Supplementary information # Electric field stimulates production of highly conductive microbial OmcZ nanowires In the format provided by the authors and unedited #### **Supplementary Information** ## Electric field stimulates production of highly conductive microbial OmcZ nanowires Sibel Ebru Yalcin^{1,2,7*}, J. Patrick O'Brien^{1,2,7}, Yangqi Gu^{2,3}, Krystle Reiss⁴, Sophia M. Yi^{1,2}, Ruchi Jain^{1,2}, Vishok Srikanth^{1,2}, Peter Dahl^{1,2}, Winston Huynh^{2,5}, Dennis Vu^{1,2}, Atanu Acharya⁴, Subhajyoti Chaudhuri⁴, Tamas Varga⁶, Victor S. Batista⁴ & Nikhil S. Malvankar^{1,2*} #### **Supplementary Figures** **Supplementary Figure 1. Electric field stimulates production of OmcZ nanowires.** Immunoblotting showing comparison of OmcZ abundance in filament preparations of WT cells under three different growth conditions. Top part of the gels was blotted with OmcS-specific antibody. Both nanowires show expected molecular weight (OmcS ~45 kDa; OmcZ ~30 kDa). Supplementary Figure 2. Positive (gold) and negative (SiO₂) controls for conducting probe AFM measurements. Current-voltage curves on gold and SiO₂ show expected results. Supplementary Figure 3. Purified OmcS and OmcZ nanowires from $\Delta omcZ$ and KN400 strains respectively. SDS-PAGE gel of filament preparations showing a single band corresponding to **a**, OmcS purified from $\Delta omcZ$ strain and **b**, OmcZ from KN400 strain. M1 and M2 represent nanowires sheared from cells by two different methods – vortexing (M1) and blending (M2). Both nanowires show expected molecular weight (OmcS \sim 45 kDa; OmcZ \sim 30 kDa). Region in the red square for **a** and **b** is shown in Extended Data Fig. 10a and d respectively. Beta-Sheet 19 16.3 Loop 23 27.6 | Secondary Structure | OmcS pH 7 (%) | OmcS pH 2 (%) | |---------------------|---------------|---------------| | Alpha-Helix | 69.1 | 26.3 | | Beta-Sheet | 10.1 | 73.7 | | Loop | 20.8 | _ | | Secondary Structure | OmcZ pH 7 (%) | OmcZ pH 2 (%) | | Alpha-Helix | 70.4 | 29.2 | | Beta-Sheet | 29.6 | 70.8 | | Loop | | | | Secondary Structure | OmcS pH 7 (%) | OmcS pH 2 (%) | |---------------------|---------------|---------------| | Alpha-Helix | 65.55 | 38.6 | | Beta-Sheet | 15.75 | 36.85 | | Loop | 18.15 | 24.2 | | Secondary Structure | OmcZ pH 7 (%) | OmcZ pH 2 (%) | | Alpha-Helix | 38.7 | 20.25 | | Beta-Sheet | 40.8 | 53.45 | | Loop | 20.65 | 26.1 | **Supplementary Table 1. a,** Composition of the secondary structure of lysozyme calculated from Extended Data Fig. 6. **b,** Composition of the secondary structure of individual OmcS (WT) and OmcZ (W51W57) nanowires at pH 7 and 2 from IR *s*-SNOM studies (Figures 2,5). **c,** Composition of the secondary structure of OmcS (WT) and OmcZ (W51W57) nanowire containing samples at pH 7 and pH 2 calculated from CD (Fig. 6c,d). | heme pair | 8-heme proteins
edge-to-edge
distance (Å) | OmcS
edge-to-edge
distance (Å) | |-----------|---|--------------------------------------| | 1/2 | 3.82 | 5.4 | | 2/3 | 5.79 | 3.5 | | 3 / 4 | 3.55 | 6.1 | | 4/5 | 3.58 | 3.4 | | 5/6 | 3.48 | 6.1 | | 6 / 7 | 7.63 | | | 7 / 8 | 5.63 | | | 5/7 | 3.91 | | Supplementary Table 2. Edge-to-edge distances between heme pairs in 8-heme proteins and OmcS nanowire. Distances within the π -stacking range (\sim 3.5-4 Å) are highlighted in blue. Heme numbering is shown in Fig. 4c and d for the structures of OmcS and 8-heme proteins respectively.