| 2                                                                    | Organometallic Ni pincer complexes for the                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                                                                    | electrocatalytic production of hydrogen                                                                                                                                                                                                                                                                                                                                          |
| 4                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  |
| 5                                                                    | Oana R. Luca <sup>†</sup> , James D. Blakemore <sup>†</sup> , Steven J. Konezny, <sup>†</sup> Jeremy M. Praetorius <sup>†</sup> ,                                                                                                                                                                                                                                                |
| 6                                                                    | Timothy J. Schmeier <sup>†</sup> , Glendon B. Hunsinger, <sup>‡*</sup> Victor S. Batista, <sup>†*</sup> Gary W. Brudvig, <sup>†</sup> *                                                                                                                                                                                                                                          |
| 7                                                                    | Nilay Hazari, <sup>†</sup> * and Robert H. Crabtree <sup>†</sup> *                                                                                                                                                                                                                                                                                                               |
| 8                                                                    | <sup>†</sup> Department of Chemistry, Yale University 225 Prospect St., New Haven, CT, 06520-                                                                                                                                                                                                                                                                                    |
| 9                                                                    | 8107 USA, <sup>‡</sup> Department of Geology and Geophysics: Earth Systems Center for Stable                                                                                                                                                                                                                                                                                     |
| 10                                                                   | Isotopic Studies, Yale University, 210 Whitney Ave., New Haven, CT 06511 USA.                                                                                                                                                                                                                                                                                                    |
| 11                                                                   | Fax: (+)1 203 432 6144                                                                                                                                                                                                                                                                                                                                                           |
| 12                                                                   | *E-mail: glendon.hunsinger@yale.edu,victor.batista@yale.edu, gary.brudvig@yale.edu,                                                                                                                                                                                                                                                                                              |
| 13                                                                   | nilay.hazari@yale.edu, robert.crabtree@yale.edu                                                                                                                                                                                                                                                                                                                                  |
| 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>23<br>24 | <ul> <li>Table of Contents</li> <li>1: Cyclic voltammetry</li> <li>2: Current density vs. potential</li> <li>3: Bulk electrolysis and H<sub>2</sub> Measurement</li> <li>4: Crystal structure data for [3(MeCN)]<sup>+</sup></li> <li>5: Kinetics for proton reduction</li> <li>6: UV-vis of catholytes</li> <li>7: Full Gaussian Reference and Computational Details</li> </ul> |
| 25                                                                   |                                                                                                                                                                                                                                                                                                                                                                                  |

### 1 1. Cyclic Voltammetry

- 2 Table S1. Tabulated cyclic voltammetry data of 2 mM nickel complexes (1and 2)\* in 0.1
- 3 M NBu<sub>4</sub>BF<sub>4</sub> acetonitrile solutions at a glassy carbon working electrode.
- 4

| Catalyst                         | $\begin{array}{c} 1^{st} \\ \text{reduction} \\ E_{1/2} \end{array}$ | $\Delta E_1$<br>Peak 1<br>separation <sup>[a]</sup> | $\begin{array}{c} 2^{nd} \\ \text{reduction} \\ E_{1/2} \end{array}$ | $\Delta E_2$<br>Peak 2<br>separation <sup>[a]</sup> | Oxidation<br>E <sub>1/2</sub> | $\Delta E_{ox}$<br>Oxidation<br>peak<br>separation <sup>[a]</sup> |
|----------------------------------|----------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------|-------------------------------|-------------------------------------------------------------------|
| Glassy<br>carbon<br>(Background) | n/a                                                                  | n/a                                                 | n/a                                                                  | n/a                                                 | n/a                           | n/a                                                               |
| 1                                | ~ -1.085 V                                                           | 0.168 V                                             | n/a                                                                  | n/a                                                 | ~1.660 V                      | ~0.135 V                                                          |
| 2                                | -1.189 V                                                             | 0.086 V                                             | n/a                                                                  | n/a                                                 | ~1.754 V                      | ~0.173 V                                                          |

5 6 [a] Expected peak separation for a perfectly  $1e^{-1}$  reversible wave: 0.059 V \* extracted  $\Delta E$  values are approximates.

7

8 Cyclic voltammograms were recorded using a Teflon coated BASi glassy carbon working 9 electrode, and a Platinum wire counter electrode in an 0.1 M NBu<sub>4</sub>BF<sub>4</sub> acetonitrile 10 solution versus a pseudoreference electrode: silver wire (BASi double junction reference 11 electrode setup) referenced externally vs. the Fc/Fc<sup>+</sup> couple at 690 mV vs. NHE. All CVs 12 were recorded after rigorous Argon purge.

13

14 15

Scan rates are 100mV/s unless otherwise stated.

**Figure S1-1.** Cyclic voltammograms of a background 0.1 M NBu<sub>4</sub>BF<sub>4</sub> acetonitrile solution (*black*) in the presence of  $10\mu L$  (*red*),  $20\mu L$  (*blue*),  $30\mu L$  (*purple*) and  $40\mu L$ (*green*) 1 M HCl (100 mV/s). Smoothed 5 point adjusted averaging was used to remove electrical noise.

20



- Figure S1-2. Cyclic voltammograms at 100 mV/s (*black*), 200 mV/s (*red*), 300 mV/s
- 3 (*blue*) of 2 mM **2-MeCN**<sup>+</sup> in 0.1 M NBu<sub>4</sub>BF<sub>4</sub> acetonitrile solution.



**Figure S1-3.** Cyclic voltammograms of 2 mM **2-H** in 0.1 M NBu<sub>4</sub>BF<sub>4</sub> acetonitrile 7 solution (*navy*) overlaid with **2-MeCN**<sup>+</sup> in the presence of 10  $\mu$ L, 20  $\mu$ L, 30  $\mu$ L and 40

8 μL 1 M HCl.



- Figure S1-4. Cyclic voltammograms at 100 mV/s (black), 200 mV/s (red), 300 mV/s
- (*blue*) of 2 mM  $\frac{1}{1}$  in 0.1 M NBu<sub>4</sub>BF<sub>4</sub> acetonitrile solution.





- Figure S1-5. Cyclic voltammograms of 2 mM 1 in 0.1M NBu<sub>4</sub>BF<sub>4</sub> acetonitrile solution
- (*black*) in the presence of 10  $\mu$ L (*red*), 20  $\mu$ L (*blue*), 30  $\mu$ L (*purple*) and 40  $\mu$ L (*green*) 1 M HCl. at 100 mV/s.



- 1 Figure S1-6. Cyclic voltammograms at 100 mV/s(black), 200 mV/s(red), 300 mV/s
- 2 (*blue*) of 2 mM  $\frac{2}{2}$  in 0.1 M NBu<sub>4</sub>BF<sub>4</sub> in acetonitrile solution.



- 5 Figure S1-7. Cyclic voltammograms of 2 mM 2 in 0.1M NBu<sub>4</sub>BF<sub>4</sub> acetonitrile solution
- 6 (*red*) in the presence of 10 μL (*black*), 20 μL (*blue*), 30 μL (*purple*) and 40 μL (*green*) 1
  7 M HCl at 100 mV/s.



- 2U

- 1 Figure S1-8. Cyclic voltammograms at 100 mV/s (black), 200 mV/s (red), 300 mV/s
- 2 (*blue*) of 2 mM 2-H solution in 0.1 M NBu<sub>4</sub>BF<sub>4</sub> in acetonitrile.



- 5 Figure S1-9. Cyclic voltammograms of 2 mM 2 (*red*) overlaid with CV of 2 mM solution
- 2-H (*black*) and  $2-MeCN^+$ (*blue*) in 0.1 M NBu<sub>4</sub>BF<sub>4</sub> acetonitrile solution at 100 mV/s. 7 The reduction potential at the metal center is drastically shifted with different
- 8 coordination.



- 1 Figure S1-10. Cyclic voltammograms of 2 mM 3-H in 0.1M NBu<sub>4</sub>BF<sub>4</sub> acetonitrile
- 2 solution (*black*) in the presence of 10  $\mu$ L (*red*), 20  $\mu$ L (*blue*), 30  $\mu$ L (*purple*) and 40  $\mu$ L
- 3 (green) 1 M HCl at 100 mV/s. Bubbles on electrode formed immediately after addition of
- 4 acid.



# 7 2. Current density vs. potential

Figure S2-1. Current density vs. applied potential: steady state current density at the end
of chronoamperometry experiments at progressively more negative potentials chronoamperograms (dwell time: 60 sec) at a glassy carbon electrode (in a three electrode
setup- Pt counter electrode, non-aqueous Ag pseudoreference) in 5.2 mL acetonitrile
NBu<sub>4</sub>BF<sub>4</sub> solutions containing 200 µL 1 M aqueous HCl at catalyst concentrations of 0.2
mM with magnetic stirring.



14

# 15

### 16 **3. Bulk electrolyses and H<sub>2</sub> measurement**

17 Controlled potential experiments for headspace  $H_2$  detection were performed at -0.6V vs. 18 NHE (0.5 h) in a custom built two cylinder bulk electrolysis H cell: The cathode chamber 19 had a working volume of 50 mL (0.04 mM in the respective catalyst for the catalytic 20 runs) and 20 mL for the anode chamber. The two were separated by a coarse frit.

A stock solution was prepared from 900 mL MeCN (0.1 M NBu<sub>4</sub>BF<sub>4</sub>) and 100 mL 1 M HCl. In the catalytic run the cathode was charged with 50 mL stock solution and catalyst and the anode with 20 mL of the same solution. The cathode and anode chamber solutions were sparged with He for 5 min prior to starting the experiment.

5

Background runs were performed after the catalytic runs with the cathode containing 50
mL of the stock solution with no catalyst and the anode 20 mL of the stock solution. The
working electrode was a BASi RVC electrode referenced vs. Ag/AgCl (KCl<sub>sat</sub>). The
counter electrode was a 2.5 cm x 2.5 cm Pt mesh.

10

11 Quantitative Mass Spectrometry calibration of voltage response against H<sub>2</sub> detection was

12 performed using 2.05%, 15%, 25% and 50%  $H_2$ /He custom prepared mixed gases from

13 Tech Air and AirProducts Inc. The average of duplicate catalytic run analyses are shown.



- Figure S3-1. Quantitative Mass Spectrometry calibration and catalytic runs.
- 16

## **4. Crystal Structure Data for [2-MeCN]**<sup>+</sup>

18 The diffraction experiments were carried out on a Bruker AXS SMART CCD three-circle 19 diffractometer with a sealed tube at 23 °C using graphite-monochromated Mo KR 20 radiation ( $\lambda$ ) 0.71073 Å). The software used were SMART for collecting frames of data, 21 indexing reflections, and determination of lattice parameters; SAINT for integration of 22 intensity of reflections and scaling; SADABS for empirical absorption correction; and 23 SHELXTL for space group determination, structure solution, and least-squares 24 refinements on  $|F|_2$ . The crystals were mounted at the end of glass fibers and used for the 25 diffraction experiments. Anisotropic thermal parameters were refined for the rest of the 26 non-hydrogen atoms. The hydrogen atoms were placed in their ideal positions.

27

## **Table S4-1.** Crystal data and structure refinement for $[(PCP)Ni(NCCH_3)]^+ [BF_4]^-$

| 29 | Empirical Formula    | $P_2N_2C_{28}H_{49}NiBF_4$ |
|----|----------------------|----------------------------|
| 30 | Formula Weight       | 621.16                     |
| 31 | Crystal Color, Habit | yellow, chunk              |
| 32 | Crystal Dimensions   | 0.20 X 0.20 X 0.20 mm      |
| 33 | Crystal System       | monoclinic                 |
| 34 | Lattice Type         | Primitive                  |
| 35 | Detector Position    | 49.90 mm                   |
| 36 | Pixel Size           | 0.146 mm                   |
| 37 | Lattice Parameters   | a = 10.4927(18)  Å         |

| 1<br>2<br>3<br>4<br>5 | Space Grou   | un.                                      |                                             | $b = 15.606(2)$ $c = 10.6505$ $\beta = 111.242(2)$ $V = 1625.5(2)$ $P2 + (#4)$ | 3) Å<br>(18) Å<br>(4) °<br>(5) Å <sup>3</sup> |
|-----------------------|--------------|------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------|
| 6                     | 7 value      | up                                       |                                             | 2                                                                              |                                               |
| 7                     | Deale        |                                          |                                             | $1.269 \text{ g/cm}^3$                                                         |                                               |
| 8                     | Fooo         |                                          |                                             | 660.00                                                                         |                                               |
| 9                     | μ(ΜοΚα)      |                                          |                                             | $7.376 \text{ cm}^{-1}$                                                        |                                               |
| 10                    | Data Image   | es                                       |                                             | 462 exposure                                                                   | es                                            |
| 11                    | ω oscillatio | on Range ( $\gamma = 54.0  \text{o} = 1$ | 20.0)                                       | -120.0 - 60.0                                                                  | 0                                             |
| 12                    | Exposure F   | Pate                                     | 20.0)                                       | 60.0 sec /0                                                                    |                                               |
| 12                    | Dataatar S   | uina Anala                               |                                             | 28 400                                                                         |                                               |
| 13                    |              | wing Angle                               |                                             | -28.40*                                                                        |                                               |
| 14<br>15              | 20max        |                                          |                                             | 52.0°                                                                          |                                               |
| 15                    | NO. OI KEI   | lections Measured                        |                                             | 1 otal: 12989                                                                  | $(\mathbf{R}) = 0.048^{4}$                    |
| 10                    |              |                                          |                                             | Eriedel pairs                                                                  | $\cdot$ 3023                                  |
| 18                    | Correction   | s                                        |                                             | Lorentz-nola                                                                   | rization                                      |
| 19                    | concetion    | 5                                        |                                             | Absorption                                                                     |                                               |
| 20                    |              |                                          |                                             | (trans. facto                                                                  | rs: 0.697 - 0.863                             |
| 21                    | Structure S  | olution                                  |                                             | Direct Metho                                                                   | ods (SIR92)                                   |
| 22                    | Refinemen    | t                                        |                                             | Full-matrix l                                                                  | east-squares on                               |
| 23                    | Function N   | linimized                                |                                             | $\Sigma W (Fo^2 - F)$                                                          | c <sup>2</sup> ) <sup>2</sup>                 |
| 24                    | Least Squa   | res Weights                              |                                             | $w = 1/[\sigma^2(F)]$                                                          | $(0.0616 \cdot I) + (0.0616 \cdot I)$         |
| 25                    |              |                                          |                                             | $+0.0000 \cdot 1$                                                              | <b>?</b> ]                                    |
| 26<br>27              | <b>A</b>     | Dimension                                |                                             | where $P = (I$                                                                 | $Max(Fo^{2},0) + 21$                          |
| 27                    | No Observ    | s Dispersion                             | )                                           | All non-nydi                                                                   | ogen atoms                                    |
| 29                    | No. Variah   | les                                      | )                                           | 343                                                                            |                                               |
| 30                    | Reflection/  | Parameter Ratio                          |                                             | 18.51                                                                          |                                               |
| 31                    | Residuals:   | R1 (I>2.00σI))                           |                                             | 0.0581                                                                         |                                               |
| 32                    | Residuals:   | R (All reflections)                      |                                             | 0.0768                                                                         |                                               |
| 33                    | Residuals:   | wR2 (All reflections)                    |                                             | 0.1264                                                                         |                                               |
| 34<br>25              | Goodness (   | of Fit Indicator                         |                                             | 1.047                                                                          |                                               |
| 35                    | Max Shift/   | Error in Final Cycle                     |                                             | -0.003(18)                                                                     |                                               |
| 37                    | Maximum      | peak in Final Diff. Ma                   | p                                           | $0.48 \text{ e}^{-}/\text{Å}^{3}$                                              |                                               |
| 38                    | Minimum      | peak in Final Diff. Maj                  | )                                           | $-0.34 \text{ e}^{-}/\text{Å}^{3}$                                             |                                               |
| 39                    |              |                                          |                                             |                                                                                |                                               |
| 40                    | Table S4     | -2. Atomic coordir                       | nates and B <sub>iso</sub> /B <sub>eq</sub> |                                                                                |                                               |
| 41                    | atom         | Х                                        | у                                           | Z                                                                              | B <sub>eq</sub>                               |
| 42                    | Ni(1)        | 0.71359(5)                               | 0.89352(4)                                  | 0.28474(5)                                                                     | 2.195(12)                                     |
| 43                    | P(1)         | 0.51687(12)                              | 0.82594(8)                                  | 0.19220(11)                                                                    | 2.32(2)                                       |
| 44                    | P(2)         | 0.89869(12)                              | 0.96336(8)                                  | 0.41141(12)                                                                    | 2.28(2)                                       |
| 45<br>46              | F(1)<br>F(2) | 0.8801(6)<br>1.0520(8)                   | 0.6468(3)<br>0.5636(5)                      | -0.02/5(5)                                                                     | 9.92(16)                                      |
| 47                    | F(2)<br>F(3) | 1.0339(8)                                | 0.5050(5)<br>0.6890(5)                      | 0.0823(0)<br>0.1539(9)                                                         | 13.1(3)<br>19 0(4)                            |
| 48                    | F(4)         | 0.9145(8)                                | 0.5935(9)                                   | 0.1655(9)                                                                      | 21.5(5)                                       |
| 49                    | N(1)         | 0.7772(4)                                | 0.8710(3)                                   | 0.1421(4)                                                                      | 2.96(8)                                       |
| 50                    | N(2)         | 0.6183(7)                                | 1.2028(5)                                   | 0.3541(7)                                                                      | 7.03(15)                                      |
| 51                    | C(1)         | 0.6466(5)                                | 0.9221(3)                                   | 0.4244(5)                                                                      | 2.60(9)                                       |
| 52                    | C(2)         | 0.7124(5)                                | 0.9841(3)                                   | 0.5239(5)                                                                      | 2.66(9)                                       |

nt = 0.0485)3 ion 697 - 0.863) SIR92) squares on  $F^2$  $(0.0616 \cdot P)^2$  $Fo^{2},0) + 2Fc^{2})/3$  atoms

