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ABSTRACT: The 1Lb and
1La excited states of naphthols are characterized by using time-dependent density functional theory

(TDDFT), configuration interaction with singles (CIS), and equation-of-motion coupled cluster singles and doubles (EOM-
CCSD) methods. TDDFT fails dramatically at predicting the energy and ordering of the 1La and

1Lb excited states as observed
experimentally, while EOM-CCSD accurately predicts the excited states as characterized by natural transition orbital analysis.
The limitations of TDDFT are attributed to the absence of correlation from doubly excited configurations as well as the
inconsistent description of excited electronic states of naphthol photoacids revealed by excitation analysis based on the one-
electron transition density matrix.

1. INTRODUCTION

The two low-lying excited states of acenes, called 1La and
1Lb as

originally coined by Platt,1 are common to all extended
polyacenes. The transition dipole moments of the optically
allowed 1La ← S0 excitation and the optically forbidden 1Lb ←
S0 transition are approximately aligned along the short and long
axes of the molecule, respectively.2 In general, the 1La state is
optically bright and has significantly higher ionic character, as
pointed out by several reports, while the 1Lb state is dark and
more covalent in nature.2−6 It has also been suggested that the
1La state of acenes has a charge-separated character.3 The
relative order of these two states depends on the size of the
acene. For naphthalene and related molecules, the 1Lb state is
lower in energy than the 1La state both in the gas phase and in
solution.7,8 Usually the 1La state has a predominant
contribution from the π* ← π (LUMO ← HOMO) excitation,
whereas a combination of LUMO← HOMO−1 and LUMO+1
← HOMO excitations contribute to the 1Lb state.

4,8

Substituted naphthalenes have a wide range of applications.
In particular, naphthols are photoacids since their acidity
increases upon photoexcitation.9,10 The OH substituent on the
naphthalene ring also introduces further complexity in the
electronic structure, with dramatically different effects with
substitution of the 1- or 2-position of the aromatic ring (i.e., in
1-naphthol (1N) or 2-naphthol (2N), respectively; Figure 1).
Although 1N and 2N have similar acidities in the ground

electronic state, their photoacidities are strikingly different. 1N
is more photoacidic than 2N,9,10 suggesting the involvement of
excited states of different character in the stabilization of the
conjugate base. Nevertheless, a molecular-level understanding
of the photoacidity of naphthols remains controversial.11−15

Recently, a combined computational and experimental study
invoked photoinduced electron transfer (ET) from naphthols
to solvent molecules in the first solvation shell to explain the
excited-state decay rates observed after photoexcitation.16 Thus,
a careful and rigorous analysis of the excited states is warranted.
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Figure 1. Isomers of naphthol under investigation in this study.
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Remarkably, although numerous experimental studies have
been focused on the photoacidity of naphthols,9,10,13,15

electronic characterization of the excited states involved has
hitherto remained poorly understood.
The limitations of time-dependent density functional theory

(TDDFT) in capturing ionic or charge-separated states have
been reported and analyzed for numerous photochemical
systems.17−21 Hence, a significant underestimation of the
energy predicted by TDDFT for the 1La state is anticipated.
In fact, for naphthols in low-dielectric media, the TDDFT
underestimation of the 1La energy is so high that the order of
the 1La and 1Lb states is switched.8,22 In polar solvents like
DMSO, naphthols can be forced to undergo internal
conversion (IC), bringing the 1La state below 1Lb at the
excited-state minimum-energy configuration.6 The 1Lb state
may be better described by TDDFT because of its more
covalent character. Nevertheless, the order of energies
predicted by TDDFT is usually incorrect to the extent that
in the past they could be identified for vibrational analysis only
through analysis of their distinct symmetries.8,23 A similar
switch in the order of the excited electronic states is observed
for naphthalene, a difficulty that could be solved by using range-
separated functionals.24,25 However, correctly reproducing both
of their individual excitation energies in polyacenes or similar
molecules using TDDFT is a very complicated issue and may
needed to be treated on a case-by-case basis.25 Long-range-
corrected functionals are usually the preferred choice when
describing excited states with charge-separated charac-
ter.3,17,26,27 Unfortunately, such a solution is not transferable
to naphthols8,23 since the ionic character of the 1La state is
substantially reduced in naphthols compared with naphthalene
because of intrinsic mixing of excited states induced by the OH
substituent group. Regardless, the substituents affect the relative
position of the 1La and

