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ABSTRACT: Applying deep learning concepts from image
detection and graph theory has greatly advanced protein−ligand
binding affinity prediction, a challenge with enormous ramifica-
tions for both drug discovery and protein engineering. We build
upon these advances by designing a novel deep learning
architecture consisting of a 3-dimensional convolutional neural
network utilizing channel-wise attention and two graph convolu-
tional networks utilizing attention-based aggregation of node
features. HAC-Net (Hybrid Attention-Based Convolutional Neural
Network) obtains state-of-the-art results on the PDBbind v.2016
core set, the most widely recognized benchmark in the field. We extensively assess the generalizability of our model using multiple
train-test splits, each of which maximizes differences between either protein structures, protein sequences, or ligand extended-
connectivity fingerprints of complexes in the training and test sets. Furthermore, we perform 10-fold cross-validation with a similarity
cutoff between SMILES strings of ligands in the training and test sets and also evaluate the performance of HAC-Net on lower-
quality data. We envision that this model can be extended to a broad range of supervised learning problems related to structure-
based biomolecular property prediction. All of our software is available as an open-source repository at https://github.com/gregory-
kyro/HAC-Net/, and the HACNet Python package is available through PyPI.

■ INTRODUCTION
Motivation. Protein−ligand interactions are essential for

most biomolecular mechanisms, including important processes
such as gene regulation, immunoreaction, and signal trans-
duction.1 Thoroughly understanding such interactions is
therefore necessary for many targeted applications such as
drug discovery and protein design. Specifically, efficient and
accurate screening for particular binding properties would
enable quick identification of inhibitory molecules that combat
disease and proteins that perform desired functions, and thus a
model that can quickly and accurately predict protein−ligand
interactions would be incredibly powerful for promoting
important molecular-level applications.
The intrinsic complexity of biological data has motivated the

use of machine learning (ML) to create models capable of
predicting intricate biomolecular phenomena, many of which
have proven to be incredibly powerful.2,3 One notable example
is DeepMind’s AlphaFold,4 a revolutionary deep learning
model that can accurately predict a 3-dimensional protein
structure from the amino acid sequence. In the case of
protein−ligand interactions, ML has enabled the discovery of
new drugs and chemicals that would not have seemed intuitive
to investigate based on chemical theory alone.5

Background. There has been continuous progress in
applying ML to predict protein−ligand binding affinity, gaining
significant popularity in 2010 with NNScore,6 an ensemble of
10 multi-layer perceptrons (MLPs), and RF-Score,7 a random

forest-based model. Many groups have subsequently utilized
random forest-based approaches7−11 or related methods such
as gradient-boosted trees12−16 to predict binding affinity, and
most other architectures contain one or multiple MLPs as
subcomponents. Convolutional neural networks (CNNs) have
become increasingly popular for binding affinity prediction due
to their success on image detection tasks.17 CNNs comprise a
class of deep learning architectures where the model learns
weights for multiple convolutional filters that scan over the
input dataset, transforming it into an output feature map.
Many CNNs for binding affinity prediction operate on
dimensionality-reduced data and come in the form of either
1- or 2-dimensional CNNs.18−26 The requirement of lower-
dimensional data is removed by the use of 3-dimensional
CNNs (3D-CNNs), which utilize a 3-dimensional voxel
representation of protein−ligand complexes where each voxel
corresponds to an atomic feature vector. Many groups have
employed some form of 3D-CNN for binding affinity
prediction.27−33 There have also been successful efforts to
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predict binding affinity utilizing graph convolutional networks
(GCNs).34−36 In the case of GCNs, protein−ligand complexes
are represented as graphs, where nodes usually correspond to
atoms and edges are pathways for information transfer between
pairs of nodes. Additionally, recent work by Jones et al. has
shown that the fusion of a 3D-CNN and a GCN can result in
greater performance than either model in isolation.37

The use of attention, a context-based weighting technique
analogous to cognitive attention, has been shown to improve
performance in many deep learning models.38−43 Squeeze-and-
Excitation Networks won the ImageNet Large Scale Visual
Recognition Challenge 2017 for image classification and have
been shown to significantly improve accuracy at a minimal
increase in computational cost in many high-performing
CNNs.39−41 A squeeze-and-excitation (SE) block incorporates
attention by performing channel-wise feature recalibration.
The spatial dimensions for each channel are condensed to a
single number via average pooling and then passed through a
network of two fully connected layers with rectified linear unit
(ReLU) activation44 after the first layer and sigmoid activation
after the second. Finally, the resulting vector elements are used
as multiplicative weights for the corresponding channels of the
input data. Gated graph neural networks (GG-NNs) extend
upon traditional graph neural networks by incorporating
attention to the aggregation of node features.42 A neural
network first computes attention scores used to weight node
features, and then the weighted feature sets are summed. This
technique has performed exceptionally well on a wide range of
problems in graph-based ML.42,43

HAC-Net. We build upon these advances by designing a
novel deep learning architecture for protein−ligand binding
affinity prediction, which averages the outputs of a 3D-CNN
utilizing channel-wise attention and two GCNs utilizing
attention-based aggregation of node features. This combina-

tion achieves an optimal balance between the superior
performance of our GCNs and the complementary learning
style of our 3D-CNN (SI Appendix, Figures S1 and S2).
Furthermore, the inclusion of two architecturally identical
GCNs mitigates noise resulting from the inherently stochastic
nature of the training process. By incorporating multiple forms
of attention with advanced concepts from CNN and GCN
architectural design, we are able to demonstrate state-of-the-art
performance on the PDBbind benchmark for protein−ligand
binding affinity prediction as well as the ability to generalize to
complexes unlike those used for training.