| 1                                                                                                                                                 | C(3)                                                                                                                                                                                                                                           | 0.6631(6)                                                                                                                                                                                                                                                                                                                                       | 1.0033                                                                                                                                                                                                                                                                                                                        | 3(4) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ).6264(5)                                                                                                                                                                                                                                                                                                                                  | 3.85(11)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                                                                                                                                                 | C(4)                                                                                                                                                                                                                                           | 0.5478(6)                                                                                                                                                                                                                                                                                                                                       | 0.9641                                                                                                                                                                                                                                                                                                                        | 1(4) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ).6308(6)                                                                                                                                                                                                                                                                                                                                  | 4.19(11)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3                                                                                                                                                 | C(5)                                                                                                                                                                                                                                           | 0.4817(5)                                                                                                                                                                                                                                                                                                                                       | 0.9029                                                                                                                                                                                                                                                                                                                        | $\dot{P}(4) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ).5361(5)                                                                                                                                                                                                                                                                                                                                  | 3.44(10)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4                                                                                                                                                 | C(6)                                                                                                                                                                                                                                           | 0.5293(4)                                                                                                                                                                                                                                                                                                                                       | 0.8822                                                                                                                                                                                                                                                                                                                        | 2(4) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ).4334(4)                                                                                                                                                                                                                                                                                                                                  | 2.75(9)                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5                                                                                                                                                 | C(7)                                                                                                                                                                                                                                           | 0.8113(5)                                                                                                                                                                                                                                                                                                                                       | 0.8633                                                                                                                                                                                                                                                                                                                        | 3(3) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ).0543(5)                                                                                                                                                                                                                                                                                                                                  | 3.31(10)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6                                                                                                                                                 | C(8)                                                                                                                                                                                                                                           | 0.8577(7)                                                                                                                                                                                                                                                                                                                                       | 0.8559                                                                                                                                                                                                                                                                                                                        | P(5) -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0606(6)                                                                                                                                                                                                                                                                                                                                  | 5.12(15)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7                                                                                                                                                 | C(9)                                                                                                                                                                                                                                           | 0.4557(5)                                                                                                                                                                                                                                                                                                                                       | 0.8152                                                                                                                                                                                                                                                                                                                        | 2(3) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ).3318(5)                                                                                                                                                                                                                                                                                                                                  | 3.01(9)                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8                                                                                                                                                 | C(10)                                                                                                                                                                                                                                          | 0.8350(5)                                                                                                                                                                                                                                                                                                                                       | 1.0285                                                                                                                                                                                                                                                                                                                        | 5(3) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ).5187(5)                                                                                                                                                                                                                                                                                                                                  | 3.21(10)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9                                                                                                                                                 | C(11)                                                                                                                                                                                                                                          | 0.3869(4)                                                                                                                                                                                                                                                                                                                                       | 0.8935                                                                                                                                                                                                                                                                                                                        | 5(4) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0641(4)                                                                                                                                                                                                                                                                                                                                  | 2.96(8)                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10                                                                                                                                                | C(12)                                                                                                                                                                                                                                          | 0 3685(6)                                                                                                                                                                                                                                                                                                                                       | 0 9747                                                                                                                                                                                                                                                                                                                        | 7(4) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) 1368(6)                                                                                                                                                                                                                                                                                                                                  | 4 83(13)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11                                                                                                                                                | C(12)                                                                                                                                                                                                                                          | 0 4403(6)                                                                                                                                                                                                                                                                                                                                       | 0.9223                                                                                                                                                                                                                                                                                                                        | 3(4) -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) 0449(6)                                                                                                                                                                                                                                                                                                                                  | 4 46(13)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12                                                                                                                                                | C(14)                                                                                                                                                                                                                                          | 0.2473(5)                                                                                                                                                                                                                                                                                                                                       | 0.8498                                                                                                                                                                                                                                                                                                                        | R(4) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0017(6)                                                                                                                                                                                                                                                                                                                                  | 5.20(15)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 13                                                                                                                                                | C(15)                                                                                                                                                                                                                                          | 0.5239(6)                                                                                                                                                                                                                                                                                                                                       | 0.7124                                                                                                                                                                                                                                                                                                                        | 5(3) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) 1363(5)                                                                                                                                                                                                                                                                                                                                  | 3 32(10)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 14                                                                                                                                                | C(16)                                                                                                                                                                                                                                          | 0.3257(0)                                                                                                                                                                                                                                                                                                                                       | 0.6606                                                                                                                                                                                                                                                                                                                        | 5(3) 0<br>5(4) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1282(7)                                                                                                                                                                                                                                                                                                                                    | 4.64(13)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 15                                                                                                                                                | C(17)                                                                                                                                                                                                                                          | 0.5380(7)                                                                                                                                                                                                                                                                                                                                       | 0.0001                                                                                                                                                                                                                                                                                                                        | (1) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0019(6)                                                                                                                                                                                                                                                                                                                                  | 4 72(13)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16                                                                                                                                                | C(18)                                                                                                                                                                                                                                          | 0.5500(7)<br>0.6508(6)                                                                                                                                                                                                                                                                                                                          | 0.6736                                                                                                                                                                                                                                                                                                                        | 5(4) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) 2418(6)                                                                                                                                                                                                                                                                                                                                  | 4 59(13)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 17                                                                                                                                                | C(19)                                                                                                                                                                                                                                          | 1.0265(4)                                                                                                                                                                                                                                                                                                                                       | 0.8890                                                                                                                                                                                                                                                                                                                        | (1) (4) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5252(4)                                                                                                                                                                                                                                                                                                                                    | 2 99(8)                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 18                                                                                                                                                | C(20)                                                                                                                                                                                                                                          | 0.9626(6)                                                                                                                                                                                                                                                                                                                                       | 0.8482                                                                                                                                                                                                                                                                                                                        | 2(4) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (5252(4))                                                                                                                                                                                                                                                                                                                                  | 3.92(11)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 19                                                                                                                                                | C(20)                                                                                                                                                                                                                                          | 1.0606(5)                                                                                                                                                                                                                                                                                                                                       | 0.8176                                                                                                                                                                                                                                                                                                                        | 5(3) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) 4414(5)                                                                                                                                                                                                                                                                                                                                  | 3.72(11)<br>3.73(11)                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\frac{1}{20}$                                                                                                                                    | C(21)                                                                                                                                                                                                                                          | 1.0000(5)<br>1.1603(5)                                                                                                                                                                                                                                                                                                                          | 0.0170                                                                                                                                                                                                                                                                                                                        | (3) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) 6154(5)                                                                                                                                                                                                                                                                                                                                  | 3.83(11)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21                                                                                                                                                | C(22)                                                                                                                                                                                                                                          | 0.9778(5)                                                                                                                                                                                                                                                                                                                                       | 1 0424                                                                                                                                                                                                                                                                                                                        | 5(3) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3276(5)                                                                                                                                                                                                                                                                                                                                    | 3.03(11)<br>3.27(10)                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 22                                                                                                                                                | C(24)                                                                                                                                                                                                                                          | 1.0710(5)                                                                                                                                                                                                                                                                                                                                       | 0.9993                                                                                                                                                                                                                                                                                                                        | (3) = 0<br>(4) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ).2641(6)                                                                                                                                                                                                                                                                                                                                  | 3.27(10)<br>3.57(11)                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23                                                                                                                                                | C(25)                                                                                                                                                                                                                                          | 1.0710(5)<br>1.0622(6)                                                                                                                                                                                                                                                                                                                          | 1 1 1 0 3                                                                                                                                                                                                                                                                                                                     | 2(4) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $A^{2}64(7)$                                                                                                                                                                                                                                                                                                                               | 4.57(13)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23                                                                                                                                                | C(25)                                                                                                                                                                                                                                          | 0.8567(6)                                                                                                                                                                                                                                                                                                                                       | 1.0852                                                                                                                                                                                                                                                                                                                        | 2(4) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ).4204(7)                                                                                                                                                                                                                                                                                                                                  | 4.37(13)<br>4.31(12)                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 25                                                                                                                                                | C(20)                                                                                                                                                                                                                                          | 0.0307(0)<br>0.5153(7)                                                                                                                                                                                                                                                                                                                          | 1 1846                                                                                                                                                                                                                                                                                                                        | 5(5) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) 3509(6)                                                                                                                                                                                                                                                                                                                                  | 4.68(13)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 26                                                                                                                                                | C(28)                                                                                                                                                                                                                                          | 0.3133(7)                                                                                                                                                                                                                                                                                                                                       | 1.1604                                                                                                                                                                                                                                                                                                                        | 1(6) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.3307(0)                                                                                                                                                                                                                                                                                                                                  | 7.4(2)                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 27                                                                                                                                                | B(1)                                                                                                                                                                                                                                           | 0.9000(0)<br>0.9733(9)                                                                                                                                                                                                                                                                                                                          | 0.6262                                                                                                                                                                                                                                                                                                                        | 2(6) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) 0886(8)                                                                                                                                                                                                                                                                                                                                  | 4 84(16)                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                   |                                                                                                                                                                                                                                                | 0.7755(77                                                                                                                                                                                                                                                                                                                                       | 0.0202                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                            | 1.0 1(10)                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 28                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 28<br>29                                                                                                                                          | $B_{ac} = 8/3 \pi^2$                                                                                                                                                                                                                           | $(U_{\rm ex}(aa^*)^2 + U_{\rm ex})$                                                                                                                                                                                                                                                                                                             | $(bb^*)^2 + U_{22}(cc^*)$                                                                                                                                                                                                                                                                                                     | $(1)^{2} + 2U_{10}(aa*b)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $h^*$ )cos $y + 2U_{12}$ (aa                                                                                                                                                                                                                                                                                                               | *cc*)cos B +                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 28<br>29<br>30                                                                                                                                    | $B_{eq} = 8/3 \pi^2$                                                                                                                                                                                                                           | $(U_{11}(aa^*)^2 + U_{22})$                                                                                                                                                                                                                                                                                                                     | $(bb^*)^2 + U_{33}(cc^*)$                                                                                                                                                                                                                                                                                                     | *) <sup>2</sup> + 2U <sub>12</sub> (aa*b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(b^*)\cos\gamma + 2U_{13}(aa)$                                                                                                                                                                                                                                                                                                            | *cc*)cos $\beta$ +                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 28<br>29<br>30                                                                                                                                    | $B_{eq} = 8/3 \pi^2$<br>2U <sub>23</sub> (bb*cc*)                                                                                                                                                                                              | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$                                                                                                                                                                                                                                                                                                         | $(bb^*)^2 + U_{33}(cc^*)$                                                                                                                                                                                                                                                                                                     | $(1)^{2} + 2U_{12}(aa*b)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bb*) $\cos \gamma + 2U_{13}(aa)$                                                                                                                                                                                                                                                                                                           | *cc*)cos $\beta$ +                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 28<br>29<br>30<br>31                                                                                                                              | $B_{eq} = 8/3 \pi^2$<br>2U <sub>23</sub> (bb*cc*)                                                                                                                                                                                              | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$                                                                                                                                                                                                                                                                                                         | $(bb^*)^2 + U_{33}(cc^*)$                                                                                                                                                                                                                                                                                                     | $(1)^{2} + 2U_{12}(aa*b)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bb*) $\cos \gamma + 2U_{13}(aa)$                                                                                                                                                                                                                                                                                                           | *cc*)cos β +                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 28<br>29<br>30<br>31<br>32                                                                                                                        | $B_{eq} = 8/3 \pi^{2}$<br>2U <sub>23</sub> (bb*cc*)<br><b>Table S4-3</b>                                                                                                                                                                       | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$<br>3. Anisotropic                                                                                                                                                                                                                                                                                       | $(bb^*)^2 + U_{33}(cc^*)$<br>c displacemen                                                                                                                                                                                                                                                                                    | $(1)^{2} + 2U_{12}(aa*b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $pb^*)\cos\gamma + 2U_{13}(aa)$                                                                                                                                                                                                                                                                                                            | *cc*)cos β +                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 28<br>29<br>30<br>31<br>32<br>33                                                                                                                  | $B_{eq} = 8/3 \pi^{2}$<br>2U <sub>23</sub> (bb*cc*)<br><b>Table S4-3</b><br>atom                                                                                                                                                               | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$<br>3. Anisotropic<br>$U_{11}$                                                                                                                                                                                                                                                                           | $(bb^*)^2 + U_{33}(cc^*)$<br>e displacemen<br>$U_{22}$                                                                                                                                                                                                                                                                        | $(1)^{2} + 2U_{12}(aa*b)$<br>t parameters<br>U33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(b^*)\cos\gamma + 2U_{13}(aa)$<br>$U_{12}$                                                                                                                                                                                                                                                                                                | *cc*)cos β +<br>U13                                                                                                                                                                                                                                                                              | U23                                                                                                                                                                                                                                                                                                                                                                                                             |
