at the boundary and launched with a range of
initial momenta typical of plasma energies. Resulting electron
densities were compared to ascertain the accuracy of the methods
employed.

Our test is to give each method the same initial wave function,
shown in Fig. 20 and given in Eq. (63), where r0¼ (�2.4 Å,0,0) is the
initial expectation value of the position, sr ¼ 0:3458�A the initial
width, and p0 ¼ ðp0;0;0Þ the initial expectation value of the
momentum. The initial width s was chosen from a Gaussian fit to
the 1s state of the hydrogen atom, so that the initial wave packet
can be thought of as a free electron resulting from the recent
ionization of a hydrogen atom. The initial momenta were chosen so
that p20=2me is 1 keV, 250 eV, and 62.5 eV, respectively, for the three
cases compared here. The accuracy of WPMD and WCD can be
quantified by comparing the densities evolved with the different
models at some later time.

Fig. 21 shows as small gray dots the point particles propagated
with the WCD method and as blue outlines the number density
collected in 642 quadratic bins covering the quantum grid. (Each
bin covers 23 quantum grid cells.) For illustration purposes, parti-
cles shown are from a simulation using 56 ¼ 15,625 particles.
Contour lines and quantitative measures shown in Table 3 are
derived from simulations using 76 ¼ 117,649 particles. A maximum
allowed energy drift of 2.72,10�2 eV/fs for each particle was used as
the basis for the adaptive time step simulations with a smallest
allowed time step of 10�39 s (!).

Fig. 21 also shows contour maps of SOFT probability densities
rðrÞ ¼ j*ðrÞjðrÞ (red outlines) after passing through the proton
cluster for the three initial kinetic energies. Contours are drawn at
percentages of the maximum density found at the single, double,
and triplewidth of a Gaussian distribution. Snapshots were taken at
different times owing to the varying velocities with which thewave
packet progresses, such that the electron density has just left the
proton cluster at that time.

Because the energies are so high, scattering is generally weak in
the examples considered. For that reason, it is relatively easy for
a model to reproduce the exact dynamics. In order to understand
exactly what part of the dynamics is nontrivial, we have also
included the evolution of a free wave packet (zero potential). This is
shown as the gray contours in Fig. 21. A comparison with the
analytic density shows that the protons act on the wave packet
through acceleration, deformation, and suppression of dispersion.

Fig. 21 shows final densities resulting fromWPMD simulation as
green contours.

Agreement between the final densities shown in Fig. 21 for
methods A and B can be evaluated using the normalized overlap
term

UT0
A�B ¼

Z
V

9
1=2
A 9

1=2
B dr

0
@ Z

V

9Adr

1
A1=2

$

0
@ Z

V

9Bdr

1
A1=2; (65)

where T0 is the initial kinetic energy and 9X is the final density for
method X. For perfect agreement between the densities predicted
by methods A and B,



Fig. 21. Contour plots of the probability densities given by different methods after
passing through the proton cluster, integrated over the z coordinate. Coordinates in Å.
SOFT (red contour lines), WPMD (green contour lines), WCD (small particles and blue
contour lines), and no interaction (dark contour lines). Protons (black dots), shown as
larger for protons closer to the z ¼ 0 plane. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Agreement of final densities shown in Fig. 21 quantified by the normalized overlap
UT0
A�B , eq. (62) for three different initial kinetic energies and threemethods discussed

in this section.

T0 [eV] Method A Method B UT0
A�B

1000 SOFT WPMD 0.90
1000 SOFT WCD 0.97 � 0.01
1000 WPMD WCD 0.90 � 0.01
250 SOFT WPMD 0.97
250 SOFT WCD 0.91 � 0.01
250 WPMD WCD 0.90 � 0.01
62.5 SOFT WPMD 0.89
62.5 SOFT WCD 0.86 � 0.01
62.5 WPMD WCD 0.75 � 0.01
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UT0
A�B ¼ 1: (66)

Densities were used as the basis of our comparison throughout,
as the wave function’s phase is unavailable in the WCD method.

Table 3 shows normalized overlap values UT0
SOFT�WPMD for the

three initial kinetic energies used. All are at or above 0.9, which
means that WPMD not only reproduces the SOFT trajectory, but
also the wave packet’s time-dependent dispersion for the scat-
tering problem at multiple Coulomb potentials. Even in the lowest
kinetic energy case, which results in amore strongly deformed final
SOFT quantum density, the isotropicWPMD packet covers the main
features of the SOFT density, confirming the WPMD method’s
viability for electron scattering at a proton cluster.

As can be seen in Table 3, agreement of the final density
between SOFT and WCD systematically declines with lowered
initial kinetic energy. This is due to

1. The increased total time of the simulation until the density
leaves the proton cluster allowing the simulation to accrue
deviation and

2. A systematic overestimation by the WCD method as to what
fraction of thewave function is bound compared to SOFT, as can
be seen in the blue contour lines on the left hand’s side present
in Fig. 21.

