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Abstract 

The selection of synthetic routes to a small molecule of interest is enabled by the use of various 

tools to assess the chemical complexity of a given intermediate. While prior approaches assess the 

intrinsic molecular complexity or the facility with which an intermediate can be synthesized, in 

this study we introduce an alternative approach that tracks the progress towards the target structure 

in a given synthesis. A simple metric, EvolvedComplexity, was developed that compares the 

chemical similarity of a pair of molecules on the basis of the Tanimoto distance between chemical 

fingerprints. This complementary approach to assessing progress in synthesis may prove to be a 

useful tool for planning synthetic routes and for developing novel chemistries.    

Introduction 

Retrosynthetic planning is a cornerstone in the synthesis of complex natural products, where the 

challenge lies in deconstructing a target molecule into simpler, commercially available building 

blocks through a series of transforms.1-3 This process, traditionally guided by the expertise of 

synthetic chemists, has increasingly been augmented by computer-aided synthetic planning 

(CASP) tools, an idea originally pioneered by EJ Corey in the 1960s that has seen a resurgence in 

recent decades owing to advances in computation.1, 2, 4-7 Early CASP systems relied heavily on 

rule-based approaches, using expert knowledge to guide retrosynthesis.3, 8-12 Recently CASP 

approaches have evolved from these rule-based methods to data-driven, predictive algorithms.5, 13, 

14 This transition was enabled by the automated extraction of reaction rules from vast chemical 

datasets, transforming how synthetic routes are identified.15 These tools offer to improve the 

feasibility of a selected chemical route in the synthesis of a complex small molecule. 

Automated retrosynthesis tools benefit from an assessment of molecular complexity in order to 

provide directionality to a retrosynthetic operation.16 While human-guided retrosynthesis 

considers complexity reduction as a combination of the application of the logic of chemical 

synthesis and intuition, an automated approach requires an automated assessment. Each 

retrosynthetic step creates several more retrosynthetic possibilities leading to a tree whose search 

space increases exponentially with each additional step.17 Selecting an individual pathway can be 

guided by molecular complexity where further consideration of given branches can be limited on 

the basis of molecular complexity (i.e. routes that lead to increasingly complex intermediates do 

not need to be considered further). Several methods for the evaluation of molecular complexity, 

hereafter referred to as Scoring Functions (SFs), have been developed to quantify complexity, 
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providing chemists with a metric to gauge the structural and synthetic challenges of a molecule.17-

19  

SFs can generally be divided into one of two categories: complexity-based methods and reaction-

based methods.17 Complexity-based methods employ rule-based systems to estimate the 

complexity of target structures. The first widely applicable index of molecular complexity was 

introduced by Bertz, who utilized principles of graph theory combined with information theory to 

analyze and quantify molecular topology (Figure 1A).20 Graph theory treats molecules as 

mathematical graphs, where atoms are represented as vertices and bonds as edges.21 This 

abstraction enables rigorous analysis of molecular topology, including connectivity, cyclic 

structures, and branching patterns, 

using combinatorial and algebraic 

methods. Information theory, on the 

other hand, quantifies the amount of 

information contained in the system, 

which involves assessing how diverse 

or ordered the arrangement of atoms 

and bonds is within a molecule.22, 23 

This approach evaluates how much 

information is required to describe the 

structure of a molecule, with more 

complex molecules containing higher 

information content due to their 

intricate patterns of bonds and 

stereochemistry.23 

Later, Whitlock developed a metric for 

molecular complexity that was 

designed to emulate a chemist’s 

chemical intuition.24 It comprises a size 

metric (S) and complexity metric (H), 

and is calculated by evaluating the 

number of atoms, bonds, and specific 

structural features (e.g. stereocenters or 

rings) in the molecule. Building on 

Whitlock’s foundation, Barone and 

Chanon sought to expand and refine 

this approach. Choosing to neglect the 

chiral term, as Bertz does, they also 

incorporate terms to account for 

substituents and ring size, two features 

that had not been accounted for 

previously in the Whitlock index.25 The 

Synthetic Method Complexity Metric 

(SMCM) was developed shortly 

thereafter to overcome key limitations 

Figure 1. (A) Complexity-based methods for creating scoring 

functions include deriving functions from graph-based and/or 

information-based methods. (B) The reaction-based workflow 

used to develop RAscore. (C) The underlying reaction-based 

premise used to develop SCScore. (D) Similarity metrics for 

monitoring reaction progress. (E) A general representation of the 

18 total syntheses of Strychnine proceeding via either the 

Isostrychnine or Weiland-Gumlich Aldehyde intermediate. 
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of earlier SFs, specifically addressing chirality, fused ring systems, and the presence of functional 

groups.26 SMCM incorporates a unique set of multipliers based on the electronegativity of each 

atom, ring size and type, bond type, and substructures. This nuanced approach successfully 

minimizes the common bias that links higher molecular weight to greater complexity - a 

correlation that does not always hold true.  