| 28<br>29<br>30<br>31<br>32<br>33<br>34                                                                                                            | $B_{eq} = 8/3 \pi^{2}$<br>2U <sub>23</sub> (bb*cc*)<br><b>Table S4-3</b><br>atom<br>Ni(1)                                                                                                                                                      | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$<br>3. Anisotropic<br>U11<br>0.0236(3)                                                                                                                                                                                                                                                                   | $(bb^*)^2 + U_{33}(cc^*)$<br>e displacemen<br>$U_{22}$<br>0.0343(3)                                                                                                                                                                                                                                                           | $(1)^{2} + 2U_{12}(aa*b)$<br>t parameters<br>U33<br>0.0253(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bb*)cos γ + 2U <sub>13</sub> (aa<br>$U_{12}$<br>-0.0015(3)                                                                                                                                                                                                                                                                                 | $^{*}cc^{*}cc^{*}cc^{*}\beta^{+}$<br>U13<br>0.0086(2)                                                                                                                                                                                                                                            | U23<br>-0.0035(3)                                                                                                                                                                                                                                                                                                                                                                                               |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35                                                                                                      | $B_{eq} = 8/3 \pi^{2}$<br>2U <sub>23</sub> (bb*cc*)<br><b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)                                                                                                                                              | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$<br><b>3.</b> Anisotropic<br>U11<br>0.0236(3)<br>0.0255(6)                                                                                                                                                                                                                                               | $(bb^*)^2 + U_{33}(cc^*)$<br>c displacemen<br>$U_{22}$<br>0.0343(3)<br>0.0327(7)                                                                                                                                                                                                                                              | $(1)^{*}^{2} + 2U_{12}(aa*b)^{2}$<br>t parameters<br>U33<br>0.0253(3)<br>0.0271(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bb*)cos γ + $2U_{13}$ (aa<br>5<br>U12<br>-0.0015(3)<br>-0.0024(5)                                                                                                                                                                                                                                                                          | $U_{13}$<br>0.0086(2)<br>0.0062(5)                                                                                                                                                                                                                                                               | U23<br>-0.0035(3)<br>0.0002(5)                                                                                                                                                                                                                                                                                                                                                                                  |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36                                                                                                | $B_{eq} = 8/3 \pi^{2}$ $2U_{23}(bb*cc*)$ <b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)<br>P(2)                                                                                                                                                    | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$<br>3. Anisotropic<br>U11<br>0.0236(3)<br>0.0255(6)<br>0.0245(6)                                                                                                                                                                                                                                         | $(bb^*)^2 + U_{33}(cc^*)$<br>c displacemen<br>U22<br>0.0343(3)<br>0.0327(7)<br>0.0305(7)                                                                                                                                                                                                                                      | *) <sup>2</sup> + $2U_{12}(aa*b)$<br>t parameters<br>U33<br>0.0253(3)<br>0.0271(6)<br>0.0305(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bb*) $\cos \gamma + 2U_{13}(aa)$<br>5<br>U12<br>-0.0015(3)<br>-0.0024(5)<br>-0.0011(5)                                                                                                                                                                                                                                                     | *cc*)cos $\beta$ +<br>$U_{13}$<br>0.0086(2)<br>0.0062(5)<br>0.0087(5)                                                                                                                                                                                                                            | U23<br>-0.0035(3)<br>0.0002(5)<br>-0.0036(5)                                                                                                                                                                                                                                                                                                                                                                    |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37                                                                                          | $B_{eq} = 8/3 \pi^{2}(2U_{23}) (bb * cc *)$ <b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)<br>P(2)<br>F(1)                                                                                                                                         | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$<br><b>3.</b> Anisotropic<br>$U_{11}$<br>0.0236(3)<br>0.0255(6)<br>0.0245(6)<br>0.153(5)                                                                                                                                                                                                                 | $(bb^*)^2 + U_{33}(cc^*)$<br>c displacemen<br>U22<br>0.0343(3)<br>0.0327(7)<br>0.0305(7)<br>0.081(3)                                                                                                                                                                                                                          | $(1)^{2} + 2U_{12}(aa*b)^{2} + 2U_{12}(aa*b)^{2}$<br>t parameters U33<br>0.0253(3)<br>0.0271(6)<br>0.0305(6)<br>0.086(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | bb*) $\cos \gamma + 2U_{13}(aa)$<br>$U_{12}$<br>-0.0015(3)<br>-0.0024(5)<br>-0.0011(5)<br>0.030(3)                                                                                                                                                                                                                                         | *cc*)cos $\beta$ +<br>$U_{13}$<br>0.0086(2)<br>0.0062(5)<br>0.0087(5)<br>-0.025(3)                                                                                                                                                                                                               | U23<br>-0.0035(3)<br>0.0002(5)<br>-0.0036(5)<br>0.007(3)                                                                                                                                                                                                                                                                                                                                                        |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38                                                                                    | $B_{eq} = 8/3 \pi^{2}(2U_{23}) (bb * cc *)$ <b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)<br>P(2)<br>F(1)<br>F(2)                                                                                                                                 | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$<br><b>3.</b> Anisotropic<br>$U_{11}$<br>0.0236(3)<br>0.0255(6)<br>0.0245(6)<br>0.153(5)<br>0.211(8)                                                                                                                                                                                                     | $(bb^*)^2 + U_{33}(cc^*)$<br>e displacemen<br>$U_{22}$<br>0.0343(3)<br>0.0327(7)<br>0.0305(7)<br>0.081(3)<br>0.204(7)                                                                                                                                                                                                         | $(1)^{2} + 2U_{12}(aa*b)^{2} + 2U_{12}(aa*b)^{2}$<br>t parameters<br>U33<br>0.0253(3)<br>0.0271(6)<br>0.0305(6)<br>0.086(3)<br>0.115(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bb*) $\cos \gamma + 2U_{13}(aa)$<br>$U_{12}$<br>-0.0015(3)<br>-0.0024(5)<br>-0.0011(5)<br>0.030(3)<br>0.132(7)                                                                                                                                                                                                                             | *cc*)cos $\beta$ +<br>$U_{13}$<br>0.0086(2)<br>0.0062(5)<br>0.0087(5)<br>-0.025(3)<br>0.004(5)                                                                                                                                                                                                   | U23<br>-0.0035(3)<br>0.0002(5)<br>-0.0036(5)<br>0.007(3)<br>-0.020(5)                                                                                                                                                                                                                                                                                                                                           |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39                                                                              | $B_{eq} = 8/3 \pi^{2}(2U_{23}(bb*cc*))$ <b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)<br>P(2)<br>F(1)<br>F(2)<br>F(3)                                                                                                                             | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$<br><b>3.</b> Anisotropic<br>$U_{11}$<br>0.0236(3)<br>0.0255(6)<br>0.0245(6)<br>0.153(5)<br>0.211(8)<br>0.245(9)                                                                                                                                                                                         | $(bb^*)^2 + U_{33}(cc^*)$<br>e displacemen<br>$U_{22}$<br>0.0343(3)<br>0.0327(7)<br>0.0305(7)<br>0.081(3)<br>0.204(7)<br>0.158(7)                                                                                                                                                                                             | $(1)^{2} + 2U_{12}(aa*b)^{2} + 2U_{12}(aa*b)^{2}$<br>t parameters<br>$U_{33}$<br>0.0253(3)<br>0.0271(6)<br>0.0305(6)<br>0.086(3)<br>0.115(5)<br>0.200(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | bb*) $\cos \gamma + 2U_{13}$ (aa<br>$U_{12}$<br>-0.0015(3)<br>-0.0024(5)<br>-0.0011(5)<br>0.030(3)<br>0.132(7)<br>-0.014(7)                                                                                                                                                                                                                | *cc*)cos $\beta$ +<br>U13<br>0.0086(2)<br>0.0062(5)<br>0.0087(5)<br>-0.025(3)<br>0.004(5)<br>-0.061(7)                                                                                                                                                                                           | U23<br>-0.0035(3)<br>0.0002(5)<br>-0.0036(5)<br>0.007(3)<br>-0.020(5)<br>-0.056(6)                                                                                                                                                                                                                                                                                                                              |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40                                                                        | $B_{eq} = 8/3 \pi^{2}(2U_{23}(bb*cc*))$ <b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)<br>P(2)<br>F(1)<br>F(2)<br>F(3)<br>F(4)                                                                                                                     | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$<br><b>3.</b> Anisotropic<br>$U_{11}$<br>0.0236(3)<br>0.0255(6)<br>0.0245(6)<br>0.153(5)<br>0.211(8)<br>0.245(9)<br>0.150(7)                                                                                                                                                                             | $(bb^*)^2 + U_{33}(cc^*)$<br>e displacemen<br>$U_{22}$<br>0.0343(3)<br>0.0327(7)<br>0.0305(7)<br>0.081(3)<br>0.204(7)<br>0.158(7)<br>0.488(20)                                                                                                                                                                                | $(1)^{*}^{2} + 2U_{12}(aa^{*}b)^{2}$<br>t parameters<br>$U_{33}^{0.0253(3)}^{0.0271(6)}^{0.0305(6)}^{0.086(3)}_{0.086(3)}^{0.115(5)}^{0.200(8)}_{0.197(8)}^{0.197(8)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $Db^*)\cos \gamma + 2U_{13}(aa)$<br>$U_{12}$<br>-0.0015(3)<br>-0.0024(5)<br>-0.0011(5)<br>0.030(3)<br>0.132(7)<br>-0.014(7)<br>0.017(9)                                                                                                                                                                                                    | *cc*)cos $\beta$ +<br>U13<br>0.0086(2)<br>0.0062(5)<br>0.0087(5)<br>-0.025(3)<br>0.004(5)<br>-0.061(7)<br>0.083(7)                                                                                                                                                                               | U23<br>-0.0035(3)<br>0.0002(5)<br>-0.0036(5)<br>0.007(3)<br>-0.020(5)<br>-0.056(6)<br>0.168(11)                                                                                                                                                                                                                                                                                                                 |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41                                                                  | $B_{eq} = 8/3 \pi^{2}(2U_{23}) (bb^{*}cc^{*})$ <b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)<br>P(2)<br>F(1)<br>F(2)<br>F(3)<br>F(4)<br>N(1)                                                                                                      | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$<br><b>3.</b> Anisotropic<br>$U_{11}$<br>0.0236(3)<br>0.0255(6)<br>0.0245(6)<br>0.153(5)<br>0.211(8)<br>0.245(9)<br>0.150(7)<br>0.035(2)                                                                                                                                                                 | $(bb^*)^2 + U_{33}(cc^*)$<br>e displacemen<br>U22<br>0.0343(3)<br>0.0327(7)<br>0.0305(7)<br>0.081(3)<br>0.204(7)<br>0.158(7)<br>0.488(20)<br>0.046(3)                                                                                                                                                                         | $(1)^{*}^{2} + 2U_{12}(aa^{*}backer)^{2} + 2U_{12}(aa^{*}backer)^{2}$<br>t parameters U33<br>0.0253(3)<br>0.0271(6)<br>0.0305(6)<br>0.086(3)<br>0.115(5)<br>0.200(8)<br>0.197(8)<br>0.029(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} U_{12} \\ -0.0015(3) \\ -0.0024(5) \\ -0.0011(5) \\ 0.030(3) \\ 0.132(7) \\ -0.014(7) \\ 0.017(9) \\ -0.0041(20) \end{array}$                                                                                                                                                                                            | *cc*)cos $\beta$ +<br>U13<br>0.0086(2)<br>0.0062(5)<br>0.0087(5)<br>-0.025(3)<br>0.004(5)<br>-0.061(7)<br>0.083(7)<br>0.0091(18)                                                                                                                                                                 | U23<br>-0.0035(3)<br>0.0002(5)<br>-0.0036(5)<br>0.007(3)<br>-0.020(5)<br>-0.056(6)<br>0.168(11)<br>-0.0078(18)                                                                                                                                                                                                                                                                                                  |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42                                                            | $B_{eq} = 8/3 \pi^{2}(2U_{23}) (bb^{*}cc^{*})$ <b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)<br>P(2)<br>F(1)<br>F(2)<br>F(3)<br>F(4)<br>N(1)<br>N(2)                                                                                              | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$ 3. Anisotropic<br>U11<br>0.0236(3)<br>0.0255(6)<br>0.0245(6)<br>0.153(5)<br>0.211(8)<br>0.245(9)<br>0.150(7)<br>0.035(2)<br>0.071(4)                                                                                                                                                                    | $(bb^*)^2 + U_{33}(cc^*)$<br>c displacemen<br>U22<br>0.0343(3)<br>0.0327(7)<br>0.0305(7)<br>0.081(3)<br>0.204(7)<br>0.158(7)<br>0.488(20)<br>0.046(3)<br>0.094(5)                                                                                                                                                             | $(1)^{*}^{2} + 2U_{12}(aa^{*}backer)^{2} + 2U_{12}(aa^{*}backer)^{2} + 2U_{12}(aa^{*}backer)^{2}$<br>(1) transformation to the second state of the  | $\begin{array}{c} U_{12} \\ -0.0015(3) \\ -0.0024(5) \\ -0.0011(5) \\ 0.030(3) \\ 0.132(7) \\ -0.014(7) \\ 0.017(9) \\ -0.0041(20) \\ -0.010(4) \end{array}$                                                                                                                                                                               | *cc*) $\cos \beta$ +<br>U13<br>0.0086(2)<br>0.0062(5)<br>0.0087(5)<br>-0.025(3)<br>0.004(5)<br>-0.061(7)<br>0.083(7)<br>0.0091(18)<br>0.028(4)                                                                                                                                                   | U23<br>-0.0035(3)<br>0.0002(5)<br>-0.0036(5)<br>0.007(3)<br>-0.020(5)<br>-0.056(6)<br>0.168(11)<br>-0.0078(18)<br>-0.020(4)                                                                                                                                                                                                                                                                                     |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43                                                      | $B_{eq} = 8/3 \pi^{2}(2U_{23}) (bb*cc*)$ <b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)<br>P(2)<br>F(1)<br>F(2)<br>F(3)<br>F(4)<br>N(1)<br>N(2)<br>C(1)                                                                                            | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$ 3. Anisotropic<br>U11<br>0.0236(3)<br>0.0255(6)<br>0.0245(6)<br>0.153(5)<br>0.211(8)<br>0.245(9)<br>0.150(7)<br>0.035(2)<br>0.071(4)<br>0.029(2)                                                                                                                                                        | $(bb^*)^2 + U_{33}(cc^*)$<br>c displacemen<br>U22<br>0.0343(3)<br>0.0327(7)<br>0.0305(7)<br>0.081(3)<br>0.204(7)<br>0.158(7)<br>0.488(20)<br>0.046(3)<br>0.094(5)<br>0.042(3)                                                                                                                                                 | $(1)^{*}^{2} + 2U_{12}(aa^{*}backer)^{2} + 2U_{12}(aa^{*}backer)^{2} + 2U_{12}(aa^{*}backer)^{2}$<br>(1) transformation to the second se | $\begin{array}{c} U_{12} \\ -0.0015(3) \\ -0.0024(5) \\ -0.0011(5) \\ 0.030(3) \\ 0.132(7) \\ -0.014(7) \\ 0.017(9) \\ -0.0041(20) \\ -0.010(4) \\ 0.008(2) \end{array}$                                                                                                                                                                   | *cc*) $\cos \beta$ +<br>U13<br>0.0086(2)<br>0.0062(5)<br>0.0087(5)<br>-0.025(3)<br>0.004(5)<br>-0.061(7)<br>0.083(7)<br>0.0091(18)<br>0.028(4)<br>0.013(2)                                                                                                                                       | U23<br>-0.0035(3)<br>0.0002(5)<br>-0.0036(5)<br>0.007(3)<br>-0.020(5)<br>-0.056(6)<br>0.168(11)<br>-0.0078(18)<br>-0.020(4)<br>-0.0041(20)                                                                                                                                                                                                                                                                      |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44                                                | $B_{eq} = 8/3 \pi^{2}(2U_{23}) (bb*cc*)$ <b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)<br>P(2)<br>F(1)<br>F(2)<br>F(3)<br>F(4)<br>N(1)<br>N(2)<br>C(1)<br>C(2)                                                                                    | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$ <b>3.</b> Anisotropic<br>U11<br>0.0236(3)<br>0.0255(6)<br>0.0245(6)<br>0.153(5)<br>0.211(8)<br>0.245(9)<br>0.150(7)<br>0.035(2)<br>0.071(4)<br>0.029(2)<br>0.032(2)                                                                                                                                     | $(bb^*)^2 + U_{33}(cc^*)$<br>c displacemen<br>U22<br>0.0343(3)<br>0.0327(7)<br>0.0305(7)<br>0.081(3)<br>0.204(7)<br>0.158(7)<br>0.488(20)<br>0.046(3)<br>0.094(5)<br>0.042(3)<br>0.035(3)                                                                                                                                     | $(1)^{*}^{2} + 2U_{12}(aa*b)^{2}$<br>t parameters<br>U33<br>0.0253(3)<br>0.0271(6)<br>0.0305(6)<br>0.086(3)<br>0.115(5)<br>0.200(8)<br>0.197(8)<br>0.029(2)<br>0.100(5)<br>0.031(2)<br>0.036(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} U_{12} \\ -0.0015(3) \\ -0.0024(5) \\ -0.0011(5) \\ 0.030(3) \\ 0.132(7) \\ -0.014(7) \\ 0.017(9) \\ -0.0041(20) \\ -0.010(4) \\ 0.008(2) \\ 0.001(2) \end{array}$                                                                                                                                                       | *cc*) $\cos \beta$ +<br>U13<br>0.0086(2)<br>0.0062(5)<br>0.0087(5)<br>-0.025(3)<br>0.004(5)<br>-0.061(7)<br>0.083(7)<br>0.0091(18)<br>0.028(4)<br>0.013(2)<br>0.015(2)                                                                                                                           | U23<br>-0.0035(3)<br>0.0002(5)<br>-0.0036(5)<br>0.007(3)<br>-0.020(5)<br>-0.056(6)<br>0.168(11)<br>-0.0078(18)<br>-0.020(4)<br>-0.0041(20)<br>-0.005(2)                                                                                                                                                                                                                                                         |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45                                          | $B_{eq} = 8/3 \pi^{2}(2U_{23}) (bb*cc*)$ <b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)<br>P(2)<br>F(1)<br>F(2)<br>F(3)<br>F(4)<br>N(1)<br>N(2)<br>C(1)<br>C(2)<br>C(3)                                                                            | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$ <b>3.</b> Anisotropic<br>U11<br>0.0236(3)<br>0.0255(6)<br>0.0245(6)<br>0.153(5)<br>0.211(8)<br>0.245(9)<br>0.150(7)<br>0.035(2)<br>0.071(4)<br>0.029(2)<br>0.032(2)<br>0.051(3)                                                                                                                         | $(bb^*)^2 + U_{33}(cc^*)$<br>c displacemen<br>U22<br>0.0343(3)<br>0.0327(7)<br>0.0305(7)<br>0.081(3)<br>0.204(7)<br>0.158(7)<br>0.488(20)<br>0.046(3)<br>0.046(3)<br>0.094(5)<br>0.042(3)<br>0.035(3)<br>0.055(3)                                                                                                             | $(1)^{*}^{2} + 2U_{12}(aa*b)^{2}$<br>t parameters<br>U33<br>0.0253(3)<br>0.0271(6)<br>0.0305(6)<br>0.086(3)<br>0.115(5)<br>0.200(8)<br>0.197(8)<br>0.029(2)<br>0.100(5)<br>0.031(2)<br>0.036(3)<br>0.043(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} U_{12} \\ -0.0015(3) \\ -0.0024(5) \\ -0.0011(5) \\ 0.030(3) \\ 0.132(7) \\ -0.014(7) \\ 0.017(9) \\ -0.0041(20) \\ -0.010(4) \\ 0.008(2) \\ 0.001(2) \\ 0.003(3) \end{array}$                                                                                                                                           | *cc*) $\cos \beta$ +<br>U13<br>0.0086(2)<br>0.0062(5)<br>0.0087(5)<br>-0.025(3)<br>0.004(5)<br>-0.061(7)<br>0.083(7)<br>0.0091(18)<br>0.028(4)<br>0.013(2)<br>0.015(2)<br>0.021(3)                                                                                                               | U23<br>-0.0035(3)<br>0.0002(5)<br>-0.0036(5)<br>0.007(3)<br>-0.020(5)<br>-0.056(6)<br>0.168(11)<br>-0.0078(18)<br>-0.020(4)<br>-0.0041(20)<br>-0.005(2)<br>-0.014(3)                                                                                                                                                                                                                                            |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46                                    | $B_{eq} = 8/3 \pi^{2}(2U_{23}(bb*cc*))$ <b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)<br>P(2)<br>F(1)<br>F(2)<br>F(3)<br>F(4)<br>N(1)<br>N(2)<br>C(1)<br>C(2)<br>C(3)<br>C(4)                                                                     | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$ <b>3.</b> Anisotropic<br>U11<br>0.0236(3)<br>0.0255(6)<br>0.0245(6)<br>0.153(5)<br>0.211(8)<br>0.245(9)<br>0.150(7)<br>0.035(2)<br>0.071(4)<br>0.029(2)<br>0.032(2)<br>0.051(3)<br>0.059(3)                                                                                                             | $(bb^*)^2 + U_{33}(cc^*)$<br>c displacemen<br>U22<br>0.0343(3)<br>0.0327(7)<br>0.0305(7)<br>0.081(3)<br>0.204(7)<br>0.158(7)<br>0.488(20)<br>0.046(3)<br>0.094(5)<br>0.042(3)<br>0.035(3)<br>0.055(3)<br>0.062(4)                                                                                                             | $(1)^{2} + 2U_{12}(aa*b)^{2} + 2U_{12}(aa*b)^{2}$<br>t parameters U33<br>0.0253(3)<br>0.0271(6)<br>0.0305(6)<br>0.086(3)<br>0.115(5)<br>0.200(8)<br>0.197(8)<br>0.029(2)<br>0.100(5)<br>0.031(2)<br>0.036(3)<br>0.043(3)<br>0.052(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} U_{12} \\ -0.0015(3) \\ -0.0024(5) \\ -0.0011(5) \\ 0.030(3) \\ 0.132(7) \\ -0.014(7) \\ 0.017(9) \\ -0.0041(20) \\ -0.010(4) \\ 0.008(2) \\ 0.001(2) \\ 0.003(3) \\ -0.006(3) \end{array}$                                                                                                                              | *cc*) $\cos \beta$ +<br>U13<br>0.0086(2)<br>0.0062(5)<br>0.0087(5)<br>-0.025(3)<br>0.004(5)<br>-0.061(7)<br>0.083(7)<br>0.0091(18)<br>0.028(4)<br>0.013(2)<br>0.015(2)<br>0.021(3)<br>0.035(3)                                                                                                   | U23<br>-0.0035(3)<br>0.0002(5)<br>-0.0036(5)<br>0.007(3)<br>-0.020(5)<br>-0.056(6)<br>0.168(11)<br>-0.0078(18)<br>-0.020(4)<br>-0.0041(20)<br>-0.005(2)<br>-0.014(3)<br>-0.011(3)                                                                                                                                                                                                                               |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47                              | $B_{eq} = 8/3 \pi^{2}(2U_{23}(bb*cc*))$ <b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)<br>P(2)<br>F(1)<br>F(2)<br>F(3)<br>F(4)<br>N(1)<br>N(2)<br>C(1)<br>C(2)<br>C(3)<br>C(4)<br>C(5)                                                             | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$ <b>3.</b> Anisotropic<br>U11<br>0.0236(3)<br>0.0255(6)<br>0.0245(6)<br>0.153(5)<br>0.211(8)<br>0.245(9)<br>0.150(7)<br>0.035(2)<br>0.071(4)<br>0.029(2)<br>0.032(2)<br>0.051(3)<br>0.059(3)<br>0.045(3)                                                                                                 | $(bb^*)^2 + U_{33}(cc^*)$<br>e displacemen<br>U22<br>0.0343(3)<br>0.0327(7)<br>0.0305(7)<br>0.081(3)<br>0.204(7)<br>0.158(7)<br>0.488(20)<br>0.046(3)<br>0.094(5)<br>0.042(3)<br>0.035(3)<br>0.055(3)<br>0.062(4)<br>0.050(3)                                                                                                 | $(1)^{2} + 2U_{12}(aa*b)^{2} + 2U_{12}(aa*b)^{2}$<br>t parameters U33<br>0.0253(3)<br>0.0271(6)<br>0.0305(6)<br>0.086(3)<br>0.115(5)<br>0.200(8)<br>0.197(8)<br>0.029(2)<br>0.100(5)<br>0.031(2)<br>0.036(3)<br>0.043(3)<br>0.043(3)<br>0.045(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} U_{12} \\ -0.0015(3) \\ -0.0024(5) \\ -0.0011(5) \\ 0.030(3) \\ 0.132(7) \\ -0.014(7) \\ 0.017(9) \\ -0.0041(20) \\ -0.010(4) \\ 0.008(2) \\ 0.001(2) \\ 0.003(3) \\ -0.006(3) \\ 0.004(3) \end{array}$                                                                                                                  | *cc*) $\cos \beta$ +<br>$U_{13}$<br>0.0086(2)<br>0.0062(5)<br>0.0087(5)<br>-0.025(3)<br>0.004(5)<br>-0.061(7)<br>0.083(7)<br>0.0091(18)<br>0.028(4)<br>0.013(2)<br>0.015(2)<br>0.021(3)<br>0.035(3)<br>0.027(2)                                                                                  | U23<br>-0.0035(3)<br>0.0002(5)<br>-0.0036(5)<br>0.007(3)<br>-0.020(5)<br>-0.056(6)<br>0.168(11)<br>-0.0078(18)<br>-0.020(4)<br>-0.0041(20)<br>-0.005(2)<br>-0.014(3)<br>-0.001(3)<br>-0.003(3)                                                                                                                                                                                                                  |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48                        | $B_{eq} = 8/3 \pi^{2}(2U_{23}(bb^{*}cc^{*}))$ <b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)<br>P(2)<br>F(1)<br>F(2)<br>F(3)<br>F(4)<br>N(1)<br>N(2)<br>C(1)<br>C(2)<br>C(3)<br>C(4)<br>C(5)<br>C(6)                                               | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$ <b>3.</b> Anisotropic<br>U11<br>0.0236(3)<br>0.0255(6)<br>0.0245(6)<br>0.153(5)<br>0.211(8)<br>0.245(9)<br>0.150(7)<br>0.035(2)<br>0.071(4)<br>0.029(2)<br>0.032(2)<br>0.051(3)<br>0.059(3)<br>0.034(2)                                                                                                 | $(bb^*)^2 + U_{33}(cc^*)$<br>e displacemen<br>U22<br>0.0343(3)<br>0.0327(7)<br>0.0305(7)<br>0.081(3)<br>0.204(7)<br>0.158(7)<br>0.488(20)<br>0.046(3)<br>0.044(3)<br>0.042(3)<br>0.042(3)<br>0.055(3)<br>0.055(3)<br>0.062(4)<br>0.050(3)<br>0.041(3)                                                                         | $(1)^{2} + 2U_{12}(aa*b)^{2} + 2U_{12}(aa*b)^{2}$<br>t parameters U33<br>0.0253(3)<br>0.0271(6)<br>0.0305(6)<br>0.086(3)<br>0.115(5)<br>0.200(8)<br>0.197(8)<br>0.029(2)<br>0.100(5)<br>0.031(2)<br>0.036(3)<br>0.043(3)<br>0.043(3)<br>0.052(3)<br>0.045(3)<br>0.030(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} U_{12} \\ -0.0015(3) \\ -0.0024(5) \\ -0.0011(5) \\ 0.030(3) \\ 0.132(7) \\ -0.014(7) \\ 0.017(9) \\ -0.0041(20) \\ -0.010(4) \\ 0.008(2) \\ 0.001(2) \\ 0.003(3) \\ -0.006(3) \\ 0.006(3) \end{array}$                                                                                                                  | *cc*) $\cos \beta$ +<br>U13<br>0.0086(2)<br>0.0062(5)<br>0.0087(5)<br>-0.025(3)<br>0.004(5)<br>-0.061(7)<br>0.083(7)<br>0.0091(18)<br>0.028(4)<br>0.013(2)<br>0.015(2)<br>0.021(3)<br>0.035(3)<br>0.027(2)<br>0.0128(19)                                                                         | U23<br>-0.0035(3)<br>0.0002(5)<br>-0.0036(5)<br>0.007(3)<br>-0.020(5)<br>-0.056(6)<br>0.168(11)<br>-0.0078(18)<br>-0.020(4)<br>-0.0041(20)<br>-0.005(2)<br>-0.014(3)<br>-0.001(3)<br>-0.003(3)<br>0.000(2)                                                                                                                                                                                                      |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>5<br>46<br>47<br>48<br>49                   | $B_{eq} = 8/3 \pi^{2}(2U_{23}) (bb^{*}cc^{*})$ <b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)<br>P(2)<br>F(1)<br>F(2)<br>F(3)<br>F(4)<br>N(1)<br>N(2)<br>C(1)<br>C(2)<br>C(3)<br>C(4)<br>C(5)<br>C(6)<br>C(7)                                      | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$ 3. Anisotropic<br>U11<br>0.0236(3)<br>0.0255(6)<br>0.0245(6)<br>0.153(5)<br>0.211(8)<br>0.245(9)<br>0.150(7)<br>0.035(2)<br>0.071(4)<br>0.029(2)<br>0.032(2)<br>0.051(3)<br>0.059(3)<br>0.034(2)<br>0.038(3)                                                                                            | $(bb^*)^2 + U_{33}(cc^*)$<br>c displacemen<br>U22<br>0.0343(3)<br>0.0327(7)<br>0.0305(7)<br>0.081(3)<br>0.204(7)<br>0.158(7)<br>0.488(20)<br>0.046(3)<br>0.042(3)<br>0.042(3)<br>0.042(3)<br>0.055(3)<br>0.062(4)<br>0.050(3)<br>0.041(3)<br>0.051(3)                                                                         | $(1)^{2} + 2U_{12}(aa*b)^{2} + 2U_{12}(aa*b)^{2}$<br>t parameters U33<br>0.0253(3)<br>0.0271(6)<br>0.0305(6)<br>0.086(3)<br>0.115(5)<br>0.200(8)<br>0.197(8)<br>0.029(2)<br>0.100(5)<br>0.031(2)<br>0.036(3)<br>0.043(3)<br>0.043(3)<br>0.052(3)<br>0.045(3)<br>0.030(2)<br>0.041(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} U_{12} \\ -0.0015(3) \\ -0.0024(5) \\ -0.0011(5) \\ 0.030(3) \\ 0.132(7) \\ -0.014(7) \\ 0.017(9) \\ -0.0041(20) \\ -0.010(4) \\ 0.008(2) \\ 0.001(2) \\ 0.003(3) \\ -0.006(3) \\ 0.006(3) \\ -0.003(2) \end{array}$                                                                                                     | $\begin{array}{c} U_{13} \\ 0.0086(2) \\ 0.0062(5) \\ 0.0087(5) \\ -0.025(3) \\ 0.004(5) \\ -0.061(7) \\ 0.083(7) \\ 0.0091(18) \\ 0.028(4) \\ 0.013(2) \\ 0.015(2) \\ 0.021(3) \\ 0.035(3) \\ 0.027(2) \\ 0.0128(19) \\ 0.019(2) \end{array}$                                                   | U23<br>-0.0035(3)<br>0.0002(5)<br>-0.0036(5)<br>0.007(3)<br>-0.020(5)<br>-0.056(6)<br>0.168(11)<br>-0.0078(18)<br>-0.020(4)<br>-0.0041(20)<br>-0.004(2)<br>-0.003(3)<br>0.000(2)<br>-0.004(2)                                                                                                                                                                                                                   |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>546<br>47<br>48<br>950                      | $B_{eq} = 8/3 \pi^{2}(2U_{23}) (bb*cc*)$ <b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)<br>P(2)<br>F(1)<br>F(2)<br>F(3)<br>F(4)<br>N(1)<br>N(2)<br>C(1)<br>C(2)<br>C(3)<br>C(4)<br>C(5)<br>C(6)<br>C(7)<br>C(8)                                    | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$ 3. Anisotropic<br>U11<br>0.0236(3)<br>0.0255(6)<br>0.0245(6)<br>0.153(5)<br>0.211(8)<br>0.245(9)<br>0.150(7)<br>0.035(2)<br>0.071(4)<br>0.029(2)<br>0.032(2)<br>0.051(3)<br>0.059(3)<br>0.045(3)<br>0.034(2)<br>0.038(3)<br>0.082(5)                                                                    | $(bb^*)^2 + U_{33}(cc^*)$<br>c displacemen<br>U22<br>0.0343(3)<br>0.0327(7)<br>0.0305(7)<br>0.081(3)<br>0.204(7)<br>0.158(7)<br>0.488(20)<br>0.046(3)<br>0.094(5)<br>0.042(3)<br>0.042(3)<br>0.042(3)<br>0.055(3)<br>0.062(4)<br>0.050(3)<br>0.041(3)<br>0.051(3)<br>0.082(5)                                                 | $(1)^{2} + 2U_{12}(aa*b)^{2} + 2U_{12}(aa*b)^{2}$<br>(t parameters U33<br>0.0253(3)<br>0.0271(6)<br>0.0305(6)<br>0.086(3)<br>0.115(5)<br>0.200(8)<br>0.197(8)<br>0.029(2)<br>0.100(5)<br>0.031(2)<br>0.036(3)<br>0.043(3)<br>0.043(3)<br>0.045(3)<br>0.045(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} U_{12} \\ -0.0015(3) \\ -0.0024(5) \\ -0.0011(5) \\ 0.030(3) \\ 0.132(7) \\ -0.014(7) \\ 0.017(9) \\ -0.0041(20) \\ -0.010(4) \\ 0.008(2) \\ 0.001(2) \\ 0.003(3) \\ -0.006(3) \\ 0.004(3) \\ 0.003(2) \\ -0.002(4) \end{array}$                                                                                         |                                                                                                                                                                                                                                                                                                  | U23<br>-0.0035(3)<br>0.0002(5)<br>-0.0036(5)<br>0.007(3)<br>-0.020(5)<br>-0.056(6)<br>0.168(11)<br>-0.0078(18)<br>-0.020(4)<br>-0.0041(20)<br>-0.005(2)<br>-0.014(3)<br>-0.003(3)<br>0.000(2)<br>-0.004(2)<br>-0.006(3)                                                                                                                                                                                         |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>50<br>51                                    | $B_{eq} = 8/3 \pi^{2}(2U_{23}) (bb*cc*)$ <b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)<br>P(2)<br>F(1)<br>F(2)<br>F(3)<br>F(4)<br>N(1)<br>N(2)<br>C(1)<br>C(2)<br>C(3)<br>C(4)<br>C(5)<br>C(6)<br>C(7)<br>C(8)<br>C(9)                            | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$ 3. Anisotropic<br>U11<br>0.0236(3)<br>0.0255(6)<br>0.0245(6)<br>0.153(5)<br>0.211(8)<br>0.245(9)<br>0.150(7)<br>0.035(2)<br>0.071(4)<br>0.029(2)<br>0.032(2)<br>0.051(3)<br>0.059(3)<br>0.045(3)<br>0.034(2)<br>0.038(3)<br>0.082(5)<br>0.035(3)                                                        | $(bb^*)^2 + U_{33}(cc^*)$<br>c displacemen<br>U22<br>0.0343(3)<br>0.0327(7)<br>0.0305(7)<br>0.081(3)<br>0.204(7)<br>0.158(7)<br>0.488(20)<br>0.046(3)<br>0.046(3)<br>0.094(5)<br>0.042(3)<br>0.042(3)<br>0.055(3)<br>0.055(3)<br>0.062(4)<br>0.050(3)<br>0.041(3)<br>0.051(3)<br>0.082(5)<br>0.045(3)                         | $(1)^{2} + 2U_{12}(aa*b)^{2} + 2U_{12}(aa*b)^{2}$<br>(t parameters U33<br>0.0253(3)<br>0.0271(6)<br>0.0305(6)<br>0.086(3)<br>0.115(5)<br>0.200(8)<br>0.197(8)<br>0.029(2)<br>0.100(5)<br>0.031(2)<br>0.036(3)<br>0.043(3)<br>0.045(3)<br>0.045(3)<br>0.045(3)<br>0.045(3)<br>0.045(3)<br>0.035(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} U_{12} \\ -0.0015(3) \\ -0.0024(5) \\ -0.0011(5) \\ 0.030(3) \\ 0.132(7) \\ -0.014(7) \\ 0.017(9) \\ -0.0041(20) \\ -0.010(4) \\ 0.008(2) \\ 0.001(2) \\ 0.001(2) \\ 0.003(3) \\ -0.006(3) \\ 0.004(3) \\ 0.002(4) \\ -0.004(3) \end{array}$                                                                             |                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} U_{23} \\ \begin{array}{c} -0.0035(3) \\ 0.0002(5) \\ -0.0036(5) \\ 0.007(3) \\ -0.020(5) \\ -0.056(6) \\ 0.168(11) \\ -0.0078(18) \\ -0.020(4) \\ -0.0041(20) \\ -0.005(2) \\ -0.011(3) \\ -0.003(3) \\ 0.000(2) \\ -0.004(2) \\ -0.006(3) \\ 0.005(2) \end{array}$                                                                                                                          |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>30<br>41<br>42<br>43<br>44<br>50<br>51<br>52                                    | $B_{eq} = 8/3 \pi^{2}(2U_{23}) (bb*cc*)$ <b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)<br>P(2)<br>F(1)<br>F(2)<br>F(3)<br>F(4)<br>N(1)<br>N(2)<br>C(1)<br>C(2)<br>C(3)<br>C(4)<br>C(5)<br>C(6)<br>C(7)<br>C(8)<br>C(9)<br>C(10)                   | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$ <b>3.</b> Anisotropic<br>U11<br>0.0236(3)<br>0.0255(6)<br>0.0245(6)<br>0.153(5)<br>0.211(8)<br>0.245(9)<br>0.150(7)<br>0.035(2)<br>0.071(4)<br>0.029(2)<br>0.032(2)<br>0.051(3)<br>0.045(3)<br>0.034(2)<br>0.038(3)<br>0.082(5)<br>0.035(3)<br>0.041(3)                                                 | $(bb^*)^2 + U_{33}(cc^*)$<br>c displacemen<br>U22<br>0.0343(3)<br>0.0327(7)<br>0.0305(7)<br>0.081(3)<br>0.204(7)<br>0.158(7)<br>0.488(20)<br>0.046(3)<br>0.094(5)<br>0.042(3)<br>0.042(3)<br>0.055(3)<br>0.055(3)<br>0.062(4)<br>0.050(3)<br>0.041(3)<br>0.051(3)<br>0.082(5)<br>0.045(3)<br>0.037(3)                         | $(1)^{2} + 2U_{12}(aa*b)^{2} + 2U_{12}(aa*b)^{2}$<br>(t parameters U33<br>0.0253(3)<br>0.0271(6)<br>0.0305(6)<br>0.086(3)<br>0.115(5)<br>0.200(8)<br>0.197(8)<br>0.029(2)<br>0.100(5)<br>0.031(2)<br>0.036(3)<br>0.043(3)<br>0.045(3)<br>0.045(3)<br>0.045(3)<br>0.045(3)<br>0.035(3)<br>0.041(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} U_{12} \\ -0.0015(3) \\ -0.0024(5) \\ -0.0011(5) \\ 0.030(3) \\ 0.132(7) \\ -0.014(7) \\ 0.017(9) \\ -0.0041(20) \\ -0.010(4) \\ 0.008(2) \\ 0.001(2) \\ 0.003(3) \\ -0.006(3) \\ 0.006(3) \\ -0.003(2) \\ -0.002(4) \\ -0.004(3) \\ -0.001(2) \end{array}$                                                              | $\begin{array}{c} U_{13}\\ 0.0086(2)\\ 0.0062(5)\\ 0.0087(5)\\ -0.025(3)\\ 0.004(5)\\ -0.061(7)\\ 0.083(7)\\ 0.0091(18)\\ 0.028(4)\\ 0.013(2)\\ 0.015(2)\\ 0.021(3)\\ 0.027(2)\\ 0.0128(19)\\ 0.019(2)\\ 0.039(3)\\ 0.014(2)\\ 0.011(2)\\ \end{array}$                                           | $\begin{array}{c} U_{23} \\ -0.0035(3) \\ 0.0002(5) \\ -0.0036(5) \\ 0.007(3) \\ -0.020(5) \\ -0.056(6) \\ 0.168(11) \\ -0.0078(18) \\ -0.020(4) \\ -0.0041(20) \\ -0.0041(20) \\ -0.005(2) \\ -0.011(3) \\ -0.003(3) \\ 0.000(2) \\ -0.004(2) \\ -0.006(3) \\ 0.005(2) \\ -0.012(2) \end{array}$                                                                                                               |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>30<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>9<br>50<br>51<br>52<br>53 | $B_{eq} = 8/3 \pi^{2}(2U_{23}) (bb*cc*)$ <b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)<br>P(2)<br>F(1)<br>F(2)<br>F(3)<br>F(4)<br>N(1)<br>N(2)<br>C(1)<br>C(2)<br>C(3)<br>C(4)<br>C(5)<br>C(6)<br>C(7)<br>C(8)<br>C(9)<br>C(10)<br>C(11)          | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$ <b>3.</b> Anisotropic<br>U11<br>0.0236(3)<br>0.0255(6)<br>0.0245(6)<br>0.153(5)<br>0.211(8)<br>0.245(9)<br>0.150(7)<br>0.035(2)<br>0.071(4)<br>0.029(2)<br>0.032(2)<br>0.051(3)<br>0.045(3)<br>0.045(3)<br>0.045(3)<br>0.038(3)<br>0.082(5)<br>0.035(3)<br>0.041(3)<br>0.027(2)                         | $(bb^*)^2 + U_{33}(cc^*)$<br>c displacemen<br>U22<br>0.0343(3)<br>0.0327(7)<br>0.0305(7)<br>0.081(3)<br>0.204(7)<br>0.158(7)<br>0.488(20)<br>0.046(3)<br>0.044(3)<br>0.094(5)<br>0.042(3)<br>0.042(3)<br>0.055(3)<br>0.055(3)<br>0.062(4)<br>0.050(3)<br>0.041(3)<br>0.051(3)<br>0.082(5)<br>0.045(3)<br>0.037(3)<br>0.038(2) | $(1)^{2} + 2U_{12}(aa*b)^{2} + 2U_{12}(aa*b)^{2}$<br>t parameters U33<br>0.0253(3)<br>0.0271(6)<br>0.0305(6)<br>0.086(3)<br>0.115(5)<br>0.200(8)<br>0.197(8)<br>0.029(2)<br>0.100(5)<br>0.031(2)<br>0.036(3)<br>0.043(3)<br>0.043(3)<br>0.045(3)<br>0.045(3)<br>0.045(3)<br>0.045(3)<br>0.045(3)<br>0.041(3)<br>0.041(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} U_{12} \\ -0.0015(3) \\ -0.0024(5) \\ -0.0011(5) \\ 0.030(3) \\ 0.132(7) \\ -0.014(7) \\ 0.017(9) \\ -0.0041(20) \\ -0.010(4) \\ 0.008(2) \\ 0.001(2) \\ 0.003(3) \\ -0.006(3) \\ 0.006(3) \\ -0.003(2) \\ -0.002(4) \\ -0.001(2) \\ 0.004(3) \\ -0.001(2) \\ 0.004(3) \\ \end{array}$                                   | $\begin{array}{c} U_{13} \\ 0.0086(2) \\ 0.0062(5) \\ 0.0087(5) \\ -0.025(3) \\ 0.004(5) \\ -0.061(7) \\ 0.083(7) \\ 0.0091(18) \\ 0.028(4) \\ 0.013(2) \\ 0.015(2) \\ 0.021(3) \\ 0.027(2) \\ 0.0128(19) \\ 0.019(2) \\ 0.039(3) \\ 0.014(2) \\ 0.0058(19) \end{array}$                         | $\begin{array}{c} U_{23} \\ \text{-}0.0035(3) \\ 0.0002(5) \\ \text{-}0.0036(5) \\ 0.007(3) \\ \text{-}0.020(5) \\ \text{-}0.056(6) \\ 0.168(11) \\ \text{-}0.0078(18) \\ \text{-}0.020(4) \\ \text{-}0.0041(20) \\ \text{-}0.0041(20) \\ \text{-}0.005(2) \\ \text{-}0.011(3) \\ \text{-}0.003(3) \\ 0.000(2) \\ \text{-}0.004(2) \\ \text{-}0.006(3) \\ 0.005(2) \\ \text{-}0.012(2) \\ 0.004(3) \end{array}$ |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>42<br>43<br>44<br>50<br>51<br>52<br>53<br>54                        | $B_{eq} = 8/3 \pi^{2}(2U_{23}) (bb*cc*)$ <b>Table S4-3</b><br>atom<br>Ni(1)<br>P(1)<br>P(2)<br>F(1)<br>F(2)<br>F(3)<br>F(4)<br>N(1)<br>N(2)<br>C(1)<br>C(2)<br>C(3)<br>C(4)<br>C(5)<br>C(6)<br>C(7)<br>C(8)<br>C(9)<br>C(10)<br>C(11)<br>C(12) | $(U_{11}(aa^*)^2 + U_{22})\cos \alpha)$ <b>3.</b> Anisotropic<br>U11<br>0.0236(3)<br>0.0255(6)<br>0.0245(6)<br>0.153(5)<br>0.211(8)<br>0.245(9)<br>0.150(7)<br>0.035(2)<br>0.071(4)<br>0.029(2)<br>0.032(2)<br>0.051(3)<br>0.045(3)<br>0.045(3)<br>0.045(3)<br>0.038(3)<br>0.045(3)<br>0.035(2)<br>0.035(3)<br>0.041(3)<br>0.027(2)<br>0.048(3) | $(bb^*)^2 + U_{33}(cc^*)$<br>c displacemen<br>U22<br>0.0343(3)<br>0.0327(7)<br>0.0305(7)<br>0.081(3)<br>0.204(7)<br>0.158(7)<br>0.488(20)<br>0.046(3)<br>0.046(3)<br>0.094(5)<br>0.042(3)<br>0.042(3)<br>0.055(3)<br>0.055(3)<br>0.062(4)<br>0.050(3)<br>0.041(3)<br>0.082(5)<br>0.045(3)<br>0.037(3)<br>0.038(2)<br>0.056(4) | $(1)^{2} + 2U_{12}(aa*b)^{2} + 2U_{12}(aa*b)^{2}$<br>(t parameters U33<br>0.0253(3)<br>0.0271(6)<br>0.0305(6)<br>0.086(3)<br>0.115(5)<br>0.200(8)<br>0.197(8)<br>0.029(2)<br>0.100(5)<br>0.031(2)<br>0.036(3)<br>0.043(3)<br>0.043(3)<br>0.045(3)<br>0.045(3)<br>0.045(3)<br>0.045(3)<br>0.045(3)<br>0.045(3)<br>0.045(3)<br>0.041(2)<br>0.075(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} U_{12} \\ -0.0015(3) \\ -0.0024(5) \\ -0.0011(5) \\ 0.030(3) \\ 0.132(7) \\ -0.014(7) \\ 0.017(9) \\ -0.0041(20) \\ -0.010(4) \\ 0.008(2) \\ 0.001(2) \\ 0.003(3) \\ -0.006(3) \\ 0.006(3) \\ -0.003(2) \\ -0.002(4) \\ -0.001(2) \\ 0.004(3) \\ -0.001(2) \\ 0.004(3) \\ -0.001(2) \\ 0.004(3) \\ 0.019(3) \end{array}$ | $\begin{array}{c} U_{13} \\ 0.0086(2) \\ 0.0062(5) \\ 0.0087(5) \\ -0.025(3) \\ 0.004(5) \\ -0.061(7) \\ 0.083(7) \\ 0.0091(18) \\ 0.028(4) \\ 0.013(2) \\ 0.015(2) \\ 0.021(3) \\ 0.027(2) \\ 0.0128(19) \\ 0.019(2) \\ 0.039(3) \\ 0.014(2) \\ 0.011(2) \\ 0.0058(19) \\ 0.015(3) \end{array}$ | $\begin{array}{c} U_{23} \\ \text{-}0.0035(3) \\ 0.0002(5) \\ \text{-}0.0036(5) \\ 0.007(3) \\ \text{-}0.020(5) \\ \text{-}0.056(6) \\ 0.168(11) \\ \text{-}0.0078(18) \\ \text{-}0.020(4) \\ \text{-}0.0041(20) \\ \text{-}0.0041(20) \\ \text{-}0.005(2) \\ \text{-}0.014(3) \\ \text{-}0.003(3) \\ 0.000(2) \\ \text{-}0.004(3) \\ 0.004(3) \\ 0.016(3) \end{array}$                                         |