The Wigner particle density method can be systematically
improved by

1. extending the equations of motion for the particles to sample
forces at certain distances away from their position [128] or

2. associating a phase with each particle that correctly accounts
for quantum superposition in the binning process underlying
the contour levels.

However, classical dynamics of the Wigner particle density
already yields good agreement with the SOFT result, so that it can
be concluded that the dominant quantum effect for an electron
scattering off a proton cluster is due to thewidth of thewave packet
rather than interference effects.

Since one of the controversial issues about WPMD is the
spreading of the widths, it is useful to compare the evolution of the
width against SOFT.We also includeWCD to show howmuch of the
spreading is due to the uncertainty in position and momentum.
These comparisons are shown in Fig. 22. Due to the difference in
one-dimensional and three-dimensional widths, s ¼ g=

ffiffiffi
3

p
. For all

three thermal velocities of the initial wave packet shown (1 keV,
250 eV, and 62.5 eV), WPMD actually underestimates the width
while WCD overestimates it. Interference between the scattered
waves is important for confining the wave packet and this effect is
overestimated by WPMD owing to its restriction to an isotropic



Fig. 22. Width evolution given by different methods after passing through the proton
cluster: SOFT (red lines), WPMD (green lines), WCD (blue lines), and no interaction
(black lines). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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shape, and underestimated owing to the absence of phase infor-
mation in WCD. However, as shown by the overlaps given in
Table 3, this effect does not dominate at short timescales. In fact,
close inspection of Fig. 21 shows that WPMD reproduces the large
density portions of the SOFT wave function very well, while
ignoring deformations at the lowest-density contour level. The long
tails of the SOFT density have, however, a large weight in the
calculation of the width s. Also shown in the plots is the evolution
of the free wave packet. The width in this evolution is always
greater than that for the non-zero potential, showing that the
nuclei help to confine the packet. We emphasize that these are very
short evolutions (tens of attoseconds), and so we cannot draw any
conclusion about the large-time fate of the widths (whether they
diverge or eventually decrease).

The widths for each of the Cartesian directions are shown in
Fig. 22 for anisotropic wave packets. Note that the black lines in all
three graphs represent the same time-dependence of the free
electron width and that the time scales of the graphs differ. SOFT
generally predicts the packets to be less confined in the direction of
motion (x coordinate) than in the y and z directions. WCD has
a tendency to the opposite, except in the lowest energy case
(62.5 eV). Fig. 21 reveals, however, that in this case a considerable
fraction of the test particles are bound by the proton first
encountered and remain there (in the exact quantum calculation,
some density is left there too, but to a much smaller extent). Owing
to their large distance from the final position, these bound particles
contribute disproportionately to the x component of the width,
hiding the tendency of the unbound part to have a smaller width in
the x direction, which becomes apparent to the eye in Fig. 21. It
must be concluded that interference effects, which make SOFT
widths smaller in general than WCD widths, act more strongly in
the y and z direction. Common to all graphs of Fig. 22 is that the
width of the free packet is an upper bound, demonstrating that the
net effect of the proton cluster is that of focusing the packet.

Several important properties of a real plasma are ignored in our
quantum pinball test problems, and in the future we plan to
address the following points:

1. The scattering centers are all positively charged. This may bias
the wave packet toward being more confined compared to
what exists in a neutral plasma.

2. A real plasma is usuallymacroscopic and so it is unlikely that an
electron will encounter its boundaries. This can be modeled by
introducing a periodic potential and periodic boundary
conditions on the sides of our box of protons.

3. Degeneracy effects may also be important, especially at lower
energies.
9. Cimarron prospectus

The MD simulation capability provides insight into the behavior
of hot dense plasmas. We are now just beginning to mine the
potential of this tool for investigating a wide range of physical
processes in plasmas. We have presented new results for two of
these, electroneion coupling and charged particle stopping. Future
work will be directed toward evaluating thermal conductivities,
diffusivity and EOS. In addition, plasma mixtures are ripe for
investigation by MD simulations. We will be investigating the
properties of plasmas where a high-Z ion component is strongly
coupled while the protoneproton component is weakly coupled.
This will provide an interesting test of the assumptions underlying
current theoretical treatments of plasma mixtures.

Another area of application for the MD simulation capability
presented here is integrated, or multi-physics, problems. Unfortu-
nately, this class of problems typically is beset by disparate time
scales. Future directions will adapt the traditional MD concept by
making use of the advantages of kinetic theory and molecular
dynamics. Of particular interest is the ability to perform funda-
mental MD simulations of hot dense plasmas undergoing ther-
monuclear burn. Low- and high-Z mixtures again will provide an
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interesting test of the effects of screening on reaction rates and
heating of the plasmas due to charged particle energy deposition.

Moving past the quantum statistical potentials will be a key area
of research that will impact both the component and integral
physics topics discussed above. KTMD may provide the first exact
potentials useful for non-equilibrium plasmas. WPMD continues to
offer interesting possibilities, especially in light of the fact that we
can test the validity of its underlying assumptions through
comparisons with exact, time-dependent quantum mechanics.
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