More recently, Böttcher drew from Bertz’s systematic approach and Whitlock’s intuitive method 

to create an alternative complexity index. This index measures molecular complexity by examining 

the information content of each atom’s local environment.23 By employing an entirely additive 

model, it mitigates the biases found in graph-theoretical methods (Figure 1A) and incorporates 

crucial aspects like symmetry and stereochemistry. This metric has been applied recently to 

demonstrate a marked increase in molecular complexity in challenging transformations, 

underscoring the utility of their newly developed methods for achieving these complex reactions 

more efficiently.27, 28 In an effort to correlate complexity to biologically relevant properties, 

Waldmann and co-workers defined Spacial Score (SPS), an index engineered to closely mimic the 

fraction of sp3-hybridized carbons (Fsp3) and the fraction of stereogenic carbons (FCstereo).
29 The 

intentional inclusion of certain molecular properties creates a SF that scales with the relative 

complexity of the molecule’s skeletal structure. Ertl and Schuffenhauer introduced a novel 

approach to molecular complexity with the Synthetic Accessibility Score (SAscore). They assign 

fragment scores to common substructures from the PubChem database, with easier-to-synthesize 

fragments receiving lower scores and rarer, more complex fragments getting higher ones. The total 

fragmentScore is the sum of these individual scores, further adjusted by a complexity penalty for 

challenging structural features. SAscore has proven to be a valuable tool, having been successfully 

applied in the planning, design, and synthesis of numerous inhibitors targeting a variety of drug 

candidates.30, 31 

An alternative approach to evaluating complexity involves reaction-based SFs. Instead of defining 

molecular complexity solely based on atomic properties, this approach ranks how readily a 

molecule can be synthesized given a certain set of chemical transforms (Figure 1C). Coley et al. 

developed a neural network approach to develop the learned metric Synthetic Complexity Score 

(SCScore).32 Another approach to a reaction-based SF is the Retrosynthetic Accessibility Score 

(RAscore) developed by Thakkar, Reymond and co-workers.33 This unique approach utilizes a 

machine learning (ML) classifier trained on the outputs of the CASP tool, AiZynthFinder. 

Synthetic feasibility is assessed on the basis of the retrosynthetic routes suggested by 

AiZynthFinder (Figure 1B). After training, RAscore offered synthetic accessibility predictions 

around 4,500 times faster when running on a GPU compared to AiZynthFinder. This increased 

speed highlights the benefit of using scoring functions to streamline the identification of 

synthetically tractable routes.  

The wide array of approaches and indices for measuring molecular complexity highlights that no 

single method has proven entirely satisfactory, as each comes with its own limitations. Common 

criticisms of synthetic accessibility scores include their oversimplification of molecular 

complexity, failure to account for chirality and stereochemistry, and bias toward larger molecules. 

Additionally, many approaches are disconnected from the extrapolation of known synthetic 

methods to new systems and to entirely novel chemistries, limiting their predictive power and 

alignment with real-world synthetic challenges. Scoring functions have been continually assessed 
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in many different contexts.17, 18 In this study, we evaluated a wide range of scoring functions within 

the context of syntheses of the natural product strychnine, which has long served as a benchmark 

and training ground within the field of total synthesis. 

Strychnine, an alkaloid derived from the seeds of the Strychnos nux-vomica tree, is renowned as a 

structurally complex and challenging natural product to synthesize.34, 35 Its intricate molecular 

architecture includes a densely packed polycyclic framework with six fused rings, seven 

contiguous stereocenters, and a bridged bicyclic amine. The first total synthesis of strychnine was 

achieved by Woodward in 1954.36 The synthesis involved 29 steps, many of which were 

pioneering at the time, including the use of strategic cyclization reactions and selective functional 

group manipulations.37 Since then, strychnine has become a ruler to measure synthetic innovation, 

with multiple total syntheses having been completed over the decades.38-40 The synthesis of 

strychnine remains a hallmark of advanced synthetic chemistry, symbolizing both the intellectual 

challenge and the art of constructing highly complex natural products. With 18 published synthetic 

routes to strychnine, the extensive diversity in chemical strategies to complete its synthesis make 

it an ideal benchmark for evaluating the performance of various SFs.36, 41-63  

Results and Discussion 

The ten scoring functions discussed earlier—SAscore, RAscore, SCScore, SPS, nSPS, Böttcher 