1Lb states quite drastically, as shown in
the case of anthracene.26 In addition, long-range-corrected
functionals compromise the description of the 1Lb state.3

Recently, a study characterized 1La and
1Lb states of polyacenes

and demonstrated that the natures of these states are highly
sensitive to the functional used in the TDDFT calculations.28

Herein we show that the relative ordering of the excited
electronic states and the energy spacing in naphthols is more
complicated than in the case of naphthalene, particularly since
the two lowest excited states of naphthols may not be purely
1Lb and

1La but rather an admixture of the two symmetries.8,29

Therefore, we assess the capabilities and limitations of DFT
methods compared with calculations based on equation-of-
motion coupled cluster singles and doubles (EOM-
CCSD),30−38 which is a wavefunction based method that can
be used for robust computation of excitation energies. In the
EOM-CCSD formalism, the correlation effects are included in
the form of higher-order excitations (singles and doubles).
While the EOM-CCSD method is more expensive (because of
its N6 scaling) than DFT, it has been shown to be very accurate
in describing the relative order and spacing of excited states
since it includes correlations from higher-order excited
configurations, which are often essential in excited-state
calculations from a single-reference determinant (HF, DFT,
etc.).

2. COMPUTATIONAL DETAILS
We analyzed the two possible isomers of naphthol, 1-naphthol
(1N) and 2-naphthol (2N), including their two rotamers
defining the two possible orientations (“cis” and “trans”) of the

OH group in the plane of the ring (Figure 1). Each molecule
was optimized at the RI-MP2/cc-pVTZ level of theory in
solution. For comparisons with experimental absorption spectra
of naphthols in n-hexane,8,23 we treated the solvent (n-hexane)
as a dielectric continuum described by the C-PCM model39 as
implemented in the Q-Chem 5.0 software package.40 The
optimized geometries were used to compute the excitation
energies for the 1Lb and

1La states at the TDDFT (with several
different functionals), configuration interaction singles (CIS),
and EOM-CCSD levels of theory. For efficiency in
computation, we used the Cholesky decomposition of the
electron-repulsion integral41 in EOM-CCSD (as implemented
in Q-Chem) with a Cholesky threshold of 10−3. The basis set
used in excited-state calculations was aug-cc-pVDZ. The
performance of TDDFT was assessed using various functionals,
including B3LYP,42 B97-D3(BJ),43,44 M06-2X-D3(0),45 M06-
L-D3(0),45 CAM-B3LYP,46 ωB97X-D,47 and LRC-ωPBEh.27

We also modified the B3LYP functional by varying the
percentage of HF exchange. Natural transition orbital (NTO)
analysis was carried out to characterize the natures of the
individual excited states. It also allowed us to quantify the
multiconfigurational natures of both excited states. Although
EOM-CCSD is one of the most rigorous methods for
computations of excitation energies, there is usually a 0.1−0.3
eV error associated with it.48 The scaling of EOM-CCSD is on
the order of n × N6, where N and n are the numbers of basis
functions and excited states, respectively. To reach “chemical
accuracy” with respect to absolute values of excitation energies,
one needs to use EOM-CCSD with perturbative triples
correction (EOM-CCSD(dT)),49,50 which has a steeper scaling
on the order of n × N7. However, the EOM-CCSD method is
very efficient in describing relative spacings of excited states.38

Another source of error in our computations may be attributed
to the lack of explicit solute−solvent interactions. One way to
circumvent the effect of the missing interactions is to use EOM-
CCSD coupled with an effective fragment potential (EFP)
approach with inclusion of dispersion and exchange-repulsion
interactions between QM-EFP in the case of nonpolar
solvents.51 The effect of dispersion interactions between the
solute and solvent, which is missing in the C-PCM model, may
account for an error of ∼0.3 eV in the solvatochromatic
effects.51 However, we anticipate the error to be systematic.
We compared the performances of CIS and TDDFT

methods by analyzing the relative spacings of the 1La and
1Lb

excited states compared with the results obtained with the
EOM-CCSD method and experimental data. We also estimated
the systematic errors in the excitation energies for the EOM-
CCSD/C-PCM model with respect to the experimental results.
NTO analysis was performed with EOM-CCSD/6-31+G(d) as
implemented in Q-Chem.40 Exciton analysis using the one-
electron transition density matrix (1-TDM) was performed
using the libwfa tool of Q-Chem40 as described in refs 52−54.

