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Abstract
Coherent-optical-control schemes exploit the coherence of laser pulses to
change the phases of interfering dynamical pathways and manipulate dynam-
ical processes. These active control methods are closely related to dynamical
decoupling techniques, popularized in the field of quantum information. In-
spired by nuclear magnetic resonance spectroscopy, dynamical decoupling
methods apply sequences of unitary operations to modify the interference
phenomena responsible for the system dynamics thus also belonging to the
general class of coherent-control techniques. This article reviews related
developments in the fields of coherent optical control and dynamical de-
coupling, emphasizing the control of tunneling and decoherence in gen-
eral model systems. Considering recent experimental breakthroughs in the
demonstration of active control of a variety of systems, we anticipate that
the reviewed coherent-control scenarios and dynamical-decoupling methods
should raise significant experimental interest.
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Tunneling: classically
forbidden penetration
through a potential
energy barrier

Nuclear magnetic
resonance (NMR):
spectroscopic
technique that probes
the structural and
magnetic properties of
atomic and molecular
systems

RF: radiofrequency

1. INTRODUCTION
The development of practical methods for controlling quantum dynamics with electromagnetic
fields has a long history and remains an outstanding challenge of great technological interest (1–
6). This review focuses on coherent-control scenarios based on sequences of unitary pulses that
can significantly influence quantum dynamics (e.g., suppress, or accelerate, quantum tunneling).
The pulses achieve control by changing the relative phases of interference dynamical pathways
in coherent superposition states, without modifying the potential energy surfaces responsible for
reaction dynamics (7, 8), or collapsing the coherent unitary evolution of the system as in control
schemes based on the quantum Zeno effect (9–13). The reviewed coherent-control methods
are also fundamentally different from traditional kinetic control methods in which experimental
conditions (e.g., the effect of temperature, pressure, catalysts, or external potentials) are controlled
to favor (or suppress) dynamical pathways. The coherent-control sequences discussed here could
be optimized by using closed-loop techniques that monitor the outcome of the control process to
improve the control sequence and achieve the desired dynamics (14, 15). The discussion of such
optimization methods, however, is beyond the scope of our presentation.

Quantum coherent-control methods based on sequences of externally applied electromagnetic-
field pulses have long been considered in nuclear magnetic resonance (NMR) spectroscopy. Indeed,
the earliest experimental implementations of quantum coherent control (demonstrating active
control over the coherent dynamics of molecular systems) date from the 1950s. These experiments
aimed at eliminating the undesired phase evolution by applying trains of radiofrequency (RF) π

pulses, the so-called spin-echo effect and Carr-Purcell sequences (16, 17). During the ensuing
decades, the technique led to a multitude of RF pulse sequences that were extensively used to study
molecular structure and dynamics (18–20). A prototype example is the WAHUHA sequence for
the suppression of dipolar interactions via sequences of π/2 pulses (21).

In 1957, the demonstration that all two-level systems are mathematically equivalent suggested
that coherent light pulses could lead to optical-quantum-control methods analogous to NMR
techniques (22). Not surprisingly, the development of the first high-power lasers in the 1960s was
rapidly followed by the demonstration of the photon-echo effect (23). However, methods to con-
trol events at the molecular scale with laser pulses were proposed only in the 1980s and bore little
resemblance to NMR techniques (14, 24–28). Instead of using sequences of pulses to perturb the
quantum evolution of the systems along the course of the dynamical processes, the early coherent-
optical-control methods typically prepared the system in an initial coherent superposition by using
multiple (or tailored) laser pulses. The system then evolved freely, and the components of the initial
coherent superposition interfered with each other while following competing relaxation pathways.
Therefore, coherent-optical-control methods have focused mainly on the rational design, prepa-
ration, and optimization of initial coherent superposition states (15, 29–40). Nowadays, ultrafast
lasers can produce a wide range of complex pulses with ultrashort time resolution and extremely
high-peak powers (41–44). As a result, a variety of coherent-control methods based on sequences of
ultrafast laser pulses have been proposed (41–44), including the suppression of quantum tunneling
by affecting the relative phases of interfering dynamical pathways (4–6). The ultimate goal of these
developments has been to provide fundamental understanding on how to manipulate quantum
mechanical interferences to control the dynamics of quantum systems ranging from single atoms
and molecules to Josephson junction–based devices and nanomechanical resonators.

Quantum coherences that are essential for coherent-control techniques can be preserved even
in rather complex systems, as observed by photon-echo (45), pump-probe (46), and fluorescence
upconversion experiments (47) for the vibrational quantum beats of electronic states of organic
dyes in liquids and condensed phases. Moreover, engineered solid-state devices at the nano- and
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Quantum dot (QD):
nanometer
semiconducting
structure where the
charge carriers are
confined in all spatial
dimensions

Decoherence:
suppression of
quantum interference
due to interactions
with the environment

Bang-bang:
arbitrarily strong and
instantaneous control
pulses

Quantum
information: field of
study that concerns
the coding, storage,
and transmission of
information by
exploiting the
quantum mechanical
properties of light and
matter

microscales provide a rich ground for the observation of coherent quantum tunneling effects.
Particularly, coherent charge oscillations have been produced in double–quantum dot (QD) sys-
tems (48, 49) and Cooper-pair boxes (i.e., nanometer-scale superconducting electrodes connected
to a reservoir via a Josephson junction) (50). Furthermore, in atomic physics, coherent quantum
dynamics has been studied in ions and atomic Bose-Einstein condensates confined by optical traps
(51). However, in most systems, decoherence is the main obstacle hindering the achievement of
coherent control.