(Cm), Barone and Chanon (BC), Whitlock (S), Bertz (CT), and SMCM—were applied to evaluate 

each intermediate across the 18 total syntheses of strychnine (detailed synthetic routes can be 

found in the SI). For the three convergent syntheses by Rawal, Fukuyama, and Vanderwal, 

empirical evaluations were conducted after the point of convergence to ensure consistency 

throughout the analysis. In order to make comparisons across scoring functions, which have a wide 

range of numerical outputs on different scales, all scores were normalized between 0 and 1. Here, 

a score of 0 indicates the least complex molecule according to a particular SF, while a score of 1 

signifies the most complex molecule. 

Several factors—such as atom, redox, and step economy, alongside overall yield and the cost of 

commercially available starting materials—play a crucial role in determining the efficiency of a 

synthetic route. These considerations are integral to retrosynthetic analysis, helping chemists 

design pathways that balance efficiency with practicality. Nevertheless, one fundamental guideline 

is that molecular complexity should, on average, increase progressively throughout a multistep 

synthesis.20, 32 In retrosynthetic analysis, the goal is to simplify the target molecule into readily 

available starting materials through sequential transformations that decrease complexity at each 

step. This approach helps prioritize retrosynthetic disconnections during automated synthesis 

planning, ensuring each step effectively breaks down the structure while moving toward accessible 

precursors.  
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Molecular complexity plots (see SI) 

were generated for each intermediate 

in all of the syntheses. These 

visualizations provide a clear, two-

dimensional representation of how 

each reaction step builds toward the 

final target molecule. Beyond 

illustrating the incremental 

contributions of each step, these plots 

also offer a useful baseline for 

comparing the different SFs, allowing 

for a more intuitive assessment of how 

well each function captures the 

progression of complexity throughout 

the synthesis. To evaluate the premise 

that molecular complexity should 

increase progressively over the course 

of a multistep synthesis, the slope and 

R² values for each scoring function 

were determined. Given the varying 

number of steps across different 

syntheses, an ideal slope was 

calculated for each, based on a 

theoretical linear progression of 

complexity from 1 to the total number 

of steps (n). The absolute deviation 

between this ideal slope and the actual 

slope derived from each SF was then 

measured, providing a quantitative 

comparison of how closely each 

synthesis adhered to a linear increase 

in complexity (Figure 2A). It should 

be noted that this simplification was made with the understanding that some syntheses may have 

one or a few steps that rapidly increase complexity or that overly complex intermediates can still 

be strategic.  

Heat maps were generated to visualize the R² and slope metrics for each SF (Figure 2B). For every 

synthesis each SF is associated with an R² value, where an R² of 1 represents a synthesis that 

follows a perfectly linear progression in complexity. Among the SFs, SAscore demonstrated the 

highest average R² of 0.82. SPS and nSPS followed with average R² values of 0.77 and 0.75, 

respectively. Whitlock’s index also showed notable linearity, with an average R² of 0.67. A parallel 

trend emerged when examining deviations from the ideal slope. SAscore again exhibited the most 

consistent linearity, with an average deviation of just 0.006, while SPS, nSPS, and Whitlock 

showed slightly larger deviations, but still indicative of overall linear behavior. 

Figure 2. (A) General representation of the assumption that an 

ideal synthesis should follow a linear trend. The red line represents 

an ideal synthesis. The blue points and line represent the SAscore 

progression for the 2002 Bodwell synthesis (selected arbitrarily for 

demonstration). (B) Heat maps representing R2 values (red) and 

the deviation from the ideal slope (blue). Higher R2 and lower 

deviations are indicative of better scoring function performance 

(darker red/blue). 
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While this type of analysis provides valuable insight, it is rarely sufficient for comparing SF due 

to the inherent complexity of chemical syntheses. In practice, synthetic routes often require the use 

of protecting groups, functional group interconversions, and non-strategic redox manipulations, 

which lead to deviations from the linear progression of molecular complexity.64 These additional 

steps, though essential for achieving the target molecule, introduce variations that must be 

accounted for when evaluating the overall performance of a SF. Various strategies are typically 

employed when designing a synthesis, including introducing complexity either at the outset or 

toward the end of the sequence, or even generating excess complexity beyond that of the target 

molecule.18 Our initial analysis focused on how each SF responded to the early introduction of 

complexity within the synthetic pathway, assessing how well they captured the increase in 

molecular complexity during the initial stages (Figure 3).  