3. RESULTS AND DISCUSSION
The transition dipole moments of the 1Lb ← S0 and

1La ← S0
transitions of 2N are at an angle relative to the long and short
axes of the naphthalene ring, unlike the cases of 1N,
naphthalene, and other acenes, which exhibit transition
moments almost aligned along the axes of the molecule.
Cis1N is most similar to naphthalene.55 The molecular
asymmetry due to the OH group at position 1 modifies the
relative spacing and corresponding oscillator strengths of the
excited states.56 Nevertheless, the frontier orbitals of these
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states preserve the symmetry of those in the parent naphthalene
molecule.8,23

3.1. EOM-CCSD Characterization of the Excited States.
We begin with an assessment of errors in the excitation energies
computed at the EOM-CCSD/aug-cc-pVDZ level by direct
comparison to the corresponding experimental values (Table
1). We note that EOM-CCSD systematically overestimates the

excitation energies for both isomers (1N and 2N) by 0.42−0.52
eV. As discussed in Computational Details, this error can be
attributed to the lack of triple excitations in EOM-CCSD (error
∼ 0.1−0.3 eV) and explicit solute−solvent interactions in the
C-PCM model (error ∼ 0.3 eV). Additionally, one should keep
in mind that computation of vibrational progressions is also
necessary for unambiguous comparison between theoretical
and experimental absorption spectra. However, such calcu-
lations require geometry optimizations in the excited state,
which are computationally very expensive when performed with
correlated methods. Additionally, previous studies have
demonstrated that the maxima of electronic spectra in
polyatomic molecules often align with the 0−0 transition as
opposed to a vertical transition from vibrational ground state of
the ground electronic state to a higher vibrational state of an
electronic excited state.57,58 Nevertheless, vibrational relaxation
is required to bring the system to the vibrational ground state in
the electronically excited state. Thus, vibrational relaxation can
account for an additional red shift in the computed
energies.57−59

For comparison of relevant energy gaps with experimental
results, we define two energy parameters (gaps), ΔE1 and ΔE2,
as follows:

Δ = −E E E( L ) ( L )1 b
1

n a
1

ni i (1)

Δ = −E E E(1N) (2N)2 L Lj
1

j
1 (2)

where ni ∈ {cis1N, trans1N, cis2N, trans2N} and j ∈ {a, b}.
ΔE1 is the energy gap between the 1Lb and

1La states for each
isomer and rotamer, whereas ΔE2 quantifies the energy
difference between 1N and 2N in the 1Lb or 1La state.
Experimentally, it was observed that 1Lb is lower than

1La for all
isomers and rotamers of naphthols. In addition, 2N is lower
than 1N in the 1Lb state but higher in the

1La state. Thus, ΔE1 is

always negative, while ΔE2 is negative for 1Lb and positive for
1La.
Comparison of the experimental and EOM-CCSD values of

ΔE1 and ΔE2 (Tables 2 and 3, respectively) shows that the

EOM-CCSD method consistently reproduces the energy
parameters in excellent agreement with the experiments. In
contrast, section 3.2 shows the limitations of single-excitation-
based methods (TDDFT and CIS). Hence, we analyze the
properties of the excited states based on the EOM-CCSD
calculations followed by a comparison with different TDDFT
functionals (in following sections).
Table 4 summarizes the properties of the 1Lb and

1La states
of naphthols in terms of the squared Frobenius norm (Ω) of
the 1-electron transition density matrix (1-TDM) and the
participation ratio of the natural transition orbitals
(PRNTO).