| C(14)             | 0.039(3)                                                                                                                                                                      | 0.081(5)                                             | 0.057(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.010(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.008(3)                                            | 0.018(3)                                             |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| C(15)             | 0.054(3)                                                                                                                                                                      | 0.035(3)                                             | 0.033(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.005(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.010(2)                                             | -0.007(2)                                            |
| C(16)             | 0.062(4)                                                                                                                                                                      | 0.043(3)                                             | 0.068(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.013(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.020(3)                                             | 0.001(3)                                             |
| C(17)             | 0.080(5)                                                                                                                                                                      | 0.045(3)                                             | 0.062(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.013(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.035(4)                                             | -0.009(3)                                            |
| C(18)             | 0.054(3)                                                                                                                                                                      | 0.041(3)                                             | 0.071(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.008(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.013(3)                                             | -0.002(3)                                            |
| C(19)             | 0.031(2)                                                                                                                                                                      | 0.041(3)                                             | 0.032(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.002(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0001(18)                                           | 0.008(3)                                             |
| C(20)             | 0.048(3)                                                                                                                                                                      | 0.050(3)                                             | 0.044(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.002(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.009(3)                                             | 0.009(3)                                             |
| C(21)             | 0.041(3)                                                                                                                                                                      | 0.042(3)                                             | 0.054(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.013(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.010(3)                                             | 0.000(3)                                             |
| C(22)             | 0.030(3)                                                                                                                                                                      | 0.059(3)                                             | 0.051(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.001(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.008(2)                                             | -0.008(3)                                            |
| C(23)             | 0.036(3)                                                                                                                                                                      | 0.035(3)                                             | 0.054(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.003(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.017(3)                                             | 0.005(2)                                             |
| C(24)             | 0.036(3)                                                                                                                                                                      | 0.056(4)                                             | 0.053(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.008(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.026(3)                                             | 0.002(3)                                             |
| C(25)             | 0.051(3)                                                                                                                                                                      | 0.036(3)                                             | 0.093(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.012(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.034(4)                                             | -0.007(3)                                            |
| C(26)             | 0.057(4)                                                                                                                                                                      | 0.045(3)                                             | 0.066(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.007(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.028(3)                                             | 0.024(3)                                             |
| C(27)             | 0.048(4)                                                                                                                                                                      | 0.071(4)                                             | 0.058(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.007(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.017(3)                                             | -0.009(3)                                            |
| C(28)             | 0.078(5)                                                                                                                                                                      | 0.120(7)                                             | 0.084(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.019(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.030(5)                                             | -0.033(5)                                            |
| B(1)              | 0.061(4)                                                                                                                                                                      | 0.070(5)                                             | 0.043(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.006(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.007(4)                                             | -0.012(4)                                            |
|                   |                                                                                                                                                                               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                                                      |
| The general t     | emperature facto                                                                                                                                                              | r expression: exp                                    | $(-2\pi^2(a^{*2}U_{11}h^2))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $^{2} + b*^{2}U_{22}k^{2} + c^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                              | $^{*2}U_{33}l^2 + 2a*b*l$                            | $J_{12}hk +$                                         |
| $2a*c*U_{13}hl +$ | + 2b*c*U23kl))                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                                                      |
|                   | C(14)<br>C(15)<br>C(16)<br>C(17)<br>C(18)<br>C(20)<br>C(21)<br>C(22)<br>C(23)<br>C(24)<br>C(25)<br>C(26)<br>C(27)<br>C(28)<br>B(1)<br>The general t<br>$2a^*c^*U_{13}hl^{-1}$ | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | C(14) $0.039(3)$ $0.081(5)$ $C(15)$ $0.054(3)$ $0.035(3)$ $C(16)$ $0.062(4)$ $0.043(3)$ $C(17)$ $0.080(5)$ $0.045(3)$ $C(18)$ $0.054(3)$ $0.041(3)$ $C(19)$ $0.031(2)$ $0.041(3)$ $C(20)$ $0.048(3)$ $0.050(3)$ $C(21)$ $0.041(3)$ $0.042(3)$ $C(22)$ $0.030(3)$ $0.059(3)$ $C(23)$ $0.036(3)$ $0.035(3)$ $C(24)$ $0.036(3)$ $0.036(3)$ $C(25)$ $0.051(3)$ $0.036(3)$ $C(26)$ $0.057(4)$ $0.045(3)$ $C(27)$ $0.048(4)$ $0.071(4)$ $C(28)$ $0.078(5)$ $0.120(7)$ $B(1)$ $0.061(4)$ $0.070(5)$ | C(14)0.039(3)0.081(5)0.057(4)C(15)0.054(3)0.035(3)0.033(3)C(16)0.062(4)0.043(3)0.068(4)C(17)0.080(5)0.045(3)0.062(4)C(18)0.054(3)0.041(3)0.071(4)C(19)0.031(2)0.041(3)0.032(2)C(20)0.048(3)0.050(3)0.044(3)C(21)0.041(3)0.042(3)0.054(3)C(22)0.030(3)0.059(3)0.054(3)C(23)0.036(3)0.035(3)0.054(3)C(24)0.036(3)0.056(4)0.053(3)C(25)0.051(3)0.036(3)0.093(5)C(26)0.057(4)0.045(3)0.066(4)C(27)0.048(4)0.071(4)0.058(4)C(28)0.078(5)0.120(7)0.084(6)B(1)0.061(4)0.070(5)0.043(4) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