Figure 3. Examples of early-stage complexity introduction. (A) Example of SAscore, Whitlock’s Index (S), SPS, 

and nSPS performance (left) compared to Bertz’s Index (CT), Barone and Chanon (BC), SMCM, and Böttcher’s 

Index (Cm). (B) A similar comparison of scoring functions for Reissig’s 2010 synthesis. 
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In 2007, Padwa reported a concise, enantioselective synthesis of strychnine, highlighting the 

critical role of an intramolecular [4 + 2] cycloaddition/rearrangement cascade of an indolyl-

substituted amidofuran 5 to afford the aza-tetracycle 6 (Figure 3A).57 Since this key reaction 

occurred early in the sequence, we examined how the SFs responded to the rapid increase in 

molecular complexity introduced at this stage. SAscore, SPS, nSPS, and the Whitlock index all 

capture this increase in molecular complexity from 5 to 6. When complexity is introduced early in 

a synthesis, it often creates reactive functionalities that require careful mitigation throughout the 

remaining steps. SAscore, SPS, nSPS, and the Whitlock index effectively capture the fluctuations 

in complexity after the initial sharp increase, while still reflecting an overall linear upward trend. 

For the same synthetic step, the BC, SMCM, and Böttcher indices all show only a modest increase 

in complexity, while the Bertz index instead indicates a decrease in complexity. Interestingly, these 

4 SFs showcase an increase in complexity from 7 to 8. Upon inspection, this step is simply a DMB 

protection of the indole nitrogen. Of these 4 SFs, SMCM has the highest R2 value of 0.73 (Figure 

2B), yet it falls short in reflecting the change in complexity that would align with a chemist's 

intuitive ranking of the intermediates.  

Reissig’s 2010 synthesis of strychnine is another great example of the introduction of complexity 

at an early stage.58 The authors denote a SmI2-induced cascade reaction as the key step (Figure 

3B) to afford the desired tetracycle 10. Similar to the Padwa synthesis, SAscore, SPS, nSPS, and 

the Whitlock index all capture this increase in complexity while maintaining an overall linear 

progression in complexity for the remainder of the synthesis. While SCScore captures the sharp 

rise in complexity during this key step, it suggests that intermediate 13 is far more complex than 

the final target. The Bertz index, on the other hand, shows a decrease in complexity from 

intermediate 9 to 10, while SMCM and BC reveal only modest increases. Notably, these three 

indices agree that the alkylation of intermediate 11 introduces the greatest complexity. This 

reaction, inspired by Rawal's 1994 synthesis and subsequently used in ten later syntheses43, is 

consistently overemphasized by these SFs, exaggerating its complexity change compared to other 

innovative disconnections. 

When developing Whitlock’s index, it was proposed that longer syntheses should exhibit more 

linearity and experience smaller average changes in molecular complexity (∆Scorem) compared to 

shorter syntheses.24 To evaluate this hypothesis, we analyzed two syntheses devoid of early 

complexity spikes, focusing on how the scoring functions responded to a gradual buildup of 

molecular complexity. The 2002 synthesis by Bosch49 and the 1992 synthesis by Magnus41 provide 

excellent examples (Figure 4). In both cases, SAscore, SPS, nSPS, and Whitlock’s index showed 

a consistent linear increase in complexity. Conversely, RAscore, Bertz (CT), SCScore, Böttcher 

(Cm), and Barone-Chanon (BC) exhibited more significant deviations across the synthetic route. 

Assuming a perfectly linear increase in complexity throughout a synthesis, the ∆Scorem should 

scale proportionally as 1/n, where n represents the number of steps. The 1/n curve was plotted by 

calculating the ∆Scorem
 for each synthesis of Strychnine. We visualized the behavior of each of 

the SFs and calculated the RMSE relative to the 1/n curve (Figure 4C). SAscore achieved the 

lowest RMSE (0.05), with SPS, nSPS, and Whitlock’s index closely following, outperforming the 

remaining six scoring functions in this analysis. While this analysis may not be definitive and 
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could have some limitations, we showed that some SFs do not appear to be applicable to this 

context, and the most applicable SFs appear to have some disagreement.  