■ MODEL ARCHITECTURE AND THEORY
Overview. HAC-Net (Hybrid Attention-Based Convolu-

tional Neural Network) is a deep learning model composed of
one 3D-CNN and two GCNs. The model takes as the inputs
oriented protein and ligand structural files and outputs a
prediction of the binding affinity between the inputs.
3-Dimensional Convolutional Neural Network. For the

3D-CNN component of HAC-Net, protein and ligand atoms
are first embedded into a 3-dimensional spatial grid, each voxel
of which corresponds to either a vector of atomic feature
elements or 0 s, depending on the presence or absence of an
atom center, respectively. The input volume dimensions are 48
× 48 × 48 × 19, where 48 corresponds to the length of each
spatial dimension of the voxel grid and 19 corresponds to the
number of channels (i.e., the length of the feature vector). This
information is presented to the 3D-CNN as a 4-dimensional
array. We utilize the atomic feature set first presented by
Pafnucy:30

• 9 bits (0 or 1) encoding atom types: B, C, N, O, P, S, Se,
halogen, and metal

• 1 integer (1, 2, or 3) for atom hybridization

Figure 1. 3D-CNN architecture used in HAC-Net. Gray arrows and text refer to data and their transformations. Black arrows and text refer to
components of the model architecture. We begin with protein and ligand structural files, voxelize the heavy atoms into a grid of size 48 × 48 × 48 ×
19, and then perform a series of convolutions to generate a binding affinity prediction in the form of pKD. The convolutional process is shown in
(A). The function of the squeeze-and-excitation (SE) blocks that we incorporate to employ channel-wise attention is visually depicted in (B).
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• 1 integer counting the number of bonds with heavy
atoms

• 1 integer counting the number of bonds with
heteroatoms

• 5 bits (0 or 1) encoding hydrophobic, aromatic,
acceptor, donor, and ring

• 1 float for partial charge
• 1 integer (−1 or 1) denoting either protein or ligand,
respectively

While the 3D-CNN makes use of multiple architectural
elements (Figure 1), the most fundamental building block is
the convolutional layer.45 Intuitively, this component creates a
linear combination of all channel values in the spatial
neighborhood of a given voxel and then propagates the
resulting scalar to a corresponding spatial index in the output
array (eq 1). The coefficients for this linear combination are
learned throughout the training and constitute the weights of a
filter, which is applied uniformly across each of the input
voxels. One filter will therefore generate a 3-dimensional
output array. By applying multiple independent filters to a
given input, the length of the channel dimension of the output
can be modulated, where each filter produces a channel of the
output.
Each filter is applied over the input signal according to the

following equation:

[ ] = + [ ]·

[ + + + ]

= = = =
x y z h i j f
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where kx, ky, and kz are the spatial dimensions of the filter, F is
the total number of input channels, and

= · +x x k( stride) padding /2x (2)

= · +y y k( stride) padding /2y (3)

= · +z z k( stride) padding /2z (4)

We are able to modulate the size of the output feature map
by manipulating padding and stride parameters applied to the
convolution (according to eqs 2−4), where padding refers to
inserting zeroes around the initial input array and stride refers
to the step size of the filter between each convolution.
The residual layer,46 which incorporates skip connections

between convolutional layers, is an important constituent of
the 3D-CNN component of HAC-Net. The outputs of two
convolutional layers are summed, and then a subsequent
convolutional layer operates on the sum. Architectures
containing residual layers are more easily optimized than
those relying primarily on standard convolutions, allowing for
the training of significantly deeper neural networks, which have
obtained greatly improved results on standard image-
recognition benchmarks.47−49

Another key component of the 3D-CNN architecture is the
SE block (Figure 1B), which begins with a standard
convolution of the type described above (eq 1). The values
of each channel are then averaged across all spatial dimensions,
yielding a 1-dimensional vector with each index corresponding
to a channel:
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where u and z correspond to the 4-dimensional output of the
convolution and the 1-dimensional row vector containing the
average value of each channel, respectively. Next, z is passed
through a network of fully connected layers with ReLU
activation after the first layer and sigmoid activation after the
second, producing a transformed vector of the same length as
the original:

=s zW Wsigmoid(ReLU( ) )1 2 (6)

where W1 ( ×F F
16
) and W2 ( × FF

16
) are the weight matrices

for the two fully connected layers and F is the number of
channels. Finally, each element of s is used as a multiplicative
factor for the corresponding channel of u:

[ ] = [ ]i j k c s i j k cx u, , , , , ,c (7)

In this way, the model learns to optimally weight the various
features based on a transformation of their collective average
values, which can be regarded as a self-attention mechanism on
the channels.39

The complete 3D-CNN training procedure consists of both
a feature extraction protocol (Figure 1A) and subsequent
optimization of a fully connected network. The voxelized
protein and ligand structural data of size 48 × 48 × 48 × 19 are
first passed to an SE block with filter size 9 × 9 × 9 × 19@64,
where 64 denotes the number of identical filters, correspond-
ing to the number of channels in the output feature map. It is
important to note that all convolutional layers are followed by
ReLU activation and batch normalization50 with a momentum
of 0.1 for estimating the moving mean and moving variance.
The transformed data, now of size 24 × 24 × 24 × 64, are then
passed to two residual layers, each of size 7 × 7 × 7 × 64@64.
The data are then fed into another SE block of size 7 × 7 × 7 ×
64@128, producing an output of size 8 × 8 × 8 × 128. We
then apply a max pooling layer, which divides the spatial grid
into subgrids of size 2 × 2 × 2 for every channel and
propagates the maximal value of each one, reducing the size of
the data to 4 × 4 × 4 × 128. The data are then passed to a
third SE block of size 5 × 5 × 5 × 128@256, downsizing the
data to 2 × 2 × 2 × 256. Lastly, the data are flattened into a
vector of length 2048 and passed to a fully connected layer of
size 2048 × 100 with ReLU activation and batch normalization
and then to a final fully connected layer of size 100 × 1,
resulting in a binding affinity output in the form of pKD
(Figure 1A).
After the initial 3D-CNN training is complete, we extract the

flattened features of size 2048 and use them to train a pair of
fully connected layers identical to those in the 3D-CNN
architecture other than the single exception of 0.3 momentum
used for batch normalization. This protocol notably improves
performance, likely due to the fact that the fully connected
layers account for only 1.9% of the total parameters in the 3D-
CNN (as compared with 59.5% in the GCNs), causing the
initial learning to be driven primarily by the parameters for the
convolutional layers. Therefore, independently training fully
connected layers on the extracted features enables them to
adapt more precisely to the outputs of the convolutional layers.
Graph Convolutional Networks. The GCN components