| 21 | Table | <b>S4-4</b> . | Bond | lengths | (Å) | ļ |
|----|-------|---------------|------|---------|-----|---|
|    |       |               |      | - /     | •   |   |

| 22 | atom     | atom      | dist       | ance       | aton  | ı     | atom  | distance   |
|----|----------|-----------|------------|------------|-------|-------|-------|------------|
| 23 | Ni(1)    | P(1)      | 2.20       | 068(13)    | Ni(1  | )     | P(2)  | 2.2094(12) |
| 24 | Ni(1)    | N(1)      | 1.90       | 01(5)      | Ni(1  | )     | C(1)  | 1.914(6)   |
| 25 | P(1)     | C(9)      | 1.82       | 28(6)      | P(1)  |       | C(11) | 1.867(5)   |
| 26 | P(1)     | C(15)     | 1.8        | 79(5)      | P(2)  |       | C(10) | 1.828(6)   |
| 27 | P(2)     | C(19)     | 1.85       | 53(5)      | P(2)  |       | C(23) | 1.884(6)   |
| 28 | F(1)     | B(1)      | 1.30       | 09(8)      | F(2)  |       | B(1)  | 1.309(12)  |
| 29 | F(3)     | B(1)      | 1.20       | 59(11)     | F(4)  |       | B(1)  | 1.295(15)  |
| 30 | N(1)     | C(7)      | 1.12       | 22(8)      | N(2)  | )     | C(27) | 1.106(11)  |
| 31 | C(1)     | C(2)      | 1.4        | 17(6)      | C(1)  |       | C(6)  | 1.413(7)   |
| 32 | C(2)     | C(3)      | 1.39       | 99(9)      | C(2)  |       | C(10) | 1.480(8)   |
| 33 | C(3)     | C(4)      | 1.3        | 70(9)      | C(4)  |       | C(5)  | 1.380(8)   |
| 34 | C(5)     | C(6)      | 1.39       | 95(8)      | C(6)  | 1     | C(9)  | 1.502(7)   |
| 35 | C(7)     | C(8)      | 1.47       | 76(9)      | C(11  | l)    | C(12) | 1.533(9)   |
| 36 | C(11)    | C(13)     | 1.52       | 28(9)      | C(11  | l)    | C(14) | 1.536(7)   |
| 37 | C(15)    | C(16)     | 1.54       | 40(9)      | C(15  | 5)    | C(17) | 1.532(9)   |
| 38 | C(15)    | C(18)     | 1.52       | 22(7)      | C(19  | 9)    | C(20) | 1.536(8)   |
| 39 | C(19)    | C(21)     | 1.54       | 49(8)      | C(19  | 9)    | C(22) | 1.546(6)   |
| 40 | C(23)    | C(24)     | 1.53       | 32(9)      | C(23  | 3)    | C(25) | 1.527(7)   |
| 41 | C(23)    | C(26)     | 1.53       | 36(7)      | C(27  | 7)    | C(28) | 1.456(11)  |
| 42 |          |           |            |            |       |       |       |            |
| 43 | Table S4 | 4-5. Bond | angles (°) |            |       |       |       |            |
| 44 | atom     | atom      | atom       | angle      | atom  | atom  | atom  | angle      |
| 45 | P(1)     | Ni(1)     | P(2)       | 168.96(6)  | P(1)  | Ni(1) | N(1)  | 95.57(12)  |
| 46 | P(1)     | Ni(1)     | C(1)       | 84.88(14)  | P(2)  | Ni(1) | N(1)  | 95.39(12)  |
| 47 | P(2)     | Ni(1)     | C(1)       | 84.25(14)  | N(1)  | Ni(1) | C(1)  | 176.97(18) |
| 48 | Ni(1)    | P(1)      | C(9)       | 103.17(15) | Ni(1) | P(1)  | C(11) | 111.94(18) |
| 49 | Ni(1)    | P(1)      | C(15)      | 117.02(18) | C(9)  | P(1)  | C(11) | 105.5(2)   |
| 50 | C(9)     | P(1)      | C(15)      | 103.7(3)   | C(11) | P(1)  | C(15) | 113.8(2)   |
| 51 | Ni(1)    | P(2)      | C(10)      | 102.50(16) | Ni(1) | P(2)  | C(19) | 110.98(18) |
| 52 | Ni(1)    | P(2)      | C(23)      | 118.36(15) | C(10) | P(2)  | C(19) | 106.3(2)   |
| 53 | C(10)    | P(2)      | C(23)      | 104.8(3)   | C(19) | P(2)  | C(23) | 112.4(2)   |
| 54 | Ni(1)    | N(1)      | C(7)       | 175.0(4)   | Ni(1) | C(1)  | C(2)  | 121.6(4)   |
| 55 | Ni(1)    | C(1)      | C(6)       | 121.6(3)   | C(2)  | C(1)  | C(6)  | 116.8(5)   |

| 1  | C(1)  | C(2)                              | C(3)  | 120.8(5) | C(1)  | C(2)            | C(10) | 119.1(5) |
|----|-------|-----------------------------------|-------|----------|-------|-----------------|-------|----------|
| 2  | C(3)  | C(2)                              | C(10) | 120.1(4) | C(2)  | C(3)            | C(4)  | 120.7(5) |
| 3  | C(3)  | C(4)                              | C(5)  | 120.1(6) | C(4)  | C(5)            | C(6)  | 120.3(5) |
| 4  | C(1)  | C(6)                              | C(5)  | 121.3(4) | C(1)  | C(6)            | C(9)  | 119.4(5) |
| 5  | C(5)  | C(6)                              | C(9)  | 119.2(5) | N(1)  | C(7)            | C(8)  | 178.3(6) |
| 6  | P(1)  | C(9)                              | C(6)  | 106.3(4) | P(2)  | C(10)           | C(2)  | 106.4(4) |
| 7  | P(1)  | C(11)                             | C(12) | 106.9(3) | P(1)  | C(11)           | C(13) | 110.5(3) |
| 8  | P(1)  | C(11)                             | C(14) | 113.9(4) | C(12) | C(11)           | C(13) | 106.8(5) |
| 9  | C(12) | C(11)                             | C(14) | 108.9(5) | C(13) | C(11)           | C(14) | 109.6(4) |
| 10 | P(1)  | C(15)                             | C(16) | 112.3(4) | P(1)  | C(15)           | C(17) | 111.4(4) |
| 11 | P(1)  | C(15)                             | C(18) | 105.4(3) | C(16) | C(15)           | C(17) | 108.2(4) |
| 12 | C(16) | C(15)                             | C(18) | 110.0(5) | C(17) | C(15)           | C(18) | 109.4(5) |
| 13 | P(2)  | C(19)                             | C(20) | 107.7(3) | P(2)  | C(19)           | C(21) | 109.7(3) |
| 14 | P(2)  | C(19)                             | C(22) | 114.0(4) | C(20) | C(19)           | C(21) | 109.0(5) |
| 15 | C(20) | C(19)                             | C(22) | 106.9(4) | C(21) | C(19)           | C(22) | 109.3(4) |
| 16 | P(2)  | C(23)                             | C(24) | 112.4(4) | P(2)  | C(23)           | C(25) | 111.9(4) |
| 17 | P(2)  | C(23)                             | C(26) | 105.2(4) | C(24) | C(23)           | C(25) | 107.7(5) |
| 18 | C(24) | C(23)                             | C(26) | 109.6(5) | C(25) | C(23)           | C(26) | 109.9(4) |
| 19 | N(2)  | C(27)                             | C(28) | 179.7(8) | F(1)  | B(1)            | F(2)  | 114.2(7) |
| 20 | F(1)  | B(1)                              | F(3)  | 114.3(8) | F(1)  | B(1)            | F(4)  | 109.3(8) |
| 21 | F(2)  | $\mathbf{B}(1)$                   | F(3)  | 110.5(8) | F(2)  | $\mathbf{B}(1)$ | F(4)  | 101.8(9) |
| 22 | F(3)  | $\mathbf{B}(1)$                   | F(4)  | 105.6(9) | ( )   | . /             | ~ /   |          |
|    | × /   | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | ~ ~ ~ | × /      |       |                 |       |          |

#### 5. Kinetics for proton reduction

- Method for EC<sub>cat</sub> rate determination obtained from DuBois *et al.* 3 4 Pool, D. H.; DuBois, D. L. J. Organomet. Chem., 2009, 694, 2858-2865. a. 5 b. Wilson, A. D.; Newell, R. H.; McNevin, M. J.; Muckerman, J. T.; Rakowski DuBois, 6 M.; DuBois, D. L. J. Am. Chem. Soc., 2006, 128, 358-366. 7 8 For a diffusion limited catalytic process that occurs at high enough [H<sup>+</sup>] that the 9 concentration remains unchanged, the observed current obeys the following equation:  $i_c = nFA [cat] \sqrt{Dk[H^+]^2}$ 10 (1) 11 12 For a reversible one e<sup>-</sup> wave, the current observed can be expressed as: 13  $i_p = 0.443FA \ [cat] \sqrt{\frac{FvD}{RT}}$ 14 (2)15 16 Dividing (1) by (2) the following expression is obtained:  $\frac{i_c}{i_p} = \frac{n}{0.4463} \sqrt{\frac{RT}{F}} \sqrt{\frac{k[H^+]^2}{v}} = 0.72 \sqrt{\frac{k[H^+]^2}{v}}$ (3) 17 18 19 A = area of the electrode, D is the diffusion coefficient of the catalyst (D for the oxidized)20 and reduced forms are assumed equal), n = 2 for H<sub>2</sub> production, R = 8.314 J/(mol K), F = 21 96485 C/mol, v scan rate in V/s, k is the third order rate constant. 22 Linearity of : 23 1. plots of  $i_c/i_p$  vs acid concentration confirms the electrocatalytic process is second 24 order in acid 25 2. plots of  $i_c$  vs [catalyst] confirms the process is first order in catalyst 26 27 The rate law for the third order process is derived as:  $rate = k[H^+]^2[cat]$ <u>2</u>8 30 Where  $\frac{i_p}{i_p}$  did not correspond with the onset of catalysis, the metal centered reduction 31 peak current at the respective scan rate was taken as  $i_{p}$ . 32 33
- 34



**1** Figure S5-1. Plot of  $i_c$  currents vs. concentration of catalyst 1 at 100 mV/s,  $[H^+]=4mM$ .

2

5

- 3 Figure S5-2. Plots of  $i_c / i_p$  ratios vs. acid concentration at 4mM catalyst 1 at 100 mV/s,
- 4 200 mV/s and 300 mV/s.



Figure S5-3. Plots of the slopes of i<sub>c</sub> / i<sub>p</sub> ratios vs. acid concentration in Figure S5-2 vs.
 1/(sqrt (v)).



Figure S5-4. Plot of  $i_c$  currents vs. concentration of catalyst 2 at 100 mV/s,  $[H^+]=4mM$ . 



- Figure S5-5. Plots of  $i_c$  /  $i_p$  ratios vs. acid concentration at 4mM catalyst 2 at 100 mV/s, 200 mV/s, 300 mV/s, 400 mV/s and 500 mV/s.



- Figure S5-6. Plots of the slopes of  $i_c / i_p$  ratios vs. acid concentration in Figure S5-5 vs.
- 1/(sqrt (v)).



### 1 **Table S5-1** 2 Tabulated kine

| 1 $0.55*10^4$ $\pm 0.327*10^3$ $6.05$ $54.6$ $0.275$ $-0.370V$ $53.23$ $1.61$ $3.02$ 2 $2.90*10^4$ $\pm 1.7*10^3$ $8.31$ $209$ $1.045$ $-0.345V$ $122.74$ $5.1$ $4.15$ | Catalyst | k (M <sup>-2</sup> s <sup>-1</sup> ) | Error<br>value     | % error on<br>k | TOF<br>(s <sup>-1</sup> ) | Rate<br>(M s <sup>-1</sup> ) <sup>a</sup> | Potential at<br>1.5mA cm <sup>-2 b</sup> | Slope  | Numeric<br>error on<br>slope | % error<br>on slope |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------|--------------------|-----------------|---------------------------|-------------------------------------------|------------------------------------------|--------|------------------------------|---------------------|
| <b>2</b> $2.90*10^4 \pm 1.7*10^3$ 8.31 209 1.045 -0.345V 122.74 5.1 4.15                                                                                               | 1        | $0.55*10^4$                          | $\pm 0.327*10^{3}$ | 6.05            | 54.6                      | 0.275                                     | -0.370V                                  | 53.23  | 1.61                         | 3.02                |
|                                                                                                                                                                        | 2        | 2.90*10 <sup>4</sup>                 | $\pm 1.7*10^{3}$   | 8.31            | 209                       | 1.045                                     | -0.345V                                  | 122.74 | 5.1                          | 4.15                |

2 Tabulated kinetic data for catalysts 1 and 2.

| ٢ | ) |
|---|---|
| ć | ) |
|   |   |
|   |   |
|   |   |

a. calculated for 0.1 M H<sup>+</sup>, 5 mM catalyst b. as determined by plots of Current density vs. Potential constructed from a series of 60 s chronoamperometry experiments at progressively more negative potentials.

7

16

4 5 6

# 8 6. UV-vis of catholytes



### 1 7. Full Gaussian Reference and Computational Details

2

### 3 The full Gaussian reference is given below:

- 4 Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; 5 Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. 6 A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; 7 Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, 8 J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, 9 Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; 10 Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. 11 C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; 12 Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; 13 Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; 14 Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; 15 Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.;
- 16 Fox, D. J. Gaussian, Inc., Wallingford CT, **2009**.
- 17
- 18

19 **Table S7-1.** Relative energies of intermediates involved in the proton reduction cycle

20 with catalyst 2 in MeCN.

| •                                             |                         |                   |
|-----------------------------------------------|-------------------------|-------------------|
|                                               | ΔG( <mark>MeCN</mark> ) | ∆G(MeCN) vs. NHE  |
|                                               | [kcal/mol]              | [eV]              |
| [2-MeCN] <sup>+</sup>                         | 0                       | 0                 |
| [2-MeCN] <sup>0</sup>                         | -64.8                   | <mark>1.57</mark> |
| [2- MeCN] <sup>0</sup> after MeCN ligand loss | <mark>-69.7</mark>      | <mark>1.36</mark> |
| $[2-H]^+$                                     | -72.0                   | <mark>1.26</mark> |
| $[2-H]^{0}$                                   | -177.6                  | <mark>1.16</mark> |
| $[2-H_2]^+$                                   | -192.7                  | <mark>0.51</mark> |
| $[2-MeCN]^+ + H_2 - 2H^+ - 2e^-$              | -204.4                  | 0                 |

<sup>a</sup>Assumes a normal hydrogen electrode potential of 4.48 V in MeCN [Kelly, C. P.;
Cramer, C. J.; Truhlar, D. G. *J. Phys. Chem.*, *B* 2007, *111*, 408-422.].