52,53 For an electronic transition of purely single-
excitation character, Ω = 1.60 We note that Ω is less than 1
(0.77 to 0.79) for both excited states in all of the isomers and
rotamers. This indicates contributions from double excitations
for both states. However, the deviation from pure single-
excitation character is not quite drastic (only about ∼21−23%)
as presented for some cases.60−62 If an electronic transition can
be described purely by one NTO pair, PRNTO = 1, while PRNTO
= 2 indicates that two NTO pairs are required to describe the
transition correctly. PRNTO analysis of these excited states
suggests that for 1N rotamers, 1Lb involves two individual
transitions (PRNTO ∼ 2). This observation is also evident from
the weights of each transition in Figure 2. However, 1La states
can be mostly described by one NTO pair with some
contribution from a second pair. We can quantify the
contribution of biconfigurational character (Δ2p) of each state
as follows:

Δ =
− × < ≤

− × < ≤

⎪

⎪

⎧
⎨
⎩

(PR 1) 100%, 1 PR 2

(3 PR ) 100%, 2 PR 3
2p

NTO NTO

NTO NTO (3)

Table 1. Comparison between Experimentala and EOM-
CCSD-Derivedb Excitation Energies

Eex [eV]

system state computed exptl error [eV]

1Lb
cis1N 4.30 3.87 0.43
trans1N 4.33 0.46

1Lb
cis2N 4.28 3.78 0.50
trans2N 4.24 0.46

1La
cis1N 4.69 4.27 0.42
trans1N 4.79 0.52

1La
cis2N 5.03 4.54 0.49
trans2N 4.99 0.45

aExperimental absorption maxima were obtained from ref 8. bThe
EOM-CCSD excitation energies were computed using the aug-cc-
pVDZ basis set.

Table 2. Comparison of Values of the Energy Parameter ΔE1
(eq 1) between EOM-CCSDa and Experiment

system ΔE1 [eV]

cis1N −0.39
trans1N −0.46
experiment (1N) −0.42

cis2N −0.75
trans2N −0.75
experiment (2N) −0.77

aExcitation energies were computed using the aug-cc-pVDZ basis set.

Table 3. Comparison of Values of the Energy Parameter ΔE2
(eq 2) between EOM-CCSDa and Experiment

system state ΔE2 [eV]

cis
1Lb

−0.35
trans −0.20
experiment −0.27

cis
1La

0.01
trans 0.09
experiment 0.07

aExcitation energies were computed using the aug-cc-pVDZ basis set.
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Figure 2 shows the NTO pairs involved in the 1Lb ← S0 and
1La

← S0 transitions for cis rotamers. We observed that two NTO
pairs with comparable weights are involved in the 1Lb ← S0
transition. We also note similar behavior for the trans rotamers
(see the Supporting Information). From Table 4 we see that
the 1La ← S0 transition in 1N can be described predominantly
by one NTO pair, with contributions of only 14−17% from
additional transitions. In the case of 2N, the 1Lb ← S0
transitions deviate from purely biconfigurational character by
19−24%, whereas the biconfigurational contribution in 1La ←
S0 becomes even more significant (30−32% vs 14−17% in 1N).
3.2. Performance of TDDFT and CIS. Figures 3 and 4

assess the performance of TDDFT, as implemented with
various hybrid and long-range-corrected functionals, by
comparing values of the energy parameters with experimental
data. In addition, we always compare energies/properties
computed using the same basis set for both TDDFT and
EOM-CCSD to eliminate basis set dependence from our
comparisons of the excitation energies. The relevant states are
identified in terms of the frontier orbitals involved in the
electronic transitions, as reported by Xiao et al.8 We note that
TDDFT fails to predict the experimental values of ΔE1 even
when implemented in terms of range-separated/long-range-

corrected functionals such as CAM-B3LYP, ωB97X-D, and
LRC-ωPBEh. In fact, range-separated/long-range-corrected
functionals predict ΔE1 values with the wrong sign, artificially
flipping the order of the two excited states. The CIS
calculations (reference state is HF) also misplace the 1La state
lower in energy than the 1Lb state. These limitations of the
TDDFT and CIS methods are further investigated in the next
section. Nevertheless, we do observe a good description of the
1La state in cis1N using CIS, suggesting that the state is most
ionic in nature. CIS is able to describe it properly since it has
100% HF exchange. We also note that all of the methods
including EOM-CCSD reproduce similar trends for the cis and
trans rotamers.
Experimentally it is observed that 2N is more stable than 1N