of HAC-Net interact with the input data in a fundamentally
different manner than the 3D-CNN. Rather than using a voxel
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representation of atoms, the protein−ligand complexes are
represented as graphs, where nodes correspond to heavy atoms
and edges are pathways for information transfer between the
nodes. In the case of HAC-Net, edges exist between atoms
whose centers are within 3.5 Å. For the GCNs, we utilize the
Pafnucy feature set with the addition of van der Waals radius
(float), for a total of 20 atomic features.
GCNs are a broad class of networks that iteratively update

node features according to three general steps: message
creation, aggregation, and feature updating.51,52 In HAC-Net,
message creation involves a dimensionality-preserving linear
transformation applied to each set of node features. For each
node, the resulting messages of its neighbors are weighted by
the distance from the central node and then aggregated
according to a specified algorithm (eq 8). We apply an
attention mechanism similar to that of GG-NNs,42 with the
important distinctions that we apply node-wise (rather than
channel-wise) attentional weights and we use it in the message-
passing aggregation step rather than for generating graph-level
features. In our case, the function operates according to the
following equation:53,54

=x X Xsoftmax( ) ( )out
T (8)

where X denotes the matrix whose rows are the messages
created from the central node and its neighbors. Γ and Ω are
independent neural networks, and ΓX indicates application of
Γ to each row of X followed by vertical concatenation of the
outputs. In HAC-Net, Γ is a set of three fully connected layers
(20 × 10, 10 × 5, and 5 × 1) with Softsign activation55 after
the first two, and Ω is the identity. This operation allows us to
weight each node in the message-passing mechanism by a
corresponding attentional score.

After message creation and aggregation, the node features
are updated by combining the original node features (pre-
message creation) with the node features after aggregation. We
utilize a simplified gated recurrent unit (GRU)56 for updating
node features, which performs the following operations:57,58

= + + +r W x b W h breset gate: sigmoid( )xr xr hr hr0 (9)

= + + +z W x b W h bupdate gate: sigmoid( )xz xz hz hz0
(10)

= + + +n W x b r W h bnew gate: tanh( ( ))xn xn hn hn0
(11)

= +y z n z houtput gate: (1 ) 0 (12)

where h0 and x are the pre- and post-message-passing data,
respectively. The matrices Wij and vectors bij denote learnable
weights and biases, respectively. ⊙ indicates element-wise
multiplication, and y denotes the output, which is established
as the new vector of node features for the next round of
message passing.
Our model performs four iterations of message passing, and

then the outputs from the fourth GRU iteration are processed
using a method presented by Jones et al.,37 which we refer to as
asymmetric attentional aggregation. The operation is per-
formed according to the following equation:

=y Y X Xsoftmax( ( )) ( )
v V

v vout v
(13)

where Yv∥Xv denotes horizontal concatenation of the post- and
pre-message-passing data, respectively, for node v in the set of
all nodes, V. Γ is a set of two fully connected layers (40 × 20
and 20 × 128), and Ω is a single linear transformation (20 ×

Figure 2. GCN architecture used in HAC-Net. Gray arrows and text refer to data and their transformations. Black arrows and text refer to
components of the model architecture. We begin with protein and ligand structural files, represent the heavy atoms as a graph, and then perform
four iterations of message passing, after which we employ asymmetric attentional aggregation to generate a graph-level feature vector. Finally, the
data are passed through a series of fully connected layers to yield a prediction of the protein−ligand binding affinity in the form of pKD. The full
GCN protocol is shown in (A). The function of attentional aggregation that we incorporate to employ node-level attention is visually depicted in
(B).
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Figure 3. Characteristics of the PDBbind v.2020 protein−ligand database. (A) Distribution of binding affinity labels for the refined set. (B)
Distribution of binding affinity labels for the general set (excluding the refined set). (C) Distribution of crystal structure resolution (red) and
nuclear magnetic resonance (NMR) data points (green) for the general set (entire PDBbind v.2020 protein−ligand database). (D) Representative
protein ligand complex (PDB ID: 3ACX), protein is shown as magenta, ligand is shown as light green.

Table 1. Comparison to High-Performing Models for Predicting Protein-Ligand Binding Affinity on Crystal Structures of the
PDBbind v.2016 Core Seta,b,c,d,e,f

model RMSE MAE r2 Pearson r Spearman ρ
HAC-Net 1.205 0.971 0.692 0.846 0.843
TopBP*62 1.210 N/R N/R 0.861 N/R
AEScore63 1.22 N/R N/R 0.83 0.64
AK-score*31 1.22 N/R N/R 0.812 0.670
DeepAtom29 1.232 0.904 N/R 0.831 N/R
HAC-Net‡ 1.259 1.020 0.664 0.819 0.814
PerSpect ML*14 1.265 N/R N/R 0.840 N/R
KDEEP*28 1.27 N/R N/R 0.82 0.82
AGL-Score*13 1.272 N/R N/R 0.833 N/R
OnionNet20 1.278 0.984 N/R 0.816 N/R
PSH-GBT*16 1.280 N/R N/R 0.835 N/R
FAST37 1.308 1.019 0.638 0.810 0.807
BAPA23 1.308 1.021 N/R 0.819 0.819
SIGN35 1.316 1.027 N/R 0.797 N/R
TopologyNet*18 1.34 N/R N/R 0.81 N/R
DockingApp RF*11 1.35 1.09 N/R 0.83 N/R
DeepDTAF24 1.355 1.073 N/R 0.789 N/R
DLSSAffinity33 1.40 N/R N/R 0.79 N/R
Pafnucy30 1.42 1.13 N/R 0.78 N/R
Pair64 1.44 N/R N/R 0.75 N/R
GraphBAR36 1.542 1.241 N/R 0.726 N/R
PointTransformer12 1.58 1.29 N/R 0.753 0.751
MGNN*65 N/R N/R N/R 0.85 N/R
SE-OnionNet22 N/R N/R N/R 0.83 N/R
PLEC-NN*10 N/R N/R N/R 0.817 N/R

