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1 Computational Performance

The favorable computational performance of the tensor-train Chebyshev (TTC) method is

demonstrated through analysis of a system whose time evolution is known exactly, a Gaussian

coherent state in the harmonic oscillator potential

V (x) =
D∑
i=1

1

2
mω2x2i (1)

of dimension D = 2, mass m = 1 au, and frequency ω = 1 au.

The benchmark analytic time evolution of the Gaussian state is determined recognizing

that a coherent state |α〉 can be expanded in terms of the harmonic oscillator eigenstates

states |n〉 of energy En = (n+ 1/2)~ω as follows

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉 (2)

where α is a complex number that indicates the displacement of the coherent state from

the origin in phase space, such that the coherent state is an eigenstate of the annihilation

operator

â |α〉 = α |α〉 (3)

where

â |n〉 =
√
n |n− 1〉 (4)
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and an eigenstate of the time-evolved annihilation operator in the Heisenberg picture

â (t) |α〉 = e
i
~ Ĥtâe−

i
~ Ĥt |α〉 (5)

= αe−
1
2
|α|2

∞∑
n=1

αn−1√
n− 1!

e−
i
~ (En−En−1)t |n− 1〉 (6)

= αe−iωte−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉 (7)

= αe−iωt |α〉 (8)

The time evolution of the coherent state in the Schrödinger picture is then determined by

the action of the annihilation operator

â |α (t)〉 = α(t) |α (t)〉 (9)

with the time-dependent displacement of the coherent state

α (t) = e−iωtα (0) (10)

which yields the position-space representation of the time-evolved coherent state as a coher-

ent state of the form

Ψ (x, t) = 〈x|α〉 =
( ω
π~

)1/4
exp

(
−1

2
|α (0)|2 +

ω

2~
x2 −

(√
ω

~
x− e−iωtα (0)√

2

)2
)

(11)

We find the wavepacket determined by tensor-train Chebyshev (TTC) quantum dynam-

ics is significantly more accurate than the short-time Tensor-Train Split Operator Fourier

Transform (TT-SOFT) approach for long time steps, as shown in Fig. 1. Whereas the error

of the L2-norm of the wavefunction is nearly equivalent for both methods for short time

steps, TTC produces the wavepacket with several orders of magnitude lower L2-norm error

for time steps on the order of 100 to 1000 times longer than those required by TT-SOFT
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given a sufficient number of Chebyshev polynomials in the expansion of the propagator. This

suggests TTC can require fewer costly Fourier transform computations than TT-SOFT for

long time steps.
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Figure 1: The L2-norm error of the numerical wavefunction is significantly lower for TTC
(red line, N = 750 Chebyshev polynomials) than TT-SOFT (orange line) for long time steps.

Likewise, TTC molecular dynamics is found to be more accurate relative to TT-SOFT for

computation of the autocorrelation function over long time steps (see Fig. 2). For short time

steps, TTC and TT-SOFT closely agree, and TTC reduces the relative error of the autocor-

relation function by orders of magnitude at the longest time steps considered. We find TTC

yields the autocorrelation function with only one percent error with a time step 100 times

longer than the maximum time step that can be used to accurately simulate the dynamics

with TT-SOFT. The TTC molecular dynamics method therefore successfully maintains ac-

curacy and, where desired, avoids calculation of the wavefunction at intermediate time steps

for calculation of the autocorrelation function at the final time.
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Figure 2: TTC (red line, N = 750 Chebyshev polynomials) significantly reduces the relative
error associated with determination of the autocorrelation function of the benchmark system
relative to the state-of-the-art short-time TT-SOFT method (orange line) for long time steps.

Examination of the relative error of the L2-norm of the wavefunction as a function of the

number of terms in the Chebyshev expansion confirms the ability of the TTC algorithm to

achieve high accuracy solutions for long time steps given a sufficient number of Chebyshev

polynomials, as shown in Fig. 3. The TTC approach requires fewer than 200 Chebyshev

polynomials to accurately determine the propagator for a final time of 1 au, such that the

method is efficient for short-time propagation, which is beneficial for computation of the

wavefunction at intermediate time steps. As expected, the number of polynomials required

for accurate simulation of the benchmark system’s dynamics increases for direct propagation

of the initial wavepacket for larger final times. The expansion is shown to converge for final

times up to 6 au for fewer than 500 polynomials, which demonstrates the robustness of TTC

for simulation of long-time dynamics in agreement with the measure of Chebyshev accuracy

previously observed in the one-dimensional case.
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Figure 3: L2-norm error of the wavefunction in TTC as a function of the number of Cheby-
shev polynomials for varying final times.

6