in the 1Lb state, resulting in a positive value of ΔE2. However,
TDDFT fails dramatically in predicting the correct order of the
energy levels. The errors are comparable for all of the DFT
functionals. The maximum error is observed for the 1Lb states
described by the M06-2X-D3 functional, which has the highest
percentage of HF exchange (54%).45 The origin of the error
can be traced back to the nature of the excitations, which have
significantly different amounts of multiconfigurational character
for 1N and 2N (see Table 4). Therefore, the TDDFT errors are
different and do not cancel out.
The performance of DFT functionals often depends critically

on the percentage of HF exchange. Therefore, we investigated
the sensitivity of the excitation energies (Figure 5a) and the
predicted values of ΔE1 for functionals with various amounts of
short-range HF exchange. The percentage of HF exchange in
B3LYP42 (20% HF exchange + 8% Slater LSDA exchange +
72% B88 GGA exchange + 81% LYP GGA correlation + 19%
VWN1RPA correlation) was systematically increased, and the
total exchange was adjusted with reduced B88 GGA exchange.
For example, B3LYP with 40% HF exchange refers to (40% HF
+ 8% Slater LSDA + 52% B88 GGA exchange + 81% LYP GGA
correlation + 19% VWN1RPA correlation). Figure 5c shows
that the error in computed excitation energy of the 1La state
decreases monotonically with increasing percentage of HF
exchange, while the error in the 1Lb state increases. Likewise,
with a reduction in the percentage of HF exchange, the error in
the 1Lb state can be reduced while the description of the 1La
state is compromised. If one is interested in only one these

Figure 2. Leading NTOs involved in the first two excited states of 1N and 2N with isovalue = 0.02. For clarity we show only the results for the cis
rotamers.

Table 4. Excited-State Properties of Naphthols Obtained
Using EOM-CCSD Methodsa

system state Eex (computed) [eV] Ω PRNTO Δ2p [%]

cis1N
1Lb 4.30 0.77 2.00 100
1La 4.69 0.79 1.14 14

trans1N
1Lb 4.33 0.77 2.01 99
1La 4.79 0.79 1.17 17

cis2N
1Lb 4.28 0.77 1.81 81
1La 5.03 0.79 1.32 32

trans2N
1Lb 4.24 0.77 1.76 76
1La 4.99 0.79 1.30 30

aExcitation energies were computed using the aug-cc-pVDZ basis set,
and NTO analysis was performed at the EOM-CCSD/6-31+G(d)
level.
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excited states, the accuracy in the excitation energy may be
modified by varying the short-range HF exchange. However,
Figure 5c also reveals that for a fixed percentage of HF
exchange, the absolute error for 2N is always higher than that
for 1N.
Because of the different accuracies of the 1La and

1Lb energies
for any percentage of HF exchange, the accuracy in the spacing
of these two states cannot be improved significantly by
changing the percentage of HF exchange (Figure 5b). The
most notable difference between the TDDFT and EOM-CCSD
treatments of excited states is that the EOM-CCSD method
includes double excitations. Another difference that might play
a crucial role is the reference state. Usually an HF Slater
determinant is the reference for the EOM-CCSD method,
while TDDFT employs the DFT reference state. Therefore, we
studied the accuracy of EOM-CCSD excited-state calculations
based on the DFT/B3LYP reference state. Also, we compared
the excitation energies obtained from TDHF and TDDFT. As
expected, the TDHF results are very close to those for TD-
B3LYP with 80% HF exchange. Table 5 shows that the EOM-
CCSD results are quite insensitive to changes in the reference

state (the highest error is 0.04 eV), with the DFT and HF
reference states giving comparable results at the EOM-CCSD
level. In addition, Table 4 reveals a significant amount of
biconfigurational character of 1Lb, which is manifested in higher
correlation in these states compared with the parent
naphthalene molecule.54 Further exciton analysis is warranted
to elucidate this issue.

4. EXCITON ANALYSIS USING 1-TDM

The exciton analysis was performed using 1-TDM since it is
orbital-invariant.52,60,63 Before analysis of the exciton proper-
ties, the errors in the absolute excitation energies computed by
TDDFT with various functionals should be noted. Table 6
shows that the errors in the excitation energies computed using
B3LYP for the 1La state are quite high because of the paucity of
HF exchange, while the errors for the 1Lb state are quite small
for the 1N rotamers. Table 4 shows that there is significant
mixing of the 1La and

1Lb states in the 2N rotamers. Thus, one
might expect higher errors for the 2N rotamers in both excited
states when using B3LYP.