aRoot-mean-square error (RMSE) in units of pKD, mean absolute error (MAE) in units of pKD, r2, Pearson r, and Spearman ρ are shown. bModels
are ranked by RMSE in increasing order. cThe best value for each metric is shown in bold. dThe asterisk (*) indicates that the model did not use a
validation set, and therefore is expected to present overly optimistic results. eHAC-Net is trained on the PDBbind v.2020 general set; HAC-Net‡ is
trained on the PDBbind v.2016 refined set. fModels trained on PDBbind v.2016 refined set: TopBP, AEScore, AK-score, PerSpectML, KDEEP, AGL-
Score, PSH-GBT, BAPA, SIGN, TopologyNet, GraphBAR, PointTransformer, MGNN; Models trained on PDBbind v.2016 general set:
DeepAtom, OnionNet, FAST, DeepDTAF, DLSSAffinity, Pafnucy, PLEC-NN; Models trained on PDBbind v.2018 refined set: Pair; Models
trained on PDBbind v.2018 general set: DockingApp RF, SE-OnionNet.
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128), both using Softsign activation. The output of asymmetric
attentional aggregation (yout) is then passed through a final set
of three fully connected layers (128 × 85, 85 × 64, and 64 ×
1), the first two of which are followed by ReLU activation, to
generate a binding affinity prediction. The GCN process is
visually depicted in Figure 2.

■ DATA
The PDBbind database59 is an online repository of
experimentally determined binding affinity data for biomo-
lecular complexes deposited in the Protein Data Bank. In this
work, we make use of the protein−ligand complexes contained
in the PDBbind v.2020 database (19,443 total complexes). For
each protein−ligand complex, the protein and protein pocket
are provided in PDB format, where the protein pocket is
defined as all of the amino acid residues within 10 Å of the
ligand. Ligand coordinates are provided in both MOL2 and
SDF formats, and the associated binding affinity is given as
either pKD or pKI. In this work, we utilize only the MOL2
ligand files. In most cases, the 3-dimensional structures of
protein−ligand complexes are determined by crystallography,
although there are also relatively few cases where structures are
determined with nuclear magnetic resonance (NMR) spec-
troscopy (Figure 3C). The PDBbind v.2020 refined set
contains 5316 data points with high-quality labels and
structures, as identified by the PDBbind team according to a
rigorous set of requirements.60

Moreover, we utilize the PDBbind v.2016 core set as a test
set, which is a collection of 290 complexes chosen from a wide
distribution of structural clusters and binding affinities. This
benchmark, inspired by the 2016 Comparative Assessment of
Scoring Functions (CASF-2016) test set,61 is the most widely
reported benchmark for protein−ligand binding affinity
prediction.

■ PERFORMANCE ON THE PDBBIND V.2016 CORE
SET CRYSTAL STRUCTURES

Comparison to Existing Models. We test and report
results on the PDBbind v.2016 core set in Table 1 to directly
compare HAC-Net to the highest-performing models in the
literature (to the best of our knowledge). It is important to
note that for all HAC-Net results presented in this work, there
is no overlap between training, validation, and test sets, and
model hyperparameters were optimized exclusively on training
and validation data. HAC-Net achieves the lowest root-mean-
square error (RMSE) among models reported in the literature
(Figure 4) as well as the highest Spearman ρ and r2 values.
Furthermore, our model attains the second-highest Pearson r
and the second-lowest mean absolute error (MAE) in the field.
It is important to note that for the results presented in Table

1, the highest performing version of HAC-Net is trained on all
complexes in the PDBbind v.2020 general set that do not
appear in either the v.2016 core set or our randomly generated
validation set. The other models presented have been trained
on a variety of different training sets, including the PDBbind
v.2016 refined set, the v.2016 general set, the v.2018 refined
set, and the v.2018 general set. Given that the performance of
deep learning models is often improved when trained on more
data, it is important to note that models trained with less data
may indeed perform better on the PDBbind v.2016 core set
benchmark if they were trained on more data. However, it is
also the case that for some models, training on only the refined

set actually improves performance on the core set bench-
mark,37 given that the protein−ligand complex data in the
refined set are of higher quality than those in the general set
and the core set complexes are selected from the refined set.60

This caveat, along with many others that we elucidate in later
sections, necessitates training and evaluating on multiple train-
test splits, as we demonstrate rigorously in later sections.
Additionally, we utilize the procedures from CASF-201661 to

assess the ability of HAC-Net to accurately rank, dock, and
screen for ideal protein−ligand pairs. We report our results,
along with the complete procedures followed, in the
Supporting Information (SI Appendix, Table S3). Our model
does not achieve comparable performance to commonly used
docking programs such as AutoDock Vina,66 which is
unsurprising given that HAC-Net is not explicitly optimized
for such tasks. However, many docking and screening
approaches suffer from lower Pearson r and higher RMSE
values compared to high-performing ML-based approaches
(Table 1).61 Several groups have integrated these traditional
docking methods with modern ML approaches,32,63,67 and it
has been shown that such combinations can largely retain both
the precision of the ML-based component and the docking/
screening power of the classical component, strongly
motivating the parallel optimization of both components.62

Improved Performance Due to Attention-Based
Implementations. To demonstrate the importance of our
model’s attention-based components, we independently train
and test an analogous model without SE blocks in the 3D-
CNN and node-wise attentional aggregation in the GCNs,
which we refer to as vanilla HAC-Net. We use identical
training and validation sets as those used for HAC-Net to
provide an accurate comparison of performance. Results on the
PDBbind v.2016 core set are shown in Figure 5A,B, and it is
clear that the inclusion of attention-based components
significantly improves the performance of our model.