 $[2-MeCN]^{0} + H^{+} \rightarrow [2-H]^{+} + MeCN$  $\Delta G(MeCN) = -7.2 \text{ kcal/mol}$ 

The 4-coordinate planar geometry of  $[2-H]^+$  was compared with the octahedral six coordinate geometry with two MeCN ligands for Ni<sup>III</sup>. The planar geometry is favored by 20.5 kcal/mol. The geometry must distort considerably to accommodate MeCN ligands.

 $[2-H]^+ + 2MeCN \rightarrow cis-[2-(MeCN)_2H]^+$  $\Delta G(MeCN) = 20.5 \text{ kcal/mol}$ 

35 36

32 33

34

24

25 26

 

 Table S7-2. Atomic coordinates of optimized geometries obtained at the DFT/B3LYP/LANL2DZ level of theory.

 1 2 3 4

[2- MeCN]<sup>+</sup>

| Ni           | 0.000271  | -0.139984 | -0.001124 |
|--------------|-----------|-----------|-----------|
| С            | -1.166322 | 3.959791  | 0.313195  |
| С            | -1.171597 | 2.548606  | 0.323444  |
| С            | 0.001036  | 1.80343   | -0.004332 |
| Ċ            | 1 174117  | 2 546443  | -0 335537 |
| Č            | 1 169642  | 3 957649  | -0 331917 |
| C            | 0.001852  | 4 667829  | -0.011017 |
| н            | -2 075163 | 4 503947  | 0.563712  |
| н            | 2.073103  | 4 50011   | -0 58/902 |
| н            | 0.00215   | 5 754634  | -0.013519 |
| C II         | 2 117     | 1 826563  | 0.711103  |
| C            | -2.447785 | 1.820505  | 0.711105  |
| C<br>D       | 2.449900  | 1.021/19  | -0./1943  |
| r<br>D       | 2.300013  | 0.048101  | -0.093070 |
| P<br>II      | -2.303419 | 0.0494    | 0.094/54  |
| п            | -2.54/8/9 | 1./88830  | 1.803424  |
| Н            | -3.346189 | 2.323613  | 0.326863  |
| H            | 3.34869   | 2.320232  | -0.33/849 |
| H            | 2.549951  | 1.778094  | -1.811593 |
| C            | 3.144147  | 0.013956  | 1.674994  |
| C            | 4.682699  | 0.169951  | 1.606749  |
| H            | 4.985878  | 1.075843  | 1.067277  |
| Н            | 5.074152  | 0.253744  | 2.629896  |
| Н            | 5.169642  | -0.692888 | 1.140052  |
| С            | 2.54597   | 1.192002  | 2.48951   |
| Н            | 1.453902  | 1.133814  | 2.554165  |
| Н            | 2.95184   | 1.151107  | 3.509546  |
| Н            | 2.806753  | 2.168676  | 2.067747  |
| С            | 2.768332  | -1.314585 | 2.381145  |
| Н            | 3.156929  | -2.195699 | 1.859623  |
| Н            | 3.196632  | -1.313516 | 3.392627  |
| Н            | 1.680584  | -1.41756  | 2.479544  |
| С            | 3.281775  | -1.006517 | -1.427602 |
| С            | 4.607413  | -0.320335 | -1.85189  |
| Н            | 5.324617  | -0.246994 | -1.029815 |
| Н            | 5.073779  | -0.921726 | -2.644817 |
| Н            | 4.447121  | 0.683254  | -2.260338 |
| С            | 3.59108   | -2.431674 | -0.907233 |
| Н            | 4.022171  | -3.02274  | -1.726846 |
| Н            | 4.322085  | -2.423745 | -0.09164  |
| Н            | 2.690336  | -2.949947 | -0.558535 |
| C            | 2 34265   | -1 098776 | -2 661152 |
| Ĥ            | 1 405463  | -1.614979 | -2.423181 |
| Н            | 2 092165  | -0 109927 | -3 065633 |
| H            | 2.092100  | -1 659885 | -3 458012 |
| C            | -3 147372 | 0.006546  | -1 671871 |
| Č            | _7 5/010  | 1 170605  | _2 493/15 |
| $\mathbf{c}$ | -2.57717  | 1.1/2023  | 2. IJJTTJ |

| H       -1.457347       1.119436       -2.560319         H       -2.957453       1.134776       -3.512346         C       -2.774893       -1.326156       -2.371837         H       -3.16409       -2.203639       -1.844543         H       -3.205443       -1.329959       -3.38235         H       -1.687577       -1.431522       -2.472093         C       -4.685633       0.164675       -1.601454         H       -5.07886       0.244981       -2.624207         H       -5.172756       -0.69583       -1.13057         H       -4.986856       1.072944       -1.064914         C       -3.278371       -0.996798       1.437851         C       -2.336819       -1.078704       2.670284         H       -1.398637       -1.593717       2.433435         H       -2.088463       -0.086731       3.068326         H       -2.840353       -1.636575       3.4714         C       -4.604089       -0.308772       1.858693         H       -5.323991       -0.246371       1.038046         H       -5.066645       -0.902371       2.659671         H       4.312824                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| H       -3.16409       -2.203639       -1.844543         H       -3.205443       -1.329959       -3.38235         H       -1.687577       -1.431522       -2.472093         C       -4.685633       0.164675       -1.601454         H       -5.07886       0.244981       -2.624207         H       -5.172756       -0.69583       -1.13057         H       -4.986856       1.072944       -1.064914         C       -3.278371       -0.996798       1.437851         C       -2.336819       -1.078704       2.670284         H       -1.398637       -1.593717       2.433435         H       -2.088463       -0.086731       3.068326         H       -2.840353       -1.636575       3.4714         C       -4.604089       -0.308772       1.858693         H       -2.840353       -1.636575       3.4714         C       -4.604089       -0.308772       1.858693         H       -5.323991       -0.246371       1.038046         H       -5.066645       -0.902371       2.659671         H       -4.445038       0.699719       2.255313         C       -3.586785 <td< td=""></td<>                                                           |
| H-3.205443-1.329959-3.38235H-1.687577-1.431522-2.472093C-4.6856330.164675-1.601454H-5.078860.244981-2.624207H-5.172756-0.69583-1.13057H-4.9868561.072944-1.064914C-3.278371-0.9967981.437851C-2.336819-1.0787042.670284H-1.398637-1.5937172.433435H-2.088463-0.0867313.068326H-2.840353-1.6365753.4714C-4.604089-0.3087721.858693H-5.323991-0.2463711.038046H-5.066645-0.9023712.659671H-4.4450380.6997192.255313C-3.586785-2.4265640.92982H-4.023713-3.0085661.75282H-4.312824-2.4261120.109759H-2.684327-2.9502910.593855N-0.001186-2.078309-0.002327C-0.003984-3.250749-0.005767C-0.007307-4.714622-0.009421H0.881953-5.09749-0.522794H-0.897181-5.094154-0.524047H-0.608227-5.0968811.017759Ni-0.0002261.668286-0.003948C1.1654692.425124-0.338652C1.1696863.839246-0.333625C0.00175                                                                                                                                                                                                                                                                                                                                                                  |
| H       -1.687577       -1.431522       -2.472093         C       -4.685633       0.164675       -1.601454         H       -5.07886       0.244981       -2.624207         H       -5.172756       -0.69583       -1.13057         H       -4.986856       1.072944       -1.064914         C       -3.278371       -0.996798       1.437851         C       -2.336819       -1.078704       2.670284         H       -1.398637       -1.593717       2.433435         H       -2.088463       -0.086731       3.068326         H       -2.840353       -1.636575       3.4714         C       -4.604089       -0.308772       1.858693         H       -5.323991       -0.246371       1.038046         H       -5.366785       -2.426564       0.92982         H       -4.023713       -3.008566       1.75282         H       -4.023713       -3.008566       1.75282         H       -2.684327       -2.950291       0.593855         N       -0.001186       -2.078309       -0.002327         C       -0.003984       -3.250749       -0.005767         C       -0.007307       <                                                                   |
| C         -4.685633         0.164675         -1.601454           H         -5.07886         0.244981         -2.624207           H         -5.172756         -0.69583         -1.13057           H         -4.986856         1.072944         -1.064914           C         -3.278371         -0.996798         1.437851           C         -2.336819         -1.078704         2.670284           H         -1.398637         -1.593717         2.433435           H         -2.088463         -0.086731         3.068326           H         -2.088463         -0.086731         3.068366           H         -2.840353         -1.636575         3.4714           C         -4.604089         -0.308772         1.858693           H         -5.323991         -0.246371         1.038046           H         -5.366645         -0.902371         2.659671           H         -4.445038         0.699719         2.255313           C         -3.586785         -2.426564         0.92982           H         -4.023713         -3.008566         1.75282           H         -4.312824         -2.426512         0.100759           H         -2.68 |
| H       -5.07886       0.244981       -2.624207         H       -5.172756       -0.69583       -1.13057         H       -4.986856       1.072944       -1.064914         C       -3.278371       -0.996798       1.437851         C       -2.336819       -1.078704       2.670284         H       -1.398637       -1.593717       2.433435         H       -2.088463       -0.086731       3.068326         H       -2.840353       -1.636575       3.4714         C       -4.604089       -0.308772       1.858693         H       -5.323991       -0.246371       1.038046         H       -5.323991       -0.246371       1.038046         H       -5.323991       -0.246371       1.038046         H       -5.323991       -0.246371       1.038046         H       -5.366785       -2.426564       0.92982         H       -4.023713       -3.008566       1.75282         H       -4.312824       -2.426512       0.109759         H       -2.684327       -2.950291       0.593855         N       -0.001186       -2.078309       -0.002327         C       -0.007307 <t< td=""></t<>                                                            |
| H       -5.172756       -0.69583       -1.13057         H       -4.986856       1.072944       -1.064914         C       -3.278371       -0.996798       1.437851         C       -2.336819       -1.078704       2.670284         H       -1.398637       -1.593717       2.433435         H       -2.088463       -0.086731       3.068326         H       -2.840353       -1.636575       3.4714         C       -4.604089       -0.308772       1.858693         H       -5.323991       -0.246371       1.038046         H       -5.366785       -2.426564       0.92982         H       -4.023713       -3.008566       1.75282         H       -4.312824       -2.426112       0.109759         H       -2.684327       -2.950291       0.593855         N       -0.001186       -2.078309       -0.002327         C       -0.007307       <                                                                   |
| H       -4.986856       1.072944       -1.064914         C       -3.278371       -0.996798       1.437851         C       -2.336819       -1.078704       2.670284         H       -1.398637       -1.593717       2.433435         H       -2.088463       -0.086731       3.068326         H       -2.840353       -1.636575       3.4714         C       -4.604089       -0.308772       1.858693         H       -5.323991       -0.246371       1.038046         H       -5.066645       -0.902371       2.659671         H       -4.445038       0.699719       2.255313         C       -3.586785       -2.426564       0.92982         H       -4.023713       -3.008566       1.75282         H       -4.312824       -2.426112       0.109759         H       -2.684327       -2.950291       0.593855         N       -0.001186       -2.078309       -0.002327         C       -0.007307       -4.714622       -0.009421         H       0.881953       -5.09749       -0.522794         H       -0.897181       -5.096881       1.017759         Ni       -0.000602                                                                          |
| C         -3.278371         -0.996798         1.437851           C         -2.336819         -1.078704         2.670284           H         -1.398637         -1.593717         2.433435           H         -2.088463         -0.086731         3.068326           H         -2.840353         -1.636575         3.4714           C         -4.604089         -0.308772         1.858693           H         -5.323991         -0.246371         1.038046           H         -5.066645         -0.902371         2.659671           H         -4.445038         0.699719         2.255313           C         -3.586785         -2.426564         0.92982           H         -4.023713         -3.008566         1.75282           H         -4.023713         -3.008566         1.75282           H         -4.312824         -2.426112         0.109759           H         -2.684327         -2.950291         0.593855           N         -0.001186         -2.078309         -0.002327           C         -0.007307         -4.714622         -0.009421           H         0.881953         -5.09749         -0.522794           H         -0. |
| C       -2.336819       -1.078704       2.670284         H       -1.398637       -1.593717       2.433435         H       -2.088463       -0.086731       3.068326         H       -2.840353       -1.636575       3.4714         C       -4.604089       -0.308772       1.858693         H       -5.323991       -0.246371       1.038046         H       -5.066645       -0.902371       2.659671         H       -4.445038       0.699719       2.255313         C       -3.586785       -2.426564       0.92982         H       -4.023713       -3.008566       1.75282         H       -4.312824       -2.426112       0.109759         H       -2.684327       -2.950291       0.593855         N       -0.001186       -2.078309       -0.002327         C       -0.007307       -4.714622       -0.009421         H       0.881953       -5.09749       -0.522794         H       -0.897181       -5.096881       1.017759         Ni       -0.000602       -0.325761       -0.000986         C       -1.164157       2.427353       0.328537         C       0.000226       <                                                                   |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| H-2.840353-1.6365753.4714C-4.604089-0.3087721.858693H-5.323991-0.2463711.038046H-5.066645-0.9023712.659671H-4.4450380.6997192.255313C-3.586785-2.4265640.92982H-4.023713-3.0085661.75282H-4.312824-2.4261120.109759H-2.684327-2.9502910.593855N-0.001186-2.078309-0.002327C-0.003984-3.250749-0.005767C-0.007307-4.714622-0.009421H0.881953-5.09749-0.522794H-0.897181-5.094154-0.524047H-0.008227-5.0968811.017759Ni-0.000261.668286-0.003948C1.1654692.425124-0.338652C1.1696863.839246-0.333625C0.0017564.552149-0.008433H-2.0749764.3882590.577067H2.0783954.384251-0.593227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| H       -5.323991       -0.246371       1.038046         H       -5.066645       -0.902371       2.659671         H       -4.445038       0.699719       2.255313         C       -3.586785       -2.426564       0.92982         H       -4.023713       -3.008566       1.75282         H       -4.023713       -3.008566       1.75282         H       -4.312824       -2.426112       0.109759         H       -2.684327       -2.950291       0.593855         N       -0.001186       -2.078309       -0.002327         C       -0.003984       -3.250749       -0.005767         C       -0.007307       -4.714622       -0.009421         H       0.881953       -5.09749       -0.522794         H       -0.897181       -5.094154       -0.524047         H       -0.008227       -5.096881       1.017759         Ni       -0.000226       1.668286       -0.003948         C       1.165469       2.425124       -0.338652         C       1.165469       2.425124       -0.338652         C       1.169686       3.839246       -0.333625         C       0.001756       <                                                                   |
| H $-5.066645$ $-0.902371$ $2.659671$ H $-4.445038$ $0.699719$ $2.255313$ C $-3.586785$ $-2.426564$ $0.92982$ H $-4.023713$ $-3.008566$ $1.75282$ H $-4.312824$ $-2.426112$ $0.109759$ H $-2.684327$ $-2.950291$ $0.593855$ N $-0.001186$ $-2.078309$ $-0.002327$ C $-0.003984$ $-3.250749$ $-0.005767$ C $-0.007307$ $-4.714622$ $-0.009421$ H $0.881953$ $-5.09749$ $-0.522794$ H $-0.897181$ $-5.094154$ $-0.524047$ H $-0.008227$ $-5.096881$ $1.017759$ Ni $-0.000602$ $-0.325761$ $-0.000986$ C $-1.164157$ $2.427353$ $0.328537$ C $0.000226$ $1.668286$ $-0.003948$ C $1.165469$ $2.425124$ $-0.338652$ C $1.169686$ $3.839246$ $-0.333625$ C $0.001756$ $4.552149$ $-0.008433$ H $-2.074976$ $4.388259$ $0.577067$ H $2.078395$ $4.384251$ $-0.593227$                                                                                                                                                                                                                                                                                                                                                                                            |
| H       -4.445038       0.699719       2.255313         C       -3.586785       -2.426564       0.92982         H       -4.023713       -3.008566       1.75282         H       -4.312824       -2.426112       0.109759         H       -2.684327       -2.950291       0.593855         N       -0.001186       -2.078309       -0.002327         C       -0.003984       -3.250749       -0.005767         C       -0.007307       -4.714622       -0.009421         H       0.881953       -5.09749       -0.522794         H       -0.897181       -5.094154       -0.524047         H       -0.008227       -5.096881       1.017759         Ni       -0.008227       -5.096881       1.017759         Ni       -0.000226       1.668286       -0.003948         C       1.164157       2.427353       0.328537         C       0.000226       1.668286       -0.003948         C       1.165469       2.425124       -0.338652         C       1.165469       2.425124       -0.333625         C       0.001756       4.552149       -0.008433         H       -2.074976       <                                                                   |
| Ni       -3.586785       -2.426564       0.92982         H       -4.023713       -3.008566       1.75282         H       -4.312824       -2.426112       0.109759         H       -2.684327       -2.950291       0.593855         N       -0.001186       -2.078309       -0.002327         C       -0.003984       -3.250749       -0.005767         C       -0.007307       -4.714622       -0.009421         H       0.881953       -5.09749       -0.522794         H       -0.897181       -5.094154       -0.524047         H       -0.008227       -5.096881       1.017759         Ni       -0.008227       -5.096881       1.017759         Ni       -0.000226       1.668286       -0.003948         C       1.164157       2.427353       0.328537         C       0.000226       1.668286       -0.003948         C       1.165469       2.425124       -0.338652         C       1.169686       3.839246       -0.333625         C       0.001756       4.552149       -0.008433         H       -2.074976       4.388259       0.577067         H       2.078395       <                                                                   |
| H       -4.023713       -3.008566       1.75282         H       -4.312824       -2.426112       0.109759         H       -2.684327       -2.950291       0.593855         N       -0.001186       -2.078309       -0.002327         C       -0.003984       -3.250749       -0.005767         C       -0.007307       -4.714622       -0.009421         H       0.881953       -5.09749       -0.522794         H       -0.897181       -5.094154       -0.524047         H       -0.897181       -5.096881       1.017759         Ni       -0.008227       -5.096881       1.017759         Ni       -0.000226       1.668286       -0.003948         C       1.165469       2.425124       -0.338652         C       1.165469       2.425124       -0.338652         C       1.169686       3.839246       -0.336255         C       0.001756       4.552149       -0.008433         H       -2.074976       4.388259       0.577067         H       2.078395       4.384251       -0.593227                                                                                                                                                            |
| H       -4.312824       -2.426112       0.109759         H       -2.684327       -2.950291       0.593855         N       -0.001186       -2.078309       -0.002327         C       -0.003984       -3.250749       -0.005767         C       -0.007307       -4.714622       -0.009421         H       0.881953       -5.09749       -0.522794         H       -0.897181       -5.094154       -0.524047         H       -0.008227       -5.096881       1.017759         Ni       -0.008227       -5.096881       1.017759         Ni       -0.000602       -0.325761       -0.000986         C       -1.164157       2.427353       0.328537         C       0.000226       1.668286       -0.003948         C       1.165469       2.425124       -0.338652         C       1.169686       3.839246       -0.333625         C       0.001756       4.552149       -0.008433         H       -2.074976       4.388259       0.577067         H       2.078395       4.384251       -0.593227                                                                                                                                                           |
| H       -2.684327       -2.950291       0.593855         N       -0.001186       -2.078309       -0.002327         C       -0.003984       -3.250749       -0.005767         C       -0.007307       -4.714622       -0.009421         H       0.881953       -5.09749       -0.522794         H       -0.897181       -5.094154       -0.524047         H       -0.008227       -5.096881       1.017759         Ni       -0.008227       -5.096881       1.017759         Ni       -0.000226       1.668286       -0.003948         C       1.164157       2.427353       0.328537         C       0.000226       1.668286       -0.003948         C       1.165469       2.425124       -0.338652         C       1.169686       3.839246       -0.333625         C       0.001756       4.552149       -0.008433         H       -2.074976       4.388259       0.577067         H       2.078395       4.384251       -0.593227                                                                                                                                                                                                                      |
| N       -0.001186       -2.078309       -0.002327         C       -0.003984       -3.250749       -0.002327         C       -0.007307       -4.714622       -0.009421         H       0.881953       -5.09749       -0.522794         H       -0.897181       -5.094154       -0.524047         H       -0.008227       -5.096881       1.017759         Ni       -0.008227       -5.096881       1.017759         Ni       -0.000602       -0.325761       -0.000986         C       -1.166873       3.841489       0.319053         C       -1.164157       2.427353       0.328537         C       0.000226       1.668286       -0.003948         C       1.165469       2.425124       -0.338652         C       1.169686       3.839246       -0.333625         C       0.001756       4.552149       -0.008433         H       -2.074976       4.388259       0.577067         H       2.078395       4.384251       -0.593227                                                                                                                                                                                                                     |
| C       -0.003984       -3.250749       -0.005767         C       -0.007307       -4.714622       -0.009421         H       0.881953       -5.09749       -0.522794         H       -0.897181       -5.094154       -0.524047         H       -0.008227       -5.096881       1.017759         Ni       -0.000602       -0.325761       -0.000986         C       -1.166873       3.841489       0.319053         C       -1.164157       2.427353       0.328537         C       0.000226       1.668286       -0.003948         C       1.165469       2.425124       -0.338652         C       1.169686       3.839246       -0.333625         C       0.001756       4.552149       -0.008433         H       -2.074976       4.388259       0.577067         H       2.078395       4.384251       -0.593227                                                                                                                                                                                                                                                                                                                                         |
| C       -0.007307       -4.714622       -0.009421         H       0.881953       -5.09749       -0.522794         H       -0.897181       -5.094154       -0.524047         H       -0.008227       -5.096881       1.017759         Ni       -0.008227       -5.096881       1.017759         C       -1.166873       3.841489       0.319053         C       -1.164157       2.427353       0.328537         C       0.000226       1.668286       -0.003948         C       1.165469       2.425124       -0.338652         C       1.169686       3.839246       -0.333625         C       0.001756       4.552149       -0.008433         H       -2.074976       4.388259       0.577067         H       2.078395       4.384251       -0.593227                                                                                                                                                                                                                                                                                                                                                                                                    |
| H       0.881953       -5.09749       -0.522794         H       -0.897181       -5.094154       -0.524047         H       -0.008227       -5.096881       1.017759         Ni       -0.008227       -5.096881       1.017759         Ni       -0.000226       -0.325761       -0.000986         C       -1.166873       3.841489       0.319053         C       -1.164157       2.427353       0.328537         C       0.000226       1.668286       -0.003948         C       1.165469       2.425124       -0.338652         C       1.169686       3.839246       -0.333625         C       0.001756       4.552149       -0.008433         H       -2.074976       4.388259       0.577067         H       2.078395       4.384251       -0.593227                                                                                                                                                                                                                                                                                                                                                                                                   |
| H-0.897181-5.094154-0.524047H-0.008227-5.0968811.017759Ni-0.008227-5.0968811.017759C-1.1668733.8414890.319053C-1.1641572.4273530.328537C0.0002261.668286-0.003948C1.1654692.425124-0.338652C1.1696863.839246-0.333652C0.0017564.552149-0.008433H-2.0749764.3882590.577067H2.0783954.384251-0.593227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| H-0.008227-5.0968811.017759Ni-0.008227-5.0968811.017759C-1.1668733.8414890.319053C-1.1641572.4273530.328537C0.0002261.668286-0.003948C1.1654692.425124-0.338652C1.1696863.839246-0.333625C0.0017564.552149-0.008433H-2.0749764.3882590.577067H2.0783954.384251-0.593227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ni         -0.000602         -0.325761         -0.000986           C         -1.166873         3.841489         0.319053           C         -1.164157         2.427353         0.328537           C         0.000226         1.668286         -0.003948           C         1.165469         2.425124         -0.338652           C         1.169686         3.839246         -0.333625           C         0.001756         4.552149         -0.008433           H         -2.074976         4.388259         0.577067           H         2.078395         4.384251         -0.593227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ni-0.000602-0.325761-0.000986C-1.1668733.8414890.319053C-1.1641572.4273530.328537C0.0002261.668286-0.003948C1.1654692.425124-0.338652C1.1696863.839246-0.333625C0.0017564.552149-0.008433H-2.0749764.3882590.577067H2.0783954.384251-0.593227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ni-0.000602-0.325761-0.000986C-1.1668733.8414890.319053C-1.1641572.4273530.328537C0.0002261.668286-0.003948C1.1654692.425124-0.338652C1.1696863.839246-0.333625C0.0017564.552149-0.008433H-2.0749764.3882590.577067H2.0783954.384251-0.593227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C-1.1668733.8414890.319053C-1.1641572.4273530.328537C0.0002261.668286-0.003948C1.1654692.425124-0.338652C1.1696863.839246-0.333625C0.0017564.552149-0.008433H-2.0749764.3882590.577067H2.0783954.384251-0.593227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C-1.1641572.4273530.328537C0.0002261.668286-0.003948C1.1654692.425124-0.338652C1.1696863.839246-0.333625C0.0017564.552149-0.008433H-2.0749764.3882590.577067H2.0783954.384251-0.593227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C0.0002261.668286-0.003948C1.1654692.425124-0.338652C1.1696863.839246-0.333625C0.0017564.552149-0.008433H-2.0749764.3882590.577067H2.0783954.384251-0.593227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C1.1654692.425124-0.338652C1.1696863.839246-0.333625C0.0017564.552149-0.008433H-2.0749764.3882590.577067H2.0783954.384251-0.593227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C1.1696863.839246-0.333625C0.0017564.552149-0.008433H-2.0749764.3882590.577067H2.0783954.384251-0.593227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C0.0017564.552149-0.008433H-2.0749764.3882590.577067H2.0783954.384251-0.593227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H -2.074976 4.388259 0.577067<br>H 2.078395 4.384251 -0.593227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Н 2.078395 4.384251 -0.593227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Н 0.002322 5.640809 -0.010125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C -2 451022 1 719425 0 754787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C 2.451595 1.714232 -0.762048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| P 2.548558 -0.058349 -0.063397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| P -2.548546 -0.0569 0.065974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Н -2.464546 1.616491 1.849404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H = 3.340048 - 2.30378 = 0.4830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -11 $-3.340740$ $2.30.76$ $0.4677$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| H 3.342073 2.299722 -0.49543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