In an effort to develop a scoring function that performed well across these varied methods for SF 

assessment, we considered an alternative approach that does not evaluate the inherent molecular 

complexity or the synthetic 

complexity. Instead, we were 

interested in developing a SF that 

assess how much progress towards 

the target structure is achieved in 

any given chemical step (Figure 

1D).  To do so, we applied the 

Tanimoto similarity metric to 

measure the amount of complexity 

that evolves over the course of a 

synthesis, defined here as 

EvolvedComplexity (EC). 

The Tanimoto similarity is a key 

metric in cheminformatics for 

evaluating the structural similarity 

of chemical compounds.65 Derived 

from the Jaccard index, which 

measures the similarity and 

diversity of sets, the Tanimoto 

coefficient specifically assesses 

molecular fingerprints—binary 

vectors representing molecular 

structures (Figure 5A).66-68 It 

calculates the ratio of shared 

features to total features between 

two vectors, yielding a similarity 

score from 0 (completely 

dissimilar) to 1 (identical). This 

score provides a valuable tool for 

chemists to compare compounds 

and explore their structural 

relationships in various contexts, including virtual screening and structure-activity relationship 

studies.67, 68 Cernak and co-workers introduced a graph edit distance as a method to identify key 

Figure 4. (A) Example of SAscore, Whitlock’s Index (S), SPS, and 

nSPS performance (left) compared to Bertz’s Index (CT), Barone and 

Chanon (BC), RAscore, and SCScore (right) for a linear progression of 

a longer synthesis by Bosch. (B) A similar comparison for the 1993 

synthesis by Magnus. (C) Comparison of SAscore, Whitlock’s Index 

(S), SPS, and nSPS performance (left) to the remaining scoring 

functions’ (right) relation to the ideal 1/n curve. The table displays the 

RMSE of each scoring function to the 1/n curve. 
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steps from automated outputs.69 

Relatedly, Genheden and Shields 

reported a method to compute a 

similarity score between any two 

routes towards the same target, 

enabling the filtering of redundant 

pathways generated by retrosynthetic 

algorithms.70 We aimed to 

investigate the potential of 

employing Tanimoto similarity as a 

metric for tracking the progression of 

synthetic pathways over time. By 

quantifying the structural similarities 

between intermediates and the target 

molecule, we sought to gain insights 

into how these structural 

relationships mirrored the overall 

evolution of complexity throughout 

the synthesis. By treating the four 

selected scoring functions as 

benchmarks for evaluating molecular 

complexity in complex natural 

products, we used them as a 

reference to assess how well 

Tanimoto similarity scores perform 

as an alternative type of complexity 

metric. We began our analysis by 

calculating the Tanimoto similarity 

between each intermediate and the 

final target, strychnine. We evaluated 

several fingerprinting methods 

which include MACCS keys, 

MHFP6, RDKit, Avalon, Morgan, and Atom Pair fingerprints. To ensure consistency, similarities 

for each synthesis were normalized on a scale from 0 to 1. As an initial evaluation, we calculated 

the RMSE of these normalized Tanimoto similarities against the traditional SFs to determine if 

their behavior aligned with our previous assessments. Figure 5B compares the performance of 

Tanimoto fingerprinting methods against all SFs. MHFP6, Atom Pair, and Morgan fingerprints 

had the highest average RMSEs, both across all SFs and the top 4 performing SFs, suggesting a 

less optimal representation of molecular complexity in these cases. In contrast, Avalon and RDKit 

fingerprints consistently exhibited the lowest RMSEs in both categories, indicating that they are 

particularly well-suited for capturing the progression of molecular complexity during a synthesis. 

This strong alignment with the best-performing SFs suggests that these fingerprints possess 

advantageous properties for tracking structural changes throughout a synthetic sequence. 

Figure 5. (A) A broad overview of calculating Tanimoto similarity 

scores from molecular fingerprints. The Tanimoto similarity is 

calculated by identifying common substructures found in each of the 

molecules. (B) The average RMSE across all 18 Strychnine syntheses 

between the various Tanimoto similarity scores based on different 

fingerprints and the SFs. The right shows the average RMSE for each 

fingerprinting method. Heat maps (red for all SFs, blue for top 4 SFs) 

show which fingerprints exhibited the lowest average RMSE (darker 

colors). (C) Average R2, deviation from ideal slope, and RMSE to 1/n 

for the top 4 SFs and two best fingerprinting methods. (D) 

Representative 1/n curve for the top two fingerprinting methods. 
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Figure 6. (A) A comparison of the RDKit fingerprinting method for Tanimoto similarity scores 

compared to SAscore, Whitlock’s index (S), SPS, and nSPS. Highlighted here is the early-stage 

construction reaction and protecting group manipulation. (B) A similar analysis for the early-stage 

construction reaction in Martin’s 2001 synthesis. (C) Analysis of SFs response to macrocycle formation 

in Bodwell’s 2002 synthesis. (D) A similar analysis as to macrocycle formation and transannular 

cyclization for Fukuyama’s 2004 synthesis.  
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Next, we assessed the average R2, deviation from the ideal slope, and RMSE relative to the ideal 

1/n curve. Once again, Avalon and RDKit fingerprints showed the best overall performance. 