■ DEMONSTRATION OF GENERALIZABILITY
Concerns with Deep Learning Models for Predicting

Protein−Ligand Binding Affinity. There is significant
concern in the literature regarding the inability of many deep
learning models for binding affinity prediction to successfully
generalize to data that are dissimilar to what they have been
trained on.68 Moreover, the PDBbind database, which is the
most commonly used database for protein−ligand binding
affinity prediction, contains an appreciable bias due to the
preferential tendency of experimentalists to measure certain
classes of complexes that have been deemed worthy of

Figure 4. Comparison of root-mean-square error (RMSE) provided
in units of pKD on the PDBbind v.2016 core set benchmark across all
high-performing models in the literature (to the best of our
knowledge) for protein−ligand binding affinity prediction. HAC-
Net achieves the lowest RMSE with a value of 1.205 pKD.
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investigation. Although this pattern in the data creates
difficulty in training a model which can comprehensively
sample chemical space, the data can be used to train models
aimed at predicting binding affinities for the most interesting
complexes (i.e., those with suspected biological and/or
pharmaceutical significance, etc.).
Volkov et al. have suggested that most models for predicting

binding affinity learn primarily via memorization rather than by
modeling any physically meaningful phenomena.68 To
demonstrate this effect with a standard graph neural network,
they trained and tested using only the proteins or only the
ligands and achieved results comparable to those obtained
when the model was trained with the protein−ligand
complexes. Moreover, this effect has been previously observed
by others.69 We therefore train HAC-Net with protein-only
and ligand-only data and test performance on the PDBbind
v.2016 core set to elucidate the extent to which this effect is
present in our model. We find that performance on the core set
is significantly worse in the cases of protein-only and ligand-
only data compared to using complete protein−ligand
complexes (Table 1), although there is clearly a degree of
memorization involved as our model achieves nontrivial results
(SI Appendix, Figure S4). For training and testing on protein-
only data, RMSE increases drastically from 1.205 to 1.742 and
Pearson r decreases from 0.846 to 0.638. In the case of ligand-
only data, RMSE increases to 1.605 and Pearson r decreases to
0.741.
Multiple groups have suggested that the high performance of

many deep learning models for predicting protein−ligand
binding affinity is predicated on the similarity of proteins and
ligands in the training and test sets used.68−70 For example, Li
et al. have shown that imposing template modeling (TM)-

score and sequence identity cutoffs between proteins in the
training and test sets can lead to significant reductions in
performance of deep learning models for binding affinity
prediction.70 Therefore, it is incumbent on new work in this
field to demonstrate generalizability to complexes unlike those
used for training, such that there is legitimate applicability to
studying new systems. In this work, we present a rigorous
protocol for doing exactly this. We illustrate the ability of our
model to generalize across protein structure by utilizing
agglomerative hierarchical clustering71 to group proteins by
pairwise TM-scores70 and create training and test sets that
maximize differences in protein structures. We perform an
analogous evaluation for protein sequence, clustering proteins
based on pairwise sequence identity of Needleman−Wunsch
(NW)-aligned70 sequences. In order to account for ligand
similarity, we utilize the Butina clustering method72 based on
extended-connectivity fingerprints73 with Tanimoto coefficient
(Tc) cutoffs

74 to maximize the differences between ligands in
the training and test sets. Furthermore, we perform 10-fold
cross-validation with a Tc cutoff between ligand SMILES

75

strings in the training and test sets and compare to a control.
Lastly, to demonstrate that our model is not specialized for
high-quality data like those in the PDBbind v.2016 core set, we
evaluate the performance of HAC-Net on lower-quality data
from the PDBbind v.2020 general set.
Generalizability across Proteins Based on Structure

and Sequence Similarities. To demonstrate the general-
izability of our model to dissimilar proteins, we utilize pairwise
structural and sequence homology of the proteins as distance
metrics for hierarchical agglomerative clustering. Training,
validation, and test sets are then generated from different

Figure 5. HAC-Net performance on the PDBbind v.2016 core set benchmark and basic architectural scheme. (A) Correlation scatter plot depicting
HAC-Net predictions of experimental pKD values for core set complexes. (B) Correlation scatter plot depicting vanilla HAC-Net predictions of
experimental pKD values for core set complexes. Root-mean-square error (RMSE) provided in units of pKD, mean absolute error (MAE) in units of
pKD, r2, Pearson r, and Spearman ρ are shown for panels (A) and (B). (C) Basic scheme of HAC-Net architecture. Blue blocks denote components
of the GCNs, red blocks denote components of the 3D-CNN. In the GCNs, HAC-Net utilizes attentional aggregation (red), while vanilla HAC-
Net utilizes simple-sum aggregation (gray). In the 3D-CNN, HAC-Net utilizes squeeze-and-excitation (SE) blocks (red), while vanilla HAC-Net
utilizes ordinary convolutional blocks (gray).
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clusters of the data, ensuring maximal dissimilarity between the
proteins of different sets.
Structural similarity between two proteins is defined by the

TM-score70 according to the following equation:
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where Lt is the length of the test protein, La is the number of
aligned residue pairs identified by TM-align,76 di is the distance
between the ith pair of α-carbon atoms of the two structures,
and =d L L( ) 1.24 15 1.8t t0 3 (a scale that normalizes
distances). TM-score is therefore in the range [0,1], where
higher values indicate greater similarity between protein
structures. In the case of multichain proteins, these
comparisons are carried out pairwise between all interprotein
chain combinations and the lowest similarity value is recorded.
Protein sequence similarity is determined by aligning the

two sequences using the NW algorithm70 and then computing
the sequence identity (i.e., the number of aligned identical
residues divided by the length of the longer protein).
In both cases, agglomerative hierarchical clustering is used to

create dissimilar groups of protein−ligand complexes based on
either protein structure or protein sequence similarity. This
unsupervised learning method is initiated with a set of pairwise
distances between data points (quantified by either TM-score
or sequence identity) and iteratively merges the two most
similar clusters.71 When two existing clusters are merged, the
new intercluster distances are calculated according to Ward’s
minimum variance objective function:
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where the clusters s and t have been merged to create a new
cluster u, and the new distance between u and some cluster v
needs to be determined. |c| defines the number of data points
in cluster c, and T = |s| + |t| + |v|.
To promote standardization in the field, we utilize train-test

