# **Supporting Information for** Selective Water Oxidation to H<sub>2</sub>O<sub>2</sub> on TiO<sub>2</sub> Surfaces

# with Redox-Active Allosteric Sites

Dongyu Liu, ‡<sup>1, 2</sup> Devan Solanki, ‡<sup>3</sup> Eli Stavitski,<sup>4</sup> Mingtao Li,<sup>1</sup> Shu Hu,<sup>3,\*</sup> Victor S. Batista,<sup>2,\*</sup> Ke R. Yang,<sup>2,\*</sup>

<sup>1</sup>International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China

<sup>2</sup>Department of Chemistry and Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States

<sup>3</sup>Department of Chemical and Environmental Engineering and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520-8286, United States

<sup>4</sup>National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States

‡ These authors contributed equally

\*Corresponding Authors: shu.hu@yale.edu, victor.batista@yale.edu, ke.yang@yale.edu

# **Table of Contents**

| Section S1. Surface Model Structures        |     |
|---------------------------------------------|-----|
| Section S2. Density of States               | S6  |
| Section S3. Spin Density Distributions      | S7  |
| Section S4. Reaction Energy Diagrams        | S12 |
| Section S5. H2O2 Product Quantification     | S14 |
| Section S6. Electrocatalytic Stability Test |     |
| Section S7. Linear Sweep Voltametry         |     |
| Section S8. X-Ray Diffraction               |     |

#### **Section S1. Surface Model Structures**

To identify the most stable configurations of the introduced metal and hydrogen atom in TiO<sub>2</sub>, we calculated the relative energies of the models with the proton at different adjacent O around the introduced metal atoms by setting the lowest energy as zero. Due to the symmetry of the slab models, the O at the short axes are equivalent along the [001] direction. Therefore, we only considered four situations here as shown in Figure S1 and S2. The results indicate that the proton would be more favorable to appear at the O in the long axis of the introduced metals in most cases. Specially, for the models with Co alloyed at B site, the proton at the short axis O is slightly more stable than at the long axis. However, since their energies are very close, we still use the models with proton at the long axis O for all calculations. Furthermore, we have also proved that the catalytic properties of these Co alloyed models with the proton at different positions are quite similar as shown in Figure S10.



Cr, Mn, Fe, and Co at A site in TiO<sub>2</sub>

Figure S1. The relative energies of the A site alloyed models with H at different positions. Color scheme for atoms: light blue for Ti, red for O, white for H, green for Cr, purple for Mn, yellow for Fe, and dark blue for Co.



Cr, Mn, Fe, and Co at B site in TiO<sub>2</sub>

**Figure S2.** The relative energies of the B site alloyed models with H at different positions. The color scheme is the same as Figure S1.

#### **Section S2. Density of States**

Figure S3 displays the element-projected density of states (DOS) of all surface models relative to the potential of standard hydrogen electrode (SHE). For the B site alloyed models (i.e. Cr\_B, Mn\_B, Fe\_B, and Co\_B), the proton and the reduced metal ion would induce a dipole along the normal direction of the surface. This dipole could affect the electrostatic potential distribution in the surface models and lead to a shift of the DOS curves toward the negative potential direction.



**Figure S3.** Element-projected DOS of all surface models. The grey lines represent the total DOS of the systems and the filled regions indicate these states are occupied. Color scheme of lines: light blue for Ti, red for O, green for Cr, purple for Mn, yellow for Fe, and dark blue for Co.

#### Section S3. Spin Density Distributions

Figure S4-S8 display the structures and spin density distributions of the water oxidation intermediates on clean and alloyed  $TiO_2$  surface models, and their relationship in the reactions are also drawn. The atomic magnetic moments are given to illustrate the oxidation states of the relevant species, which are equivalent to their spin populations. The results indicate that the introduced redox-active metals would be oxidized from +3 to +4 valence state in the first reaction step of HO\* formation. While in the next reaction step from HO\* to O\*, the intermediate itself would be oxidized on all surface models. Moreover, we found that the antiferromagnetic coupling between the intermediates and substrates is more stable than ferromagnetic coupling.



**Figure S4.** Structures and spin density distributions of the water oxidation intermediates on clean TiO<sub>2</sub> surface models. The yellow region is the spin density distribution with the iso-surface level of 0.03 e/bohr<sup>-3</sup> and the magnetic moments of the relevant atoms are shown in  $\mu_{\rm B}$ .