Figure 3. Comparison of the performances of EOM-CCSD and several DFT functionals with experiments. All of the calculations were performed
using the aug-cc-pVDZ basis set. (a) Excitation energies of the 1Lb and

1La states from the ground state for (top) cis and (bottom) trans rotamers.
(b) Energy difference ΔE1 (see eq 1) for (top) cis and (bottom) trans rotamers. (c) Experimental UV−vis absorption spectra of 1N and 2N in n-
hexane (ref 8). Relevant energy differences are highlighted.

Figure 4. Comparison of the performances of EOM-CCSD and several DFT functionals with experiments. All of the calculations were performed
using the aug-cc-pVDZ basis set. (a, b) Energy difference ΔE2 (see eq 2) for (a) cis and (b) trans rotamers. (c) Experimental UV−vis absorption
spectra of 1N and 2N in n-hexane(ref 8). Relevant energy differences are highlighted.
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From Table 6, we also notice that while the error in the
energy of the 1La state can be reduced (relative to B3LYP) by
using range-separated/long-range-corrected functionals, the
error in the energy of 1Lb significantly increases, in agreement
with previously reported results for naphthalene.5,24,27

The ionic characters of these excited states were computed,
and the results are summarized in Table 7 in terms of the
electron−hole separation (|⟨re − rh⟩|; see Figure 6a). The
different behavior of the electron−hole separation in the 1La
and 1Lb states has also been reported for several acenes,
providing a strategy to quantify the ionic/covalent character of
the state.5,54,61,62

From the EOM-CCSD results, we observe that 1La states in
1N have significantly higher ionic character compared with the
other isomers. Particularly noticeable is the cis1N state, which

Figure 5. Effect of percentage of HF exchange in the functional on the excitation energies and energy difference ΔE1 (see eq 1). The trend in
performance with respect to varying % HF exchange is studied. All of the calculations were performed using the aug-cc-pVDZ basis set. (a)
Excitation energies of the 1Lb and

1La states from the ground state for (top) cis and (bottom) trans rotamers with respect to varying % HF exchange.
(b) Energy difference ΔE1 (see eq 1) for (top) cis and (bottom) trans rotamers with respect to varying % HF exchange. (c) Absolute errors in the
respective excitation energies with respect to varying % HF exchange. The absolute error is estimated with respect to EOM-CCSD as |Error| = |
Estate
ex (EOM-CCSD) − Estate

ex (TDDFT)|.

Table 5. Comparison of EOM-CCSD Excitation Energies
Obtained Using HF and DFT Reference States and
Comparison of TDDFT and TDHF Excitation Energiesa

EOM-CCSD Eex [eV]

state system
HF
ref

B3LYP
ref error

TDDFT Eex
[eV]

TDHF Eex
[eV]

1Lb

cis1N 4.34 4.33 0.01 4.76 4.83
cis2N 4.34 4.33 0.00 4.88 4.91
trans1N 4.37 4.37 0.00 4.79 4.86
trans2N 4.30 4.28 0.02 4.86 4.88

1La

cis1N 4.86 4.82 0.04 4.50 4.49
cis2N 5.20 5.20 0.00 4.61 4.63
trans1N 4.98 4.99 −0.01 4.57 4.55
trans2N 5.14 5.13 0.01 4.54 4.56

aEOM-CCSD excitation energies were computed using the 6-
31+G(d) basis set. TDDFT and TDHF excitation energies were
computed using the aug-cc-pVDZ basis set.

Table 6. Errors Involved in Excitation Energies Using
Different DFT Functionals Estimated with Respect to EOM-
CCSD as Errorex = Eex

EOM−CCSD − Eex
TDDFT a

Errorex [eV]

state system B3LYP CAM-B3LYP ωB97X-D

1La

cis1N 0.88 0.54 0.51
cis2N 1.10 0.83 0.82
trans1N 0.89 0.56 0.54
trans2N 1.10 0.84 0.82

1Lb

cis1N 0.02 −0.15 −0.16
cis2N −0.16 −0.40 −0.42
trans1N 0.03 −0.15 −0.17
trans2N −0.19 −0.41 −0.43

aAll of the calculations were performed using the 6-31+G(d) basis set.