splits provided by Feinberg et al.34 that were generated with
complexes in the PDBbind v.2007 refined set according to the
method detailed above, excluding a few complexes that were
subsequently removed from the PDBbind database due to
quality-control concerns. For structure-based clustering, the
training, validation, and test sets contain 919, 256, and 117
complexes, respectively. For sequence-based clustering, the
training, validation, and test sets contain 971, 220, and 101
complexes, respectively. As a control, we test on the PDBbind
v.2007 core set (209 complexes), validate on 200 complexes
from the PDBbind v.2007 refined set, and train on the
remaining 883 complexes from the refined set. The results are
presented in Table 2, and it is clear that the protein clustering
techniques do not significantly impair the performance of
HAC-Net, supporting its ability to generalize to unseen data
with respect to protein structure and sequence (SI Appendix,
Figure S5).
Generalizability across Ligands Based on Extended-

Connectivity Fingerprint Similarity. In order to assess the
generalizability of our model to dissimilar ligands, we cluster

ligand extended-connectivity fingerprints up to four bonds
(ECFP4s) according to the Butina unsupervised clustering
algorithm69,72 with a Tc cutoff of 0.8. In this case, any two
ligands whose pairwise Tc is greater than or equal to 0.8 are
considered to be neighbors. The ligands are then ranked by the
total number of neighbors in descending order, and the first
ligand is clustered with all of its neighbors. All ligands within
this cluster are then deleted from the remaining list and cannot
serve as either cluster centroids or members of another cluster.
A new cluster is then created analogously from the highest-
ranked ligand remaining in the list, and the process is iterated
until no ligands remain. The smallest of the resulting clusters
are combined to make a test set (1182 complexes), the next
smallest clusters are assembled into the validation set (1181
complexes), and all remaining complexes are used as the
training data (9448 complexes). This protocol ensures that the
ligands in the test set are internally diverse and maximally
dissimilar to those in the training set. To promote stand-
ardization in the field, we utilize the clusters obtained from the
PDBbind v.2015 database by Yang et al.69 using this protocol
and remove the complexes that were discarded by PDBbind
due to quality-control concerns.
This protocol yields the following results: RMSE of 1.240,

MAE of 0.978, r2 of 0.355, Pearson r of 0.597, and Spearman ρ
of 0.527 (SI Appendix, Figure S6). It is clear that while the
correlation values are considerably reduced by this general-
ization method, the error values are not significantly impacted.
This discrepancy may be explained by the model’s use of mean
squared error (MSE) as the loss function, which explicitly
prioritizes the minimization of error in the training process
rather than maximizing correlation.
We see that the ligand-based clustering method used in this

work for creating training, validation, and test sets evidently
hinders the model’s performance more significantly than the
protein-based methods (Table 2). This occurrence may be
partially explained by the model’s ability to more effectively
learn trends among the ligands than among the proteins, as
supported by the greater performance of the model when
trained and tested on only ligands as opposed to when only the
proteins were used. The relatively low increases in RMSE and
MAE metrics show unambiguously that the model is successful
to a significant extent, suggesting that the high performance of
HAC-Net cannot be attributed to high ligand similarity
between training, validation, and test sets and supporting its
ability to generalize to unseen data with respect to ligand
ECFP4s.
10-Fold Cross-Validation Based on Ligand SMILES

Dissimilarity. To further demonstrate the generalizability of
HAC-Net, we perform 10-fold cross-validation. Specifically, we
generate 10 non-overlapping 500-complex test sets from the

Table 2. Performance on the PDBbind v.2007 Core Set
(Control), Test Set Based on Protein Structure Similarity
(Structure-Based), and Test Set Based on Protein Sequence
Similarity (Sequence-Based)a

test set RMSE MAE r2 Pearson r Spearman ρ
control 1.447 1.153 0.598 0.807 0.824
structure-based 1.472 1.190 0.608 0.799 0.800
sequence-based 1.301 0.980 0.583 0.796 0.775
aRoot-mean-square error (RMSE) in units of pKD, mean absolute
error (MAE) in units of pKD, r2, Pearson r, and Spearman ρ are
shown.
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PDBbind v.2020 refined set, and for the purpose of generating
corresponding training and validation sets, we discard any
remaining complexes with ligands that do not satisfy certain
dissimilarity requirements relative to each test set. As a metric
for ligand similarity, we compute the Tc between the SMILES
strings of each ligand pair in the PDBbind v.2020 refined set,
asserting that no ligands in either the training or validation sets
have a Tc greater than or equal to 0.7 with any ligand in the
test set. Additionally, we ensure that no ligands in either the
training or validation sets have an average Tc greater than 0.25
with all of the ligands in the test set. All validation sets contain
200 complexes, while the training sets have sizes in the range of
2804 to 2945 complexes, with the size variability due to the
different ligand identities in the various test sets. An additional
evaluation is performed on the PDBbind v.2016 core set to
serve as a control, using training and validation sets containing
3100 and 200 complexes, respectively, derived from the
PDBbind v.2020 refined set. As can be seen in Table 3, the
cross-validation control results are inferior to those presented
in Table 1, likely due to the six-fold reduction in the size of the
training set.

We find that the error-based metrics (RMSE and MAE) are
minimally affected on the cross-validation splits compared to
the control, despite nontrivial reductions in correlation-based
statistics (Pearson r and Spearman ρ). These results largely
reinforce the conclusions derived from evaluation on the
ECFP4-based test set, namely, that minimizing ligand
similarity between training and test sets reduces performance
but that a significant amount of learning takes place (Table 3).
Additionally, the extraordinarily low standard deviations
(average coefficient of variation between all five metrics is
0.026) clearly demonstrate the reproducibility of HAC-Net
trainings, suggesting that a retrained version of HAC-Net can
reliably be expected to meet the same standard of performance.