Figure S5. Structures and spin density distributions (with the iso-surface level of 0.03 e/bohr<sup>-3</sup>) of the water oxidation intermediates on Cr(III) alloyed TiO<sub>2</sub> surface models. Yellow and blue regions represent the spin up and spin down electrons, respectively. The magnetic moments of the relevant atoms are shown in  $\mu_{\rm B}$ .



Figure S6. Structures and spin density distributions (with the iso-surface level of 0.03 e/bohr<sup>-3</sup>) of the water oxidation intermediates on Mn(III) alloyed TiO<sub>2</sub> surface models. Yellow and blue regions represent the spin up and spin down electrons, respectively. The magnetic moments of the relevant atoms are shown in  $\mu_{\rm B}$ .



Figure S7. Structures and spin density distributions (with the iso-surface level of 0.04 e/bohr<sup>-3</sup>) of the water oxidation intermediates on Fe(III) alloyed TiO<sub>2</sub> surface models. Yellow and blue regions represent the spin up and spin down electrons, respectively. The magnetic moments of the relevant atoms are shown in  $\mu_{\rm B}$ .



**Figure S8.** Structures and spin density distributions (with the iso-surface level of 0.03 e/bohr<sup>-3</sup>) of the water oxidation intermediates on Co(III) alloyed TiO<sub>2</sub> surface models. Yellow and blue regions represent the spin up and spin down electrons, respectively. The magnetic moments of the relevant atoms are shown in  $\mu_{\rm B}$ .

#### **Section S4. Reaction Energy Diagrams**

Figure S9 displays the reaction free energy diagrams of water oxidation on alloyed TiO<sub>2</sub> surface models accompanied with the results on clean TiO<sub>2</sub> for comparison. It reveals that the introduced redox-active metals could simultaneously reduce the  $\Delta G_{HO*}$  and  $\Delta G_{O*}$  while maintain the rest variables. Figure S10 shows that the catalytic properties of the models with Co at B site are barely affected by the position of the proton.



**Figure S9**. Reaction free energy diagrams of water oxidation on alloyed  $TiO_2$  surface models. The results on clean  $TiO_2$  are drawn for comparison.



**Figure S10.** Reaction free energy diagrams of water oxidation on Co\_B alloyed TiO<sub>2</sub> surface models with the proton at different positions. The names of the models are consistent with Figure S2.

### Section S5. H<sub>2</sub>O<sub>2</sub> Product Quantification

Figure S11 shows the UV-visible (UV-Vis) spectroscopy data of different amounts of KMnO4 in the operating electrolyte. The intensity at 500nm was plotted against the volume of KMnO4 solution added to enable the precise calculation of the titration endpoint through quantification of the quantification of over titration.



Figure S11. UV-vis over titration data of 20, 40, 60, 80, 100  $\mu$ L of a known concentration of KMnO<sub>4</sub> in 0.5M PBS.



Figure S12. Regression of background corrected intensity at 500 nm vs quantity of titrant added

from Figure S11.

| Equation        | $y = a + b^*x$           |
|-----------------|--------------------------|
| Plot            | Absorption at 500        |
| Weight          | No Weighting             |
| Intercept       | 0 ±                      |
| Slope           | $0.00366 \pm 2.46703E-5$ |
| Residual Sum of | 6.69E-05                 |
| Squares         |                          |
| Pearson's r     | 0.99989                  |
| R-Square (COD)  | 0.99977                  |
| Adj. R-Square   | 0.99973                  |

 Table S1: Statistical results from Figure S12.

The generated  $H_2O_2$  molar quantity was quantified by using KMnO<sub>4</sub> titration. The linear relationship between the UV-vis adsorption intensity and Mn<sup>7+</sup> concentration was determined (**Figure S11**). During KMnO<sub>4</sub> titration, dark purple MnO<sub>4</sub><sup>-</sup> will be reduced to a clear solution by  $H_2O_2$ . The reaction is presented as **Equation S1**:

$$2MnO_4^- + 5H_2O_2 + 6H^+ \to 2Mn^{2+} + 5O_2 + 8H_2$$
(S1)

Therefore, the total molar quantity (n) of  $H_2O_2$  generated can be calculated by,

$$n(H_2O_2) = \frac{5}{2}n(MnO_4^-)$$
 (S2)

A 1mL aliquot of the sample was taken from a blank reactor solution and mixed with 2 mL of  $1M H_2SO_4$  in order to lower the pH to prevent Mn(VII) disproportionation. That solution was then added with 20, 40, 60, 80, and 100 uL of KMnO4 titrant solution so that the quantity of excess KMnO4 remaining after titration could be quantified.

