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1 Quantum circuit examples

In this section, we include further details concerning the quantum algorithm,
including the dilation process, circuit transpiling, QASM simulations, and sim-
ulations running on the IBM quantum computers ibmq quito and ibmq lima.
The normalized time evolution operator of the electronic reduced density op-
erator G′(t) = G(t)/nc (where G(t) is generated from the GQME formalism) is
dilated into a unitary operator UG′(t). We start with G3, which corresponds to
the G(t) of the 1500th time step from model 3, and G4, which corresponds to
the G(t) of the 1500th time step from model 4. The matrix of G3 and G4 are,
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respectively:

G3 =


0.38− 3.76× 10−10j 0.04 + 2.90× 10−2j 0.04− 2.90× 10−2j 0.06− 1.88× 10−10j
−0.13 + 7.04× 10−2j 0.28− 2.63× 10−2j 0.02 + 2.37× 10−2j −0.15− 3.06× 10−2j
−0.13− 7.04× 10−2j 0.02− 2.37× 10−2j 0.28 + 2.63× 10−2j −0.15 + 3.06× 10−2j
0.62 + 3.77× 10−10j −0.04− 2.90× 10−2j −0.04 + 2.90× 10−2j 0.94 + 1.87× 10−10j

 , (1.1)

and

G4 =


0.54 + 4.7× 10−11j −1.7× 10−6 + 5.7× 10−2j −1.6× 10−6 − 5.6× 10−2j 0.46 + 7.1× 10−11j
−0.46 + 5.7× 10−2j 3.6× 10−2 + 6.1× 10−5j −1.6× 10−2 − 5.7× 10−5j −0.46− 5.7× 10−2j
−0.46− 5.7× 10−2j −1.6× 10−2 + 5.7× 10−5j 3.7× 10−2 − 6.1× 10−5j −0.46 + 5.7× 10−2j
0.54− 4.7× 10−11j 1.6× 10−6 − 5.6× 10−2j 1.6× 10−6 + 5.6× 10−2j 0.54− 7.1× 10−11j

 . (1.2)

The normalization factors used for model 3 and model 4 are nc3 = 1.376 and
nc4 = 1.376.

Following the 1-dilation process, the 4× 4 G′(t) [derived from corresponding
G(t) divided by the nc factor] is converted into a unitary 8× 8 UG′(t). We show
UG′

3
and UG′

4
in the form of heat maps in Fig. S1.

The unitary operation UG′(t) is transpiled into a 3-qubit quantum circuit
composed of three elementary quantum gates: RZ ,

√
X, and CX, which have

the matrix form:

RZ(λ) = exp

(
−iλ

2
Z

)
=

(
e−iλ

2 0

0 ei
λ
2

)
(1.3)

√
X =

1

2

(
1 + i 1− i
1− i 1 + i

)
(1.4)

CX q0, q1 = I ⊗ |0⟩⟨0|+X ⊗ |1⟩⟨1| =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 (1.5)

The full quantum circuits for UG3
and UG4

are shown in Fig. S3 and S4. The
probability distribution of the projection measurement results of the two circuits
are shown in Fig. S2. Both the QASM simulator results and the real machine
simulated results are recorded.

2 Amplitude-damping model

In this section, we will show that the method of flattening the density matrix
for dilation, which was outlined in the supplementary information in our previ-
ous publication [1], can be implemented on the quantum device for the simple
amplitude damping model. The same method is verified by the implementa-
tion described in this and the following section. This verification allows us to
confidently incorporate the general algorithm with GQME.

The general algorithm for open quantum system dynamics is applicable
to the time-evolution of density matrices governed by Kraus operators [1].
The time-evolution representation for such open systems is given by ρ̂(t) =
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(a) UG3 real part (b) UG3 imaginary part

(c) UG4 real part (d) UG4 imaginary part

Figure S1: Heat map illustrations of the dilated 8×8 unitary matrix UG3
and UG4

for the 1500th G(t) matrix, G3 at t = 2.25Γ−1 for model 3 with (a) the real part
of the matrix and (b) the imaginary part of the matrix and G4 at t = 6.75Γ−1

for model 4 with (c) the real part of the matrix and (d) the imaginary part of
the matrix.