Performance on Lower-Quality Data Points. The
PDBbind v.2016 core set compiles crystal structures of high
quality and with high-confidence binding affinity labels.59,60

However, to determine how the model performs when given
lower-quality data for testing, we evaluate HAC-Net with an
additional train-test split containing complexes selected from
the PDBbind v.2020 general set. The training set contains
18,108 complexes, the validation set contains 300 complexes,
and the test set contains 1000 complexes. In particular, 73.67%
of the validation set complexes and 75.30% of the test set
complexes are not in the refined set, ensuring that the quality
of crystal structures used in these sets more precisely reflects
the composition of the PDBbind database as a whole (72.62%
of total complexes are not in the refined set). The results of
this trial are shown in Figure 6, demonstrating the ability of
HAC-Net to make accurate predictions for data points of lower
quality. Similarly to the performance on both the ligand
ECFP4-based test set and the 10-fold cross-validation test sets,
the significant drop in correlation metrics but trivial increase in
error metrics may be attributed to the use of MSE as the
model’s loss function. To analyze the results in more detail, we
also calculate absolute error for each data point in the test set
and plot these values as a function of crystal structure
resolution (Figure 6B).
The negligible correlation in Figure 6B suggests that there is

little or no relationship between structural resolution and the
performance of HAC-Net, indicating that its usefulness extends
beyond the 2.5 Å resolution required for admission into the
refined set. The drop in performance observed when testing on
complexes that are excluded from the refined set is thus likely
attributable to the other entry requirements for the refined set,
which ensure that only the highest-quality structures and
binding affinities are included. It is natural that the model
would struggle to perform well on lower-quality data, and
researchers making use of HAC-Net should consult the criteria
for admission into the refined set (other than structural
resolution) for details regarding these potential deficiencies.60

Importantly, these results indicate that HAC-Net is not
specialized for high-quality structures like those in the
PDBbind v.2016 core set benchmark, and is instead general-
izable to crystal structures across a wide range of resolutions
and to NMR structures without significantly compromising
performance.

■ SUMMARY
We have developed HAC-Net, a deep learning model for
highly accurate protein−ligand binding affinity prediction. By
incorporating multiple forms of attention into our model’s
architecture, specifically SE blocks into the 3D-CNN and
attentional aggregation of node features into the GCNs, we
obtain a significant increase in performance. HAC-Net obtains
state-of-the-art results on the PDBbind v.2016 core set, the
most widely recognized benchmark in the field. We evaluate
the generalizability of our model using multiple train-test splits,
each of which maximizes differences between either protein
structures, protein sequences, or ligand extended-connectivity
fingerprints of complexes in training and test sets. Additionally,
we perform 10-fold cross-validation with a similarity cutoff
between SMILES strings of ligands in the test sets and the
corresponding training and validation sets and also evaluate the
performance of HAC-Net on lower-quality data. We
demonstrate that our model can successfully generalize to

Table 3. Results of 10-Fold Cross-Validation with
Complexes from the PDBbind v.2020 Refined Set, Asserting
That No Ligands in Either the Training or Validation Sets
Have a Tc Greater than or Equal to 0.7 with Any Ligand in
the Test Set and That No Ligands in Either the Training or
Validation Sets Have an Average Tc Greater than 0.25 with
All of the Ligands in the Test Seta

test set RMSE MAE r2 Pearson r Spearman ρ
control 1.432 1.132 0.567 0.761 0.766
mean
(σ)

1.473
(0.028)

1.170
(0.024)

0.430
(0.022)

0.665
(0.013)

0.670
(0.013)

set 1 1.462 1.152 0.443 0.672 0.678
set 2 1.450 1.176 0.448 0.676 0.672
set 3 1.451 1.159 0.447 0.669 0.675
set 4 1.497 1.163 0.414 0.659 0.661
set 5 1.481 1.182 0.424 0.654 0.656
set 6 1.454 1.158 0.444 0.678 0.677
set 7 1.501 1.187 0.409 0.650 0.658
set 8 1.483 1.182 0.424 0.661 0.680
set 9 1.527 1.219 0.383 0.639 0.649
set 10 1.426 1.123 0.465 0.686 0.697
aRoot-mean-square error (RMSE) provided in units of pKD, mean
absolute error (MAE) in units of pKD, r2, Pearson r, and Spearman ρ
are shown. The average metrics across the 10 cross-validation trials
are presented as mean (σ), where σ is the standard deviation.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c00251
J. Chem. Inf. Model. 2023, 63, 1947−1960

1955

pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c00251?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


protein−ligand complexes dissimilar to those in the training set
and is not specialized for only high-quality structures.

■ METHODS
Data Preprocessing. All of the data that we supply to the

model were initially downloaded from the PDBbind website.59

Specifically, we downloaded the PDBbind v.2020 general-
except-refined-set and refined-set, both of which contain
aligned protein (PDB format), protein pocket (PDB format),
and ligand (MOL2 and SDF format) structural files as well as
the corresponding binding affinity data (as either pKD or pKI).
We used the Chimera 1.16 software package77 to add
hydrogens to each protein pocket PDB file and then convert
each to MOL2 format. Next, we reformatted any atoms in
TIP3P format to avoid compatibility issues with the Pybel
software package,78 which we later used for featurization. Four
complexes (PDB IDs: 1A09, 4GII, 4BPS, 4MDQ) could not be
interpreted through this process and were therefore discarded.
Finally, we used Atomic Charge Calculator II (ACC2)79 to
calculate and add partial charges to each protein pocket MOL2
file. ACC2 determines which method and parameters are
suitable for each input structure. The atomic charges for all but
five protein pockets were calculated using the Extended Charge
Equilibration Method (EQeq).80 The charges for the protein
pockets of PDB IDs 4JDA, 5X5G, 6B8Y, and 4Y16 were
calculated using the Charge Equilibration (QEq) method with
the parameters presented by Rappe ́ and Goddard.81 The

atomic charges for the protein pocket of PDB ID 5U2F were
calculated using the Electronegativity Equalization Method82

with Racěk 2016 (ccd2016_npa) parameters.83 It is important
to note that ACC2 will rarely supply charge estimates which
are unreasonable. To account for this, we removed the
complexes containing at least one atom with a partial charge
assignment of magnitude greater than 2.0 (34 of 19,438
complexes; 0.17%).
Featurization.We processed all of the MOL2 files with the