Table 7. Comparison of TDDFT and EOM-CCSD Derived
Electron-Hole Separationsa

|⟨re − rh⟩| [Å]

state system B3LYP CAM-B3LYP ωB97X-D EOM-CCSD

1La

cis1N 1.25 0.87 0.86 1.05
cis2N 0.51 0.35 0.35 0.28
trans1N 0.97 0.59 0.59 0.78
trans2N 0.54 0.37 0.37 0.33

1Lb

cis1N 0.39 0.26 0.25 0.20
cis2N 0.14 0.14 0.14 0.20
trans1N 0.28 0.22 0.23 0.12
trans2N 0.17 0.17 0.17 0.21

aAll of the calculations were performed using the 6-31+G(d) basis set.
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exhibits the highest ionic character and has the closest
resemblance to the parent naphthalene molecule. 1Lb states
are always found to be more covalent in nature.3,62 For 1La
states, B3LYP overestimates the ionic character for all of the
isomers, whereas CAM-B3LYP and ωB97X-D underestimate
the ionic character of 1N and slightly overestimate that of 2N.
Other functionals slightly overestimate the ionic character of
1N and slightly underestimate it in the case of 2N for 1Lb state.
However, these variations in exciton properties are not related
to the variations in 1-TDM, since from Table 8 we notice that
the differences between the respective 1-TDM norms Ω
computed with TDDFT and EOM-CCSD (0.21−0.23) are
very similar for all of the isomers of a specific state (1La or

1Lb).

The difference between TDDFT and EOM-CCSD in regard
to the norm of 1-TDM reflects the deviation from purely
single-excitation character in the nature of the excited state. The
deviation is not drastic enough to be solely responsible for the
dramatically poor performance of TDDFT. In contrast to
TDDFT, the doubly excited configurations in EOM-CCSD
provide correlation for the predominantly singly excited states
in addition to capturing the contributions of any double-
excitation character in the excited states.
Table 9 summarizes the NTO participation ratio (PRNTO)

values for both excited states for all of the isomers using

TDDFT and EOM-CCSD. We observe that the 1La states are
well-described (error ∼ 0.02−0.05) by CAM-B3LYP and
ωB97X-D, whereas a larger error in PRNTO (0.05−0.14) is
associated with B3LYP. Additionally, the B3LYP error is higher
for 2N than for 1N. However, PRNTO for 1Lb states elucidates
one of the reasons behind the compromised accuracy of the 1Lb
state when range-separated/long-range-corrected functionals
are used. Furthermore, the comparisons with EOM-CCSD
results listed in Table 9 show that the errors in PRNTO for 1Lb
states are lower for B3LYP (0.05−0.25) compared with CAM-
B3LYP (0.15−0.26) and ωB97X-D (0.16−0.30).
The long-range electron−hole correlation parameter (Reh)

can be computed as follows:4,54,62

σ σ
=

⟨ · ⟩ − ⟨ ⟩·⟨ ⟩
R

r r r r
eh

h e h e

h e (4)

where σh and σe are the root-mean-square sizes of the electron
and hole, respectively, in the exciton. The values of Reh are in
the range [−1, 1]. A positive value of Reh represents a bound
exciton with correlated motion of the electron and hole in the
exciton picture (see Figure 6b). A negative value of Reh
corresponds to anticorrelated motion of the electron and the
hole (see Figure 6c). Reh = 0 indicates a lack of correlation
between the electron and the hole. Typically, small values of Reh
are observed for small molecules.4,28

Table 10 summarizes the Reh values for both excited states in
all of the isomers using TDDFT and EOM-CCSD. The
observed electron−hole correlations are similar to the values
obtained for naphthalene.28,54 More importantly, in the B3LYP
description of the 1La state there appears to be an unbound
exciton, which does not agree with the EOM-CCSD
description. CAM-B3LYP and ωB97X-D improve the descrip-
tion of this state but fail to be consistent across isomers. Similar
negative Reh values are also reported for naphthalene using

Figure 6. Illustration of the relevant parameters from exciton analysis.
(a) Electron−hole separation, measured as the distance between their
respective centers. (b) Positive electron−hole correlation coefficient
Reh (see eq 4), representing a bound exciton. (c) Negative electron−
hole correlation coefficient Reh, representing anticorrelated motion of
the electron and hole.