Interestingly, while SAscore had a slightly higher R2 value (0.82 compared to 0.80 for both 

fingerprinting methods), it exhibited a lower average deviation from the ideal slope—by nearly 

half—across all syntheses (Figure 5C). However, the fingerprinting methods achieved a lower 

RMSE to the 1/n curve (Figure 5D). Given these nuanced differences, we explored individual 

chemistries from various syntheses to further analyze their behaviors. Since RDKit and Avalon 

fingerprints demonstrated comparable performance, we present only the RDKit results for clarity. 

Beginning with Woodward’s 1954 synthesis (Figure 6A), all SFs capture the important 

construction step from 14 to 15. Interestingly, Whitlock’s index indicates a sharp increase in 

complexity compared to all other SFs from 16 to 17, which is simply a protecting group 

installation. While the SPS score also increases, albeit only slightly, all other SFs agree that little 

to no change in complexity occurs at this stage of the synthesis. For the first step of Martin’s 2001 

synthesis, an important construction step via a vinylogous Mannich reaction of 18 is employed to 

afford 19 (Figure 6B). The Tanimoto scores, SPS, and Whitlock’s index all reflect an expected 

increase in molecular complexity, however SAscore and nSPS mark a decrease in complexity for 

this bond forming step. 

In Bodwell’s 2002 synthesis, a marked anomaly in SAscore behavior can be observed. The 

sequential hydroboration/intramolecular B-alkyl Suzuki-Miyaura cross-coupling reaction from 20 

to cyclophane 21 triggered a significant spike in complexity according to SAscore, while other 

SFs showed little to no increase (Figure 6C). This pronounced shift can be attributed to SAscore’s 

built-in complexityPenalty, which imposes a substantial penalty on the presence of macrocycles 

(rings of size ≥ 8). A similar pattern in the treatment of macrocycle formation is evident in 

Fukuyama’s 2004 synthesis (Figure 6D). When diol 24 underwent the Mitsunobu reaction 

yielding the nine-membered Ns-amide 25, both SAscore and the Tanimoto scores reflected the 

anticipated rise in molecular complexity. However, SPS and Whitlock’s index indicated a dramatic 

surge in complexity at this step. During the key transannular cyclization to form the pentacyclic 

core of strychnine, 27, SAscore, nSPS, and the Tanimoto scores successfully captured the increase 

in complexity, whereas Whitlock’s index, surprisingly, reported a sharp drop for this pivotal C–C 

bond formation step. 

While by no means exhaustive, the new approach to scoring functions focusing on 

similarity disclosed herein (EC), generally agrees with changes in molecular and synthetic 

complexity throughout the course of complex natural product syntheses. By capturing these 

structural transformations, EC provides an insightful reflection of the dynamic nature of these 

processes, aligning well with the nuanced progression of molecular changes. 

Conclusion 

In this study, we evaluated the utility of several molecular complexity SFs alongside a novel 

similarity-based metric, EvolvedComplexity, derived from Tanimoto similarity scores. Our 

analysis revealed that the four selected SFs - SAscore, SPS, nSPS, and Whitlock’s index - excelled 

in capturing the intricate changes in molecular complexity during the synthesis of complex natural 

products, such as strychnine. However, no single metric has emerged as a universal standard for 
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evaluating the overall progress in molecular and synthetic complexity across a trajectory of a 

multistep synthesis. 

By incorporating Tanimoto similarity into this framework, we aimed to explore how well a 

similarity-based approach could complement traditional SFs. Our findings suggest that 

EvolvedComplexity captures key structural changes in a manner consistent with established SFs, 

particularly in reactions involving significant structural reorganization, such as transannular 

cyclizations. While not a substitute for complexity scoring, that can easily compare different 

classes of small molecules, EC offers a promising complimentary tool for evaluating molecular 

evolution across synthetic pathways that may prove to be a useful metric for synthetic planning 

and cheminformatics studies. 
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