Faraday efficiency (FE) for  $H_2O_2$  production, measured in percentage, can be calculated by Equation S3:

$$FE = \frac{Amount \text{ of experimentally generated } H_2O_2(mol)}{Amount \text{ of theoretically generated } H_2O_2(mol)} \times 100\%$$
(S3)

where the amount of experimentally generated  $H_2O_2$  can be calculated by titration (Equation S3), and the amount of theoretically generated  $H_2O_2$  can be calculated based on the measured total charge passed at the electrode, assuming a FE=100% for 2e<sup>-</sup> water oxidation (Equation S4).

Amount of *theoretically* generated 
$$H_2O_2(mol) = \frac{Q(C)}{F(C/mol) \times 2}$$
 (S4)

where Q is the charge (C) passed during electrolysis, F is the Faraday constant (96485.3 C·mol<sup>-1</sup>), 2 is for the 2e<sup>-</sup> transfer process.

#### Section S6. Electrocatalytic Stability Test

The electrocatalytic stability, shown in Figure S11, of the TiMnOx catalyst was measured by fixing the current at 1.0 mA/cm<sup>2</sup> and allowing the cell voltage to vary to maintain that current density. The increase in cell voltage is related to the amount of overpotential needed to drive the reaction, increasing as the catalyst deactivates. This increase in cell voltage is relatively small, only 50 mV between the time points of 5 and 50 hours, suggesting minimal deactivation in that time window. Figure S12 shows that the surface morphology and the relative atomic percentages of O, Ti, and Mn of the catalyst remains constant before and after the 50 hours. EDS mapping, Figure S13, shows that the relative distribution of the elements on the surface also remains constant.



Figure S11 Chronoamperometry of TiMnOx/FTO at 1 mA/cm<sup>2</sup> in 0.5M Phosphate Buffer Solution, pH 7.4 with stirring at 500 RPM. Conducted in a one compartment cell, with a SCE reference electrode, and carbon rod counter electrode.  $V_{RHE} = V_{SCE} + 0.242 + .059*7.4$ ,



**Figure S12** Plan view SEM and overall EDS spectra of the TiMnOx/FTO electrode used in Figure S11, before (a, c) and after, (b, d). The morphology and elemental composition of the TiMnOx structure is predominately unchanged after 50 hours.

| Element   | Peak Position | TiMnOx Before          | TiMnOx After           |
|-----------|---------------|------------------------|------------------------|
|           | (keV)         | (Normalized Intensity) | (Normalized Intensity) |
| Oxygen    | 0.4-0.6       | 0.00187 +/001          | 0.00192 +/001          |
| Manganese | 4.5-4.7       | 0.02487 +/001          | 0.02497 +/001          |
| Titanium  | 5.8-6.0       | 0.01077 +/001          | 0.01067 +/001          |

**Table S2** Total spectra normalized peak intensities of O, Mn, and Ti before and after 50 hours of electrolysis.



**Figure S13** Plan-view EDS of the TiMnOx/FTO electrode used in Figure S11. The Mn and Ti elemental distribution within the amorphous TiMnO<sub>x</sub> structure is predominately unchanged after 50 hours.

### Section S7. Linear Sweep Voltammetry

Linear Sweep Voltammetry conducted in 0.5M pH 7.4 Phosphate Buffer Solution, with TiMnOx working electrode, carbon rod counter electrode, and SCE reference electrode show the onset potential near the thermodynamic potential for  $H_2O_2$  production, 1.77  $V_{RHE}$ .



Figure S14 LSV of TiMnOx with and without post-reaction iR correction

## Section S8. X-Ray Diffraction

X-Ray Diffraction, Figure S15, of TiMnOx show the absence of any peaks associated with crystallinity, verifying that the TiMnOx is amorphous, consistent with the low temperature ALD growth process.



Figure S15 X-ray Diffraction of TiMnOx