Featurizer module from the tfbio software package84 to
compute features for all heavy atoms. This package utilizes
Pybel78 to collect each heavy atom’s atomic number (one-hot
encoding), number of bonds with heavy atoms (integer),
number of bonds with heteroatoms (integer), hybridization
state (integer), and partial charge (float). Next, each
molecule’s SMARTS85 string was used to determine whether
each atom is hydrophobic, aromatic, a hydrogen bond
acceptor, a hydrogen bond donor, and/or a ring (one-hot
encoding for each). Additionally, we assigned each atom as
present in either the protein or the ligand (−1 or 1,
respectively). The features of each atom were then appended
to its 3-dimensional coordinates, and the resulting vectors were
concatenated vertically to create matrices representing each
complex. All of these arrays were then assembled into a file in
HDF format and tagged with the corresponding PDB ID and
binding affinity label. For use in the GCN components of

Figure 6. HAC-Net performance on lower-quality test set obtained from the PDBbind v.2020 general set. (A) Correlation scatter plot depicting
HAC-Net predictions of experimental pKD values for structures in the lower quality test set. (B) Correlation scatter plot of absolute error for each
data point in the test set as a function of crystal structure resolution. Pearson r and Spearman ρ are shown. (C) Histogram showing the distribution
of protein−ligand complexes in the lower-quality test set as a function of crystal structure resolution (green) as well as the number of structures
determined with NMR (magenta). The mean and standard deviation (σ) for crystal structure resolution are shown.
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HAC-Net, an ordered list of van der Waals radii (float) was
appended to the HDF file.
Creation of Training, Validation, and Test Splits. After

the initial HDF file was generated, the contained data were
then partitioned into the training, validation, and test sets used
throughout this work. All sets that were selected from previous
work (PDBbind v.2016 core set,61 splits obtained through
protein structure- and sequence-based clustering,34 as well as
splits obtained through ECFP4-based clustering69) were
constructed from the data in our initial HDF file with no
further processing. In all other cases, the validation and test
sets were held to the condition that they contain equal
numbers of complexes from each percentile of the relevant
binding affinity distribution to ensure a fair assessment of the
model’s performance across the full range of affinities. Other
than this requirement and the condition that there is no
overlap between any of the sets within a given protocol, the
validation set used for testing on the PDBbind v.2016 core set
as well as both the validation and test sets for the evaluation on
lower-quality data were randomly generated from the PDBbind
v.2020 general set, and the remaining complexes were used for
training. For our 10-fold cross-validation, the sets were held to
the above requirements in addition to membership in the
PDBbind v.2020 refined set. Additionally, the 10 test sets had
no overlapping complexes. For each of the cross-validation
splits, we utilized the Pybel software package78 to compute
SMILES strings from ligand MOL2 files and Tc for each
member of the test set with every other ligand in the PDBbind
v.2020 refined set. Ligands not in the test set were removed if
the Tc between them and any ligand in the test set was greater
than 0.7. Additionally, we asserted that the average Tc between
any ligand not in the test set and the collection of all test set
complexes was less than 0.25. After this filtering process, the
validation set was selected randomly from the remaining
complexes while enforcing the equal distribution of binding
affinities detailed above. All other refined-set complexes not
filtered out by the similarity requirements were then used as
training data.
Voxelization. Once training, validation, and test sets had

been assembled in HDF format, they could immediately be
used by the GCN components of the HAC-Net architecture.
However, for use in the 3D-CNN, the atomic features must be
voxelized into 4-dimensional grids with dimensions 48 × 48 ×
48 × 19. We first aligned each protein−ligand complex to the
center of a 3-dimensional voxel grid and then assigned each
atomic feature vector to the voxel containing the center of the
corresponding atom. On the rare occasion that two atom
centers were positioned in the same voxel (0.22% of atoms),
we summed the corresponding features within that voxel. If an
atom’s center was outside of the 48 Å voxel grid (0.01% of
atoms), we omitted its features from the voxelized data. These
4-dimensional arrays were collected for all members of each
dataset, and these collections were saved as HDF files.
Trainings. The 3D-CNN component of HAC-Net was

constructed and trained using PyTorch.57,58 The trainings were
carried out for 100 epochs with a batch size of 50 complexes,
utilizing the MSE loss function and the Root Mean Square
Propagation (RMSProp) optimizer,86 with an initial learning
rate of 0.0007. If the number of complexes in the training set
was not divisible by the batch size, the last batch contained
fewer than 50 complexes. To reduce bias during the training,
the order of the complexes was randomly shuffled for each
epoch. After each epoch, the model was evaluated with the

validation data, allowing us to assess the propensity of the
training for overfitting, and a checkpoint containing model
parameters was saved. In addition, we computed the average
correlation between predicted and true values on validation
data as (Spearman ρ + Pearson r)/2 at the end of each epoch
and selected for feature extraction the training checkpoint that
corresponded to the highest average correlation. We then used
the extracted features as input to train a set of fully connected
layers identical to those used in the feature extraction protocol
other than the single distinction of using batch normalization
with momentum of 0.3 for estimating the moving mean and
moving variance rather than 0.1 and followed the same
procedure to select the checkpoint to be used in HAC-Net.
The GCN components of HAC-Net were constructed and

trained primarily using PyTorch Geometric.53,54 It is important
to note that HAC-Net contains two GCNs, which have
identical architectures and training protocols. Each GCN was
trained for 300 epochs with a batch size of 7 complexes,
utilizing the MSE loss function and Adam optimizer,87 with a
constant learning rate of 0.001. The order of complexes was
randomized for each epoch, and if the number of training
complexes was not divisible by the batch size, the leftover
complexes were simply discarded for that epoch. The GCNs
were evaluated on the validation data after each training epoch,
and the checkpoint that corresponded to the highest average
correlation on the validation set was selected for each GCN.
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