Table 8. Comparison of 1-TDM Norms Ω Computed with
TDDFT and EOM-CCSDa

Ω

state system B3LYP CAM-B3LYP ωB97X-D EOM-CCSD

1La

cis1N 1.0 1.0 1.0 0.79
cis2N 1.0 1.0 1.0 0.79
trans1N 1.0 1.0 1.0 0.79
trans2N 1.0 1.0 1.0 0.79

1Lb

cis1N 1.0 1.0 1.0 0.77
cis2N 1.0 1.0 1.0 0.77
trans1N 1.0 1.0 1.0 0.77
trans2N 1.0 1.0 1.0 0.77

aAll of the calculations were performed using the 6-31+G(d) basis set.

Table 9. Comparison of NTO Participation Ratios (PRNTO)
Obtained with TDDFT and EOM-CCSDa

PRNTO

state system B3LYP CAM-B3LYP ωB97X-D EOM-CCSD

1La

cis1N 1.09 1.11 1.11 1.14
cis2N 1.19 1.30 1.30 1.32
trans1N 1.11 1.15 1.15 1.17
trans2N 1.16 1.25 1.26 1.30

1Lb

cis1N 1.77 1.84 1.84 2.00
cis2N 1.65 1.55 1.53 1.81
trans1N 1.76 1.75 1.73 2.01
trans2N 1.71 1.61 1.59 1.76

aAll of the calculations were performed using the 6-31+G(d) basis set.
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B3LYP.28 Additionally, it is known that the use of CAM-B3LYP
restores the slightly bound exciton picture of these states for
naphthalene.28 Our observation correlates with the reduced
error for CAM-B3LYP and ωB97X-D compared with B3LYP.
Additionally, our results correlate with the increased error in
2N compared with 1N, following the trend observed in PRNTO,
since the errors (relative to EOM-CCSD) in Reh are higher in
2N than in 1N for all of the functionals. Reh for the

1Lb state is
about 5 times higher than Reh observed for 1La. Thus, exciton
analysis based on 1-TDM highlights the reasons behind the
apparent failure of TDDFT in the context of the 1La and

1Lb
states of naphthols. The problem of poor description of the
electronically excited states can be attributed to several factors:
the lack of correlations from double excitations, the incomplete
picture of the collective nature of excitation induced by mixing
of the two excited states, and incorrect electron−hole
correlation effects in TDDFT.

5. SUMMARY AND CONCLUSIONS
We have analyzed the two lowest excited states of 1- and 2-
naphthol using DFT and EOM-CCSD methods for electronic
structure calculations. EOM-CCSD correctly reproduces the
experimental ordering and relative spacing of the excited states
for all isomers and rotamers, although it systematically
overestimates the absolute excitation energies. In contrast,
TDDFT fails to predict the correct energy order of the excited
states, irrespective of the choice of functional or percentage of
HF exchange. Consequently, the relative spacings of the excited
states are not properly described by TDDFT. The errors
introduced by TDDFT in the calculations of the 1Lb and

1La
energies are different because of the different characters of the
two states. By changing the percentage of HF exchange, one
can reduce the error for a particular state, but only at the
expense of increasing the error for the other. The errors in
TDDFT are higher for 2N than for 1N since the mixing of
excited states is higher for 2N, as quantified by the parameter
Δ2p (also see Table 9). Additionally, the electron−hole
correlation is found to be a very important metric for correct
characterization of excited states when comparing different
methods. In particular, the inconsistency of TDDFT is clearly
highlighted by such a metric. In addition, we find that long-
range-corrected functionals fail to remedy the deficiencies of
TDDFT as applied to the description of the excited states of
naphthols. The failure of range-separated/long-range-corrected
functionals is shown to stem from higher error in the
collectivity index (as quantified by PRNTO) and inconsistent
correlation in 1Lb states.

We conclude that the EOM-CCSD method provides a
rigorous way of characterizing the excited states of naphthols,
revealing the true nature of the excited states in term of exciton
parameters. Current DFT functionals dramatically fall short in
this context. Relying on error cancellation while studying trends
using TDDFT excitation energies can lead to erroneous
conclusions since the errors are not systematic and depend
on the nature of the excited state. We anticipate that the
conclusions drawn in this study will be transferable to other
photoacids where similar states play a pivotal role.
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