∑
k

Mk(t)ρ̂M†
k(t). For simplicity, the notation of time dependency is omit-

ted hereafter for superoperators M and superoperators derived from it. In
the first step, the density matrix is flattened to vector form: ρ̂ → vρ =

(ρ11, ..., ρ1n, ρ21, ..., ρ2n, ... ..., ρn1, ..., ρnn)
T
. We calculate the Frobenius norm

of vρ as ∥vρ∥F =
√∑

ij

|ρij |2 and divide vρ by ∥vρ∥F to normalize vρ. Next,

for every k, the Mk is transformed into M̃k = Mk ⊗ I; similarly, the M†
k is

transformed into Ñk = I ⊗ M̄k. The ⊗ stands for the Kronecker product and
the bar over Mk indicates complex conjugation. The new equivalent form for
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(a) QASM simulation of model 3 (b) ibm quito simulation of model 3

(c) QASM simulation of model 4 (d) ibmq lima simulation of model 3

Figure S2: Probability distribution of the quantum state after the projection
measurement applied to the circuit for UG3

on (a) the QASM and (b) ibm quito
quantum computer and UG4 on (c) the QASM and (d) ibm lima quantum
computer. The |000⟩ state corresponds to the population squared of the donor
state σDD(t) and the |100⟩ state corresponds to the population squared of the
acceptor state σAA(t). The last four states are ancilla states.

the Kraus representation is:

Mkρ̂M†
k

equivalent←→ ÑkM̃kvρ. (2.1)

The input state is initialized to the normalized vρ in the execution. In Ref. 1,

it is shown that the Kraus operator Mk is a contraction. Therefore M̃k =
Mk ⊗ I and Ñk = I ⊗ M̄k are also contractions as per the norm property of
the Kronecker product. To build the quantum circuit of ÑkM̃kvρ with unitary
gates, we need two separate 2-dilations:

ÑkM̃kvρ
unitary dilation−−−−−−−−−−→ UNk

UMk

(
vT
ρ , 0, ..., 0

)T
. (2.2)

For Mk of dimension n × n, M̃k and Ñk are n2 × n2; and consequently, the
2-dilations UMk

and UNk
are 3n2×3n2. The UMk

and UNk
are fragmented into

sequences of two-level unitary gates and tallied to compute the gate complexity.
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To realize ÑkM̃kvρ, the total gate complexity is 3n3 + n2 for each k. The

classical complexity to realize Mkρ̂M†
k based on a naive algorithm is higher,

though of same order as quantum algorithm, namely 4n3 − 2n2.
All the evolved density matrices in the circuit calculated at each timestep

are obtained as the output vector vk (t) = ÑkM̃kvρ. The desired information
to be collected from the density matrix is extracted by applying projection
measurements on vk (t) using an optical setup [2]. The detailed procedure for
obtaining information located at both diagonal and off-diagonal elements of
ρ̂k (t) from final vk (t) is described in the supplementary information of Ref. 1.

3 Simulation of the amplitude damping model
with Kraus operators

We tested the theory mentioned in the previous section for spontaneous emission
of a 2-level atom modeled by amplitude-channel damping. The corresponding
Lindblad master equation is:

˙̂ρ (t) = γ

[
σ+ρ̂(t)σ− − 1

2
{σ−σ+, ρ̂(t)}

]
,

where the spontaneous emission rate is γ = 1.52× 109 s−1, and the σ+ = |0⟩⟨1|
and σ− = (σ+)

†
are Pauli raising and lowering operators, respectively. The

density matrix ρ(t) in the Kraus representation is as follows:

ρ̂(t) = M0(t)ρ̂M0(t)
†
+M1(t)ρ̂M1(t)

†
,

M0(t) = 1+
√
e−γt

2 I+ 1−
√
e−γt

2 σz = (
1 0

0
√
e−γt

),

M1(t) =
√
1− e−γtσ+ = (

0
√
1− e−γt

0 0
).