1 2 [2- MeCN]<sup>0</sup>

| ~ |           |           |           |
|---|-----------|-----------|-----------|
| С | 3.501964  | 0.168952  | 1.644736  |
| С | 4.983223  | 0.597138  | 1.523799  |
| Н | 5.101251  | 1.505908  | 0.919725  |
| Н | 5.381341  | 0.81493   | 2.527007  |
| Н | 5.607124  | -0.191877 | 1.087521  |
| С | 2.726559  | 1.253366  | 2.441056  |
| Η | 1.658337  | 1.01864   | 2.509582  |
| Н | 3.138251  | 1.31089   | 3.460273  |
| Н | 2.814324  | 2.244718  | 1.983649  |
| С | 3.401397  | -1.167211 | 2.42747   |
| Н | 3.935928  | -1.984668 | 1.930864  |
| Н | 3.839942  | -1.040049 | 3.4289    |
| Н | 2.353669  | -1.468856 | 2.551796  |
| С | 3.716325  | -0.930994 | -1.391662 |
| Ċ | 4 918911  | -0.084081 | -1 878948 |
| Н | 5 640087  | 0 113695  | -1 080482 |
| Н | 5 447359  | -0 627648 | -2.678245 |
| Н | 4 599534  | 0.878704  | -2 293842 |
| C | 4 228129  | -2.28352  | -0.837491 |
| н | 4 70787   | -2 854465 | -1 64686  |
| Н | 4 971905  | -2 147659 | -0.043736 |
| Н | 3 405849  | -2.890933 | -0 435971 |
| C | 2 78686   | -1 219068 | -2 604354 |
| Н | 1 940947  | -1 855733 | -2 318114 |
| Н | 2 377051  | -0 297276 | -3 036343 |
| Н | 3 35866   | -1 732124 | -3 392469 |
| C | -3 502389 | 0 161246  | -1 643052 |
| C | -2.727272 | 1 241619  | -2.445155 |
| Ĥ | -2.815174 | 2 235399  | -1 993028 |
| Н | -1 659024 | 1 006656  | -2 512458 |
| Н | -3 139034 | 1 293699  | -3 464637 |
| C | -3 401726 | -1 178877 | -2.418955 |
| Ĥ | -3 936525 | -1 99365  | -1 918214 |
| Н | -3 840097 | -1 056876 | -3 421103 |
| Н | -2.353967 | -1 48114  | -2.541583 |
| C | -4 983718 | 0 589759  | -1 524033 |
| Н | -5 38223  | 0.801898  | -2.528296 |
| Н | -5 607246 | -0 196948 | -1 083104 |
| Н | -5 10176  | 1 501813  | -0 924945 |
| C | -3 715646 | -0.922587 | 1 399233  |
| C | -2.785426 | -1 204866 | 2.612709  |
| н | -1 940531 | -1 844106 | 2 329162  |
| Н | -2.374272 | -0.281141 | 3 039273  |
| Н | -3 357049 | -1 713061 | 3 404087  |
| C | -4 917797 | -0 073025 | 1 883024  |
| Ĥ | -5 639153 | 0.121255  | 1.083857  |
| Н | -5 446105 | -0 612744 | 2 685003  |
| Н | -4 598028 | 0 891582  | 2 293357  |
| C | -4 228083 | -2 277845 | 0.852319  |
| Ĥ | -4.708424 | -2.843973 | 1.664676  |
|   |           | -         | -         |

| Н | -4.971511 | -2.1461   | 0.057496  |
|---|-----------|-----------|-----------|
| Η | -3.405879 | -2.888169 | 0.45514   |
| Ν | -0.000943 | -2.277884 | -0.00133  |
| С | -0.001547 | -3.455515 | -0.002368 |
| С | -0.002748 | -4.921344 | -0.002253 |
| Η | 0.891183  | -5.306221 | -0.506884 |
| Η | -0.887489 | -5.305054 | -0.523723 |
| Н | -0.012349 | -5.305037 | 1.024903  |

1 2 [2- MeCN]<sup>0</sup> after MeCN ligand loss

|    | II Calla 1000           |                         |                        |
|----|-------------------------|-------------------------|------------------------|
| Ni | -0.038093               | -0.180131               | 0.241182               |
| C  | <mark>0.79512</mark>    | <mark>-3.958401</mark>  | <mark>-1.596731</mark> |
| C  | <mark>0.912613</mark>   | <mark>-2.739935</mark>  | <mark>-0.889984</mark> |
| C  | - <mark>0.200636</mark> | <mark>-1.868732</mark>  | <mark>-0.73886</mark>  |
| C  | <mark>-1.440131</mark>  | <mark>-2.261738</mark>  | - <u>1.315015</u>      |
| C  | <mark>-1.565552</mark>  | <mark>-3.48724</mark>   | <mark>-2.007648</mark> |
| C  | <mark>-0.446001</mark>  | -4.332121               | -2.150612              |
| H  | <mark>1.655336</mark>   | <mark>-4.619678</mark>  | <mark>-1.70986</mark>  |
| H  | <mark>-2.520897</mark>  | <mark>-3.782732</mark>  | <mark>-2.44348</mark>  |
| H  | <mark>-0.540055</mark>  | <mark>-5.273359</mark>  | <mark>-2.689772</mark> |
| C  | <mark>2.24177</mark>    | <mark>-2.363224</mark>  | <mark>-0.229234</mark> |
| C  | <mark>-2.635041</mark>  | <mark>-1.309099</mark>  | <mark>-1.217386</mark> |
| P  | <mark>-2.346041</mark>  | <mark>0.01751</mark>    | <mark>0.141816</mark>  |
| P  | <mark>2.254158</mark>   | -0.510258               | <mark>0.276528</mark>  |
| H  | <mark>2.368956</mark>   | <mark>-2.937742</mark>  | <mark>0.69909</mark>   |
| H  | <mark>3.10447</mark>    | <mark>-2.601951</mark>  | <mark>-0.866449</mark> |
| H  | <mark>-3.580671</mark>  | <mark>-1.843095</mark>  | <mark>-1.050931</mark> |
| H  | <mark>-2.746994</mark>  | -0.760851               | <mark>-2.163363</mark> |
| C  | <mark>-3.28088</mark>   | <mark>-0.701764</mark>  | 1.710979               |
| C  | <mark>-4.821643</mark>  | -0.749237               | <mark>1.578936</mark>  |
| H  | <mark>-5.143009</mark>  | <mark>-1.291898</mark>  | <mark>0.680744</mark>  |
| H  | <mark>-5.241908</mark>  | <mark>-1.274947</mark>  | <mark>2.449736</mark>  |
| H  | <mark>-5.264688</mark>  | <mark>0.252992</mark>   | 1.554281               |
| C  | <mark>-2.743413</mark>  | <u>-2.143805</u>        | <u>1.917115</u>        |
| H  | <mark>-1.649464</mark>  | <mark>-2.158785</mark>  | 1.980926               |
| H  | <mark>-3.154599</mark>  | <mark>-2.5481</mark>    | <mark>2.854324</mark>  |
| H  | <mark>-3.034097</mark>  | - <mark>2.816001</mark> | <u>1.101983</u>        |
| C  | <mark>-2.883724</mark>  | <mark>0.144986</mark>   | <mark>2.948663</mark>  |
| H  | -3.244851               | 1.176925                | 2.884743               |
| H  | -3.315873               | -0.307421               | 3.853834               |
| H  | -1.793446               | 0.173617                | 3.068837               |
| C  | -3.266811               | 1.590357                | -0.586999              |
|    | -4.636927               | 1.283585                | -1.24255               |
| H  | -5.365786               | 0.889175                | -0.528158              |
| H  | -5.049569               | 2.214998                | -1.659821              |
| H  | -4.547333               | 0.568805                | -2.068636              |
|    | -3.448032               | 2.658605                | 0.519668               |
| H  | -3.778156               | 3.601297                | 0.059331               |

| H  | <mark>-4.206431</mark> | <mark>2.365382</mark>  | 1.255734               |
|----|------------------------|------------------------|------------------------|
| H  | <mark>-2.505291</mark> | 2.857075               | 1.044629               |
| C  | <mark>-2.301191</mark> | 2.157641               | <mark>-1.663982</mark> |
| H  | <mark>-1.360218</mark> | 2.502688               | <mark>-1.222888</mark> |
| H  | <mark>-2.069653</mark> | <mark>1.41635</mark>   | <mark>-2.44008</mark>  |
| H  | <mark>-2.77567</mark>  | 3.019753               | -2.156461              |
| C  | <b>3.213758</b>        | 0.379813               | <mark>-1.185969</mark> |
| C  | 2.493305               | -0.041029              | <mark>-2.495767</mark> |
| H  | <mark>2.590157</mark>  | <mark>-1.113083</mark> | <mark>-2.700105</mark> |
| H  | 1.423432               | 0.192352               | <mark>-2.455747</mark> |
| H  | <mark>2.938284</mark>  | <mark>0.507849</mark>  | <mark>-3.339129</mark> |
| C  | <mark>3.051886</mark>  | 1.913345               | <mark>-1.017506</mark> |
| H  | <mark>3.567373</mark>  | <mark>2.291787</mark>  | <mark>-0.12786</mark>  |
| H  | <mark>3.480457</mark>  | <mark>2.420689</mark>  | <mark>-1.8953</mark>   |
| H  | <mark>1.995173</mark>  | <mark>2.197306</mark>  | <mark>-0.94478</mark>  |
| C  | <mark>4.713367</mark>  | 0.014474               | <mark>-1.289384</mark> |
| H  | <mark>5.127602</mark>  | 0.450785               | <mark>-2.210988</mark> |
| H  | <mark>5.293656</mark>  | <mark>0.412852</mark>  | <mark>-0.448856</mark> |
| H  | <mark>4.873855</mark>  | <mark>-1.070033</mark> | <mark>-1.338182</mark> |
| C  | 3.320717               | -0.531161              | <mark>1.92694</mark>   |
| C  | <mark>2.358195</mark>  | <mark>-1.078809</mark> | <mark>3.016682</mark>  |
| H  | <mark>1.469324</mark>  | <mark>-0.443591</mark> | <mark>3.115869</mark>  |
| H  | <mark>2.017827</mark>  | <mark>-2.09812</mark>  | <mark>2.793177</mark>  |
| H  | <mark>2.877565</mark>  | <mark>-1.103216</mark> | <mark>3.9861</mark>    |
| C  | <mark>4.581509</mark>  | <mark>-1.430473</mark> | 1.872139               |
| H  | <mark>5.320796</mark>  | <mark>-1.069886</mark> | 1.150887               |
| H  | <mark>5.060478</mark>  | <mark>-1.439714</mark> | 2.863301               |
| H  | <mark>4.335726</mark>  | <mark>-2.467814</mark> | 1.617861               |
| C  | <mark>3.727444</mark>  | 0.912741               | 2.312032               |
| H  | <mark>4.147027</mark>  | 0.914211               | <mark>3.329024</mark>  |
| H  | <mark>4.4922</mark>    | 1.317992               | 1.638643               |
| H  | <mark>2.863936</mark>  | 1.590594               | <mark>2.303027</mark>  |
| N  | <mark>0.156838</mark>  | <mark>4.606039</mark>  | <mark>-0.67875</mark>  |
| C  | <mark>0.686995</mark>  | <u>5.653032</u>        | -0.567041              |
| C  | <mark>1.350574</mark>  | <mark>6.955078</mark>  | <mark>-0.428905</mark> |
| H  | <mark>0.75032</mark>   | 7.740707               | <mark>-0.901204</mark> |
| H  | <mark>2.335562</mark>  | <mark>6.932329</mark>  | <mark>-0.908276</mark> |
| H  | 1.482498               | 7.204784               | 0.629755               |
|    |                        |                        |                        |
| Ni | -0.042732              | -0.266689              | 0.261638               |
| С  | 0.79019                | -3.67941               | -2.199146              |
| С  | 0.914897               | -2.606126              | -1.28985               |
| С  | -0.207107              | -1.777403              | -1.009055              |
| С  | -1.450395              | -2.049985              | -1.645281              |
| С  | -1.561383              | -3.133911              | -2.543286              |
| С  | -0.443679              | -3.941166              | -2.820766              |
| Н  | 1.64693                | -4.314334              | -2.416758              |

 $[2 [2-H]^+$ 

| Н       | -2.511146 | -3.34547  | -3.030795 |
|---------|-----------|-----------|-----------|
| Н       | -0.534324 | -4.771346 | -3.516551 |
| С       | 2.24168   | -2.373524 | -0.579356 |
| С       | -2.655801 | -1.153578 | -1.395555 |
| Р       | -2.330461 | -0.059349 | 0.129044  |
| Р       | 2,222129  | -0.667611 | 0.266403  |
| Н       | 2.387945  | -3.127174 | 0.204928  |
| Н       | 3.099234  | -2.457927 | -1.25765  |
| Н       | -3.582949 | -1.726077 | -1.271683 |
| Н       | -2.814094 | -0.483915 | -2.250669 |
| С       | -3.229909 | -0.896424 | 1.646547  |
| Č       | -4 769332 | -0 778789 | 1 523777  |
| Н       | -5 149668 | -1 1895   | 0 580178  |
| Н       | -5 230763 | -1 351331 | 2 339651  |
| Н       | -5 110422 | 0.257553  | 1 61711   |
| C       | -2 814822 | -2 391848 | 1 649166  |
| н       | -2.014022 | -2.571040 | 1 737144  |
| H       | -3 279759 | -2.31733  | 2 515853  |
| и       | 3 1//030  | 2.000104  | 0.751278  |
| C II    | -3.1++939 | -2.923271 | 2 050720  |
| С<br>Ц  | -2.742281 | -0.233839 | 2.939729  |
| и<br>Ц  | -3.038443 | 0.810129  | 3 800604  |
| и<br>П  | -5.160419 | 0.285500  | 2 05026   |
| II<br>C | -1.031337 | 1 720280  | 0.242257  |
| C       | -2.938002 | 1.729389  | -0.343337 |
| С<br>ц  | -4.344042 | 1 22272   | -0.997007 |
| п       | -3.11/1/0 | 1.55272   | -0.313024 |
| П       | -4.014118 | 2.723040  | -1.281338 |
| П       | -4.3/20/3 | 1.09383   | -1.910482 |
|         | -2.948/02 | 2.043139  | 0.904999  |
| п       | -5.120409 | 3.070433  | 0.379002  |
| П       | -3./4943  | 2.377743  | 1.004913  |
| П       | -1.989028 | 2.02242   | 1.433//3  |
| U<br>U  | -1.891432 | 2.259315  | -1.360149 |
| п       | -0.908132 | 2.402918  | -0.898233 |
| H       | -1./919/5 | 1.606521  | -2.23/65  |
| H       | -2.214976 | 3.244164  | -1./21141 |
| C       | 3.20/936  | 0.559972  | -0.885215 |
| C II    | 2.601934  | 0.416633  | -2.30/248 |
| H       | 2.704791  | -0.595248 | -2./14369 |
| H       | 1.539442  | 0.68/8/5  | -2.3306/  |
| H       | 3.133295  | 1.1026    | -2.9/9941 |
| C       | 3.003883  | 2.013666  | -0.391/8  |
| H       | 3.448382  | 2.187666  | 0.592558  |
| H       | 3.495627  | 2.692731  | -1.101567 |
| Н       | 1.947929  | 2.299004  | -0.345446 |
| C       | 4.715299  | 0.204229  | -0.918124 |
| H       | 5.20821   | 0.845649  | -1.661107 |
| H       | 5.204371  | 0.386843  | 0.044929  |
| Н       | 4.898686  | -0.836725 | -1.213022 |
| С       | 2.949498  | -0.938648 | 2.05402   |

| С        | 1.844203  | -1.70277  | 2.832545  |
|----------|-----------|-----------|-----------|
| Н        | 0.929713  | -1.100958 | 2.917676  |
| Н        | 1.593833  | -2.667466 | 2.372124  |
| Н        | 2.201388  | -1.908313 | 3.850109  |
| С        | 4.250203  | -1.782789 | 2.028113  |
| Н        | 5.063853  | -1.281257 | 1.495811  |
| Н        | 4.581839  | -1.94076  | 3.063313  |
| Н        | 4 102382  | -2 772808 | 1 58133   |
| C        | 3 210806  | 0 422632  | 2 741968  |
| H        | 3 439389  | 0 242973  | 3 801037  |
| Н        | 4 069938  | 0.945349  | 2 306989  |
| Н        | 2 335563  | 1 080922  | 2.500909  |
| N        | 0 58103   | 4 611632  | -0.635118 |
| C        | 0.778305  | 5 774225  | -0.636026 |
| C<br>C   | 1.024547  | 7 221373  | -0.638193 |
| с<br>u   | 0 180231  | 7 749686  | 1 11085   |
| н<br>Ц   | 1 0/0516  | 7.745000  | 1 103570  |
| и<br>П   | 1.340310  | 7 500506  | -1.193379 |
| П<br>Ц   | 0.084366  | 0.800670  | 1 282527  |
| 11       | 0.084300  | 0.899079  | 1.202327  |
|          |           |           |           |
| NG       | 0.216560  | 0 119950  | 0 25280   |
| INI<br>C | -0.310309 | -0.110033 | 0.23269   |
| C<br>C   | -1./04909 | -5.051451 | -1./3302/ |
| C        | -1.0094/0 | -2./33828 | -0.90048  |
| C        | -1.390//3 | -1.30//91 | -0.803912 |
| C        | -2.603633 | -0.952285 | -1.448388 |
| C        | -3.382449 | -1.85609  | -2.204/9  |
| C        | -2.9/2444 | -3.194/24 | -2.35043  |
| H        | -1.4/1069 | -4.669342 | -1.845614 |
| H        | -4.3005// | -1.519193 | -2.686389 |
| H        | -3.5/0/94 | -3.888969 | -2.93/609 |
| C        | 0.251042  | -3.23106  | -0.264688 |
| C        | -3.032384 | 0.509157  | -1.340543 |
| Р        | -2.015858 | 1.311185  | 0.061381  |
| Р        | 1.251464  | -1.706259 | 0.297812  |
| Н        | -0.016044 | -3.797577 | 0.638162  |
| Н        | 0.846878  | -3.905272 | -0.89424  |
| H        | -4.113725 | 0.623422  | -1.186822 |
| Н        | -2.78787  | 1.045108  | -2.268176 |
| С        | -3.20994  | 1.344862  | 1.610543  |
| С        | -4.404631 | 2.316306  | 1.457908  |
| Н        | -4.972157 | 2.135968  | 0.535702  |
| Н        | -5.094243 | 2.172788  | 2.303201  |
| Н        | -4.086477 | 3.365223  | 1.469869  |
| С        | -3.744457 | -0.103621 | 1.777995  |
| Н        | -2.923808 | -0.824348 | 1.862465  |
| Н        | -4.349493 | -0.155514 | 2.694936  |
| Н        | -4.376385 | -0.415563 | 0.938638  |
| С        | -2.383433 | 1.708448  | 2.871199  |
| Н        | -2.016474 | 2.739613  | 2.846801  |

1 2 [**2-H**]<sup>0</sup>

| Н | -3.018191 | 1.596965  | 3.76289   |
|---|-----------|-----------|-----------|
| Н | -1.515781 | 1.047458  | 2.974339  |
| С | -1.600491 | 3.099015  | -0.602154 |
| С | -2.804781 | 3.817383  | -1.261151 |
| Н | -3.606521 | 4.029175  | -0.547288 |
| Н | -2.464024 | 4.778826  | -1.673819 |
| Н | -3.228152 | 3.237616  | -2.090092 |
| С | -1.024316 | 3.969747  | 0.541022  |
| Н | -0.608351 | 4.894698  | 0.115041  |
| Н | -1.794887 | 4.258253  | 1.266235  |
| Н | -0.220357 | 3.44522   | 1.070925  |
| С | -0.489271 | 2.880909  | -1.665786 |
| Н | 0.385373  | 2.393018  | -1.221128 |
| Н | -0.836136 | 2.263535  | -2.504851 |
| Н | -0.179786 | 3.855247  | -2.071405 |
| С | 2.660032  | -1.489698 | -1.040842 |
| С | 1.940444  | -1.447261 | -2.416777 |
| Н | 1.447766  | -2.394899 | -2.663762 |
| Н | 1.180509  | -0.658448 | -2.444344 |
| Н | 2.685671  | -1.238191 | -3.197894 |
| С | 3.374257  | -0.133652 | -0.819104 |
| Н | 3.956982  | -0.104394 | 0.105696  |
| Н | 4.070032  | 0.054365  | -1.647711 |
| Н | 2.6606    | 0.695886  | -0.78268  |
| С | 3.692403  | -2.642776 | -1.040363 |
| Н | 4.358383  | -2.524919 | -1.908064 |
| Н | 4.321685  | -2.629735 | -0.142999 |
| Н | 3.21878   | -3.630291 | -1.119821 |
| С | 1.94615   | -2.20933  | 2.052318  |
| С | 0.724812  | -2.120461 | 3.00809   |
| Н | 0.296489  | -1.111572 | 2.995759  |
| Н | -0.066419 | -2.832192 | 2.737947  |
| Н | 1.048987  | -2.352907 | 4.033137  |
| С | 2.533737  | -3.642066 | 2.105416  |
| Н | 3.42536   | -3.74942  | 1.48026   |
| Н | 2.824821  | -3.869898 | 3.141894  |
| Н | 1.805194  | -4.401061 | 1.795743  |
| С | 3.009915  | -1.184335 | 2.515943  |
| Н | 3.235027  | -1.355    | 3.579091  |
| Н | 3.948507  | -1.286222 | 1.958731  |
| Н | 2.645554  | -0.156689 | 2.402445  |
| Ν | 5.122732  | 2.662682  | -0.652231 |
| С | 5.662645  | 3.707311  | -0.577924 |
| С | 6.329738  | 5.010979  | -0.483412 |
| Н | 6.129244  | 5.60753   | -1.380478 |
| Н | 7.413266  | 4.87939   | -0.386547 |
| Н | 5.96535   | 5.5622    | 0.390714  |
| Н | 0.527628  | 0.863361  | 1.089538  |

 $[2 [2-H_2]^+$ 

| Ni | -0.089032 | -0.109848 | 0.093404  |
|----|-----------|-----------|-----------|
| С  | 0.143324  | -4.324259 | -0.334923 |
| С  | 0.459253  | -2.975467 | -0.065662 |
| С  | -0.509229 | -1.95114  | -0.272015 |
| С  | -1.797822 | -2.326901 | -0.751182 |
| С  | -2.100156 | -3.681361 | -1.006126 |
| С  | -1.133056 | -4.679383 | -0.801477 |
| Н  | 0.893834  | -5.096122 | -0.175407 |
| Н  | -3.089684 | -3.954539 | -1.367692 |
| Н  | -1.371217 | -5.720447 | -1.002739 |
| С  | 1.836465  | -2.624068 | 0.464656  |
| С  | -2.853061 | -1.266594 | -1.007633 |
| Р  | -2.346562 | 0.279367  | -0.047339 |
| Р  | 2.107447  | -0.775881 | 0.177024  |
| Н  | 1.887388  | -2.796592 | 1.547143  |
| Н  | 2.628636  | -3.228291 | 0.007841  |
| Н  | -3.861325 | -1.602738 | -0.739894 |
| Н  | -2.878231 | -0.998206 | -2.071636 |
| С  | -3 248481 | 0 212085  | 1 685662  |
| C  | -4 762985 | 0.513033  | 1 573873  |
| H  | -5 268277 | -0 148847 | 0 859448  |
| Н  | -5.22784  | 0.349081  | 2.555594  |
| Н  | -4 962693 | 1 551562  | 1 288209  |
| C  | -3 046569 | -1 217077 | 2,2552.68 |
| H  | -1 986369 | -1 481521 | 2 333747  |
| Н  | -3.48254  | -1.253185 | 3.262694  |
| Н  | -3.543778 | -1.984093 | 1.651496  |
| C  | -2.563663 | 1.227127  | 2.637509  |
| H  | -2.651355 | 2.261597  | 2.290344  |
| Н  | -3.041327 | 1.168099  | 3.624699  |
| Н  | -1.49959  | 0.993435  | 2.77073   |
| C  | -2 887391 | 1 787157  | -1 16674  |
| Ċ  | -4 322292 | 1 60445   | -1 725673 |
| H  | -5.08358  | 1.619689  | -0.940898 |
| Н  | -4 539208 | 2 43401   | -2 412739 |
| Н  | -4 432779 | 0 674808  | -2 295429 |
| C  | -2 791187 | 3 119479  | -0 383411 |
| H  | -2.988363 | 3.949097  | -1.075786 |
| Н  | -3 531883 | 3 183766  | 0 42102   |
| Н  | -1 793247 | 3 280633  | 0.044281  |
| C  | -1 877189 | 1 82125   | -2.347253 |
| H  | -0.854064 | 2 015704  | -2 003079 |
| Н  | -1 874956 | 0 889075  | -2.926076 |
| Н  | -2 159189 | 2 632264  | -3 03195  |
| C  | 3 028501  | -0 587075 | -1 536837 |
| č  | 2.279793  | -1.477785 | -2.56326  |
| н  | 2 347029  | -2 544489 | -2 322089 |
| Н  | 1 219235  | -1 213886 | -2 639628 |
| Н  | 2 73936   | -1 33097  | -3 550052 |
| C  | 2.925177  | 0.892567  | -1.987259 |
|    |           | /         |           |

| тт             | 2 407516            | 1 60 40 0 1          | 1 201001  |
|----------------|---------------------|----------------------|-----------|
| H              | 3.40/516            | 1.584881             | -1.291091 |
| H              | 3.410501            | 1.00082              | -2.963/04 |
| Н              | 1.879443            | 1.202842             | -2.103931 |
| C              | 4.510853            | -1.02798             | -1.460944 |
| H              | 4.936761            | -1.00154             | -2.473375 |
| Н              | 5.114374            | -0.36085             | -0.836156 |
| Н              | 4.62283             | -2.053483            | -1.087442 |
| С              | 3.151253            | -0.170133            | 1.7158    |
| С              | 2.155162            | -0.127105            | 2.907255  |
| Н              | 1.35675             | 0.60715              | 2.74397   |
| Н              | 1.691457            | -1.102454            | 3.102732  |
| Н              | 2.697922            | 0.167475             | 3.815318  |
| С              | 4.304557            | -1.151698            | 2.048919  |
| Н              | 5.051118            | -1.205431            | 1.251813  |
| Н              | 4.813854            | -0.796339            | 2.955331  |
| Н              | 3.945231            | -2.166163            | 2.255787  |
| С              | 3.718797            | 1.249585             | 1.473867  |
| Н              | 4.166169            | 1.611928             | 2.409619  |
| Н              | 4.508412            | 1.251535             | 0.713937  |
| Н              | 2.948533            | 1.969381             | 1.173615  |
| Ν              | 1.592845            | 3.86464              | -0.031423 |
| С              | 1.834338            | 5.005953             | -0.201308 |
| С              | 2.142985            | 6.424995             | -0.411992 |
| Н              | 1.678491            | 6.783173             | -1.337254 |
| Н              | 3.226226            | 6.570945             | -0.486484 |
| Н              | 1.767035            | 7.025009             | 0.423892  |
| Н              | 0.633165            | 1.529684             | 0.31646   |
| Н              | -0.110412           | 1.585588             | 0.539511  |
|                |                     |                      |           |
| H <sub>2</sub> |                     |                      |           |
| Ni             | 0 002267            | -0 105823            | 0.03514   |
| C              | -1 153988           | 4 008187             | 0 111029  |
| Č              | -1 162682           | 2 599871             | 0 202001  |
| Č              | 0.006914            | 1 834104             | -0.085857 |
| Č              | 1 180433            | 2 553834             | -0 464214 |
| C              | 1 179388            | 3 962884             | -0 541644 |
| C              | 0.014706            | 4 693461             | -0 257084 |
| н              | -2 060578           | 4 568143             | 0 333333  |
| Н              | 2.000370            | 4 487522             | -0.829006 |
| н              | 0.017794            | 5 778382             | -0.321097 |
| C II           | _2 /3002/           | 1 90/1953            | 0.632851  |
| C<br>C         | -2.+3992+           | 1.904933             | 0.811783  |
| D              | 2.452574            | 0.072058             | -0.811783 |
| I<br>D         | 2.3079              | 0.073038             | -0.078801 |
| и<br>П         | -2.505518           | 1 020674             | 1 725544  |
| п              | -2.330040           | 1.929074             | 0.221011  |
| п<br>u         | -3.33/42            | 2.301/02             | 0.221911  |
| п<br>U         | 5.55499<br>251526   | 2.321941<br>1.605296 | 1 000104  |
| п<br>С         | 2.34330<br>2.155416 | 0 1406               | -1.900100 |
| C              | 5.155410            | 0.1420               | 1.00431/  |
| C              | 4.093921            | 0.291129             | 1.399339  |

1 2 [2- MeCN]<sup>+</sup> +

| Н      | 4.996048                       | 1.16685   | 1.011603              |
|--------|--------------------------------|-----------|-----------------------|
| Н      | 5.091667                       | 0.427194  | 2.614457              |
| Н      | 5.176245                       | -0.595846 | 1.175135              |
| С      | 2.563113                       | 1.367488  | 2.431283              |
| Н      | 1.470872                       | 1.317778  | 2.499552              |
| Н      | 2.969449                       | 1.381982  | 3.451873              |
| Н      | 2.827979                       | 2.317709  | 1.955309              |
| С      | 2.780745                       | -1.140417 | 2.471003              |
| H      | 3.169338                       | -2.05192  | 2.004978              |
| Н      | 3.209359                       | -1.076921 | 3.480343              |
| Н      | 1.693065                       | -1.23718  | 2.575716              |
| C      | 3 272478                       | -1 067041 | -1 346874             |
| Č      | 4 59069                        | -0 407701 | -1 833572             |
| Ĥ      | 5 310474                       | -0 256981 | -1 024405             |
| Н      | 5 059653                       | -1 069946 | -2.57477              |
| Н      | 4 418966                       | 0 555804  | -2.325539             |
| C      | 3 593678                       | -2.451592 | -0 732433             |
| Н      | 4 010402                       | -3 099098 | -1 515968             |
| Н      | 4 339457                       | -2 385113 | 0.066893              |
| Н      | 2 700895                       | -2 944078 | -0 330145             |
| C      | 2 321078                       | -1 24846  | -2 56093              |
| н      | 1 394822                       | -1 762573 | -2 280075             |
| Н      | 2 050196                       | -0.290615 | -3 022596             |
| Н      | 2.030190                       | -1 850654 | -3 327575             |
| C      | -3 144796                      | -0.047564 | -1 643696             |
| C      | -2 535613                      | 1 069509  | -2 532294             |
| н      | -2 776921                      | 2 073561  | -2 166989             |
| Н      | -1 445125                      | 0.990076  | -2 6016               |
| Н      | -2 950736                      | 0.974469  | -3 544941             |
| C      | -2.782355                      | -1 423832 | -2 258971             |
| н      | -3 184865                      | -2 262859 | -1 681354             |
| Н      | -3 206364                      | -1.485199 | -3 270511             |
| Н      | -1 695911                      | -1 54758  | -2 344498             |
| C      | -4 681734                      | 0 126906  | -2.5++70<br>-1.585442 |
| н      | -5.07231                       | 0.15/228  | -7.611007             |
| н<br>Н | -5 177249                      | -0.702815 | -1.069917             |
| н<br>Н | -/ 976602                      | 1 065683  | -1.000017             |
| C      | -3 280751                      | -0.867615 | 1 52054               |
| C      | -2 3/038/                      | -0.875859 | 2 75665               |
| н      | -1 403163                      | -0.875855 | 2 551683              |
| Н      | -2 090201                      | 0 137922  | 3 093528              |
| Н      | -2.090201                      | -1 38321  | 3 589732              |
| C II   | -2.045440                      | -0.153668 | 1 896464              |
| Ч      | -5 325/85                      | -0.133008 | 1 07305               |
| и<br>Ц | 5 060085                       | -0.142209 | 2 732835              |
| Н      | -3.009903<br>_A AA6587         | 0.877681  | 2.752655              |
| C      | -7.52007/                      | _2 225642 | 1 100064              |
| с<br>н | - <i>J.J0772</i> 4<br>_/ 01001 | -2.525042 | 1 060586              |
| Н      | _ <u>4</u> 271652              | -2.037604 | 0 287522              |
| Н      | -7 688964                      | -2.570055 | 0 790556              |
|        | 2.000/0 <del>1</del>           | 2.007515  | 0.190550              |

| Ν | -0.001445 | -2.040989 | 0.158382  |
|---|-----------|-----------|-----------|
| С | -0.002787 | -3.211216 | 0.2299    |
| С | -0.003419 | -4.672269 | 0.318699  |
| Н | 0.87278   | -5.086089 | -0.192813 |
| Н | -0.904747 | -5.083631 | -0.148852 |
| Н | 0.022784  | -4.988643 | 1.367654  |
| Н | -0.712453 | -4.55346  | -3.298375 |
| Н | 0.029056  | -4.606522 | -3.339203 |
|   |           |           |           |