(3.1)

For Mk of dimension 2 × 2, M̃k, Ñk, and DA are 4 × 4 matrices, as given
below in Eq. (3.2). In this way, the 2-dilations UMk

and UNk
are 12 × 12

following the k-dilation [1, 3]. Note that, though these superoperators are time
dependent, only for simplicity we omitted the notation of time dependency.
However, realization of the dilated matrices using quantum gate is of dimension
of form 2n × 2n. We append the dilated matrix with an ancillary 12 × 4 zero
matrix on the right and 4×12 at the bottom, and an 4×4 identity matrix along
the diagonal. The resulting dilated superoperator matrix is 16× 16, requiring 4
qubits for quantum implementation. Quantum implementation is accomplished
with Qiskit as mentioned in the main text.
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M̃0 =


1 0 0 0
0 1 0 0

0 0
√
e−γt 0

0 0 0
√
e−γt

 , Ñ0 =


1 0 0 0

0
√
e−γt 0 0

0 0 1 0

0 0 0
√
e−γt

 ,

DM̃0
=


0 0 0 0
0 0 0 0

0 0
√
1− e−γt 0

0 0 0
√
1− e−γt

 , DÑ0
=


0 0 0 0

0
√
1− e−γt 0 0

0 0 0 0

0 0 0
√
1− e−γt

 .

M̃1 =


0 0

√
1− e−γt 0

0 0 0
√
1− e−γt

0 0 0 0
0 0 0 0

 , Ñ1 =


0
√
1− e−γt 0 0

0 0 0 0

0 0 0
√
1− e−γt

0 0 0 0

 ,

DM̃1
=


1 0 0 0
0 1 0 0

0 0
√
e−γt 0

0 0 0
√
e−γt

 , DÑ1
=


1 0 0 0

0
√
e−γt 0 0

0 0 1 0

0 0 0
√
e−γt

 .

(3.2)

For an initial density ρ̂(0) = 1
4

(
1 1
1 3

)
, we calculate the populations in the

basis {|0⟩, |1⟩} from t = 0 to t = 1000 ps with a time step of 10 ps. With

∥ρ̂∥HS =
√
3
2 , the input state is:

v0 =
1

∥ρ̂∥HS

vT
ρ ,

m︷ ︸︸ ︷
0, ..., 0

T

=
1

2
√
3

1, 1, 1, 3,

m︷ ︸︸ ︷
0, ..., 0

T

, (3.3)

where m = 12 for the vector vT
ρ to be of length 16. After extracting the output

vk (t), the ground state and excited state populations are obtained as the first
and fourth entry of the vector, respectively. The Fig. S5 result manifests the
consistency with the result in Ref. 1.
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Figure S3: Transpiled quantum circuit of the dilated UG3
matrix at 1500 time

steps for model 3. Each horizontal black line denotes a qubit. The
√
X gate

(blue square) is the square root of X gate; the Rz gate (magenta square) is the
rotation Z gate. The two-qubit gates are the controlled-NOT gate, where the
dot denotes the controlled qubit and

⊕
denotes the target qubit. The black

gates at the end of the circuit denote the projection measurements. The number
of required Rz,

√
X, and CNOT gates are 153, 98, and 41, respectively.
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Figure S4: Transpiled quantum circuit of the dilated UG4
matrix at 1500 time

steps for model 4. Each horizontal black line denotes a qubit. The
√
X gate

(blue square) is the square root of X gate; the Rz gate (magenta square) is the
rotation Z gate. The two-qubit gates are the controlled-NOT gate, where the
dot denotes the controlled qubit and

⊕
denotes the target qubit. The black

gates at the end of the circuit denote the projection measurements. The number
of required Rz,

√
X, and CNOT gates are 153, 98, and 41, respectively.
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Figure S5: Population of ground state and excited state for the amplitude-
damping model obtained by the quantum implementation on the IBM Qiskit
simulator.
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