Decoherence is a ubiquitous phenomenon in quantum systems, caused by the interactions with
the environment. One of its consequences is the randomization of quantum phases associated
with coherent superposition states, making quantum-control techniques ineffective. The deco-
herence timescales range from femtoseconds to nanoseconds for electronic excitations, owing to
coupling with phonons and spontaneous emission, whereas spin-coherent excitations decohere
in microseconds to milliseconds owing to coupling to other spins in the sample or spin-orbit
interaction. Several strategies have been proposed for suppressing decoherence, including quan-
tum error-correction schemes (52, 53) and decoherence-free subspaces (54). Here, we focus on
dynamical-decoupling techniques (55–58) that actively decouple the system of interest from its en-
vironment by using control pulse sequences inspired by NMR spectroscopy. The first theoretical
description of the dynamical-decoupling method considered a sequence of spin echoes applied to
a single spin-1/2 with the purpose of suppressing its interaction with a bosonic reservoir (56). The
method was termed quantum bang-bang control, after its classical analog (59–61), referring to the
ideal situation of arbitrarily strong and instantaneous pulses. The so-called hard pulses in NMR
are analogous to this picture. Soon afterward, dynamical-decoupling schemes were incorporated
into a theoretical framework in which the control operations are drawn from a discrete control
group (55, 57, 58).

Quantum-control methods based on dynamical decoupling have been studied in connection
to a wide range of applications, including the suppression of internal and external interactions as
well as the control of transport behavior (62), and have become particularly popular in the area of
quantum information (63, 64). Among the various contributions to the development of dynamical-
decoupling methods, we mention the following (for a more complete list of references, see 65,
66): the construction of bounded-strength Eulerian (67) and concatenated dynamical-decoupling
protocols (68, 69), as well as combinatorial methods for multipartite systems (70, 71); optimized
control sequences for the elimination of pure dephasing in a single qubit (72); schemes to re-
duce specific decoherence mechanisms, such as 1/f noise in superconducting devices (73–76), and
hyperfine- and phonon-induced decoherence in QDs (77–84); and the compensation of imperfect
averaging through the addition of randomized strategies into the dynamical-decoupling design
(65, 66, 85–89). Within the field of experimental quantum information processing, dynamical-
decoupling techniques have found applications in liquid-state NMR (90) and in solid-state
systems such as nuclear quadrupole qubits (91) and fullerene qubits (92) and have inspired
charge-based (93) and flux-based (94) echo experiments in superconducting qubits beyond spin
systems.

Optical-control, NMR, and dynamical-decoupling methods share the fundamental aspect of
controlling quantum dynamics by using pulses that affect phases and therefore the ensuing in-
terference phenomena responsible for quantum dynamics. The methods have emerged from the
realm of different scientific communities and continued evolving rather independently for more
than 30 years, partially because of the different nature of applications and the different timescales
involved. Even the concepts of pulses and phases in the different fields are often used for dif-
ferent physical contexts, making the connection established by common physical principles even
less evident. For example, NMR and dynamical-decoupling techniques applied to spin systems
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Coherent optical
control: active
control technique that
exploits the coherence
property of lasers to
manipulate quantum
mechanical
interferences
responsible for
dynamical processes

Dynamical
decoupling: method
to control system
dynamics by averaging
out internal or external
interactions

apply pulses that affect the phase of precession of spins (in a thermal ensemble) relative to an
external field, ensuring constructive (or destructive) superposition along a desired direction in
space. Therefore, the resulting effect of the pulses is to flip (or orient) the ensemble net polariza-
tion in the three-dimensional space. Similarly, pulses of coherent-optical-control schemes change
the phases of wave-packet components relative to the other components in a coherent superpo-
sition state and therefore rotate ket vector components in Hilbert space to ensure constructive
(or destructive) interference in desired (or undesired) quantum states. As a consequence, both
coherent-optical-control schemes and dynamical-decoupling methods share common mathemat-
ical and physical principles that bridge the gap between the coherent-control and the quantum
information communities. It is, therefore, expected that the methods and underlying physical pro-
cesses reviewed here should be of interest to scientific communities beyond the particular fields
in which the techniques were originally developed.

The review is organized as follows. Section 2 discusses the similarities between coherent-
optical-control and dynamical-decoupling methods as contrasted with kinetic control techniques,
when applied to controlling quantum dynamics in two-level model systems. Sections 3 and 4
illustrate the application of coherent optical control to the manipulation of decoherence in a
model QD and superexchange electron tunneling in functionalized semiconductor nanostructures,
respectively. Section 5 discusses dynamical-decoupling schemes for suppressing or accelerating
decoherence and for removing unwanted internal interactions.

2. COHERENT OPTICAL CONTROL AND DYNAMICAL DECOUPLING
To illustrate the similarities between coherent-optical-control and dynamical-decoupling meth-
ods, we consider two simple models that manipulate the interference between state components
in a coherent superposition by using a sequence of unitary pulses. In the first model, a particle in
a symmetric double well is described by the following unperturbed Hamiltonian (5, 6):

H0(x, p) = p2

2
− α(x2 − βx4), (1)

where α = 1/22 and β = 1/25. In the absence of an external perturbation, the initial nonstationary
state $0(x) = π−1/4 exp[−(x – x0)2/2] (where x0 = −4) evolves in time, tunneling back and forth
through the potential energy barrier. In the second model, a spin-1/2 is described by the time-
independent Hamiltonian

H0 = Bxσx, (2)

where σx, σy , σz are Pauli matrices and Bx is a magnetic field in the x direction. The initial state
$0 = |↑〉 = (1

0), which is an eigenstate of σz, evolves in time according to the coherent superposition
$t = cos(Bxt)|↑〉 − i sin(Bxt)|↓〉, oscillating between the states |↑〉 and |↓〉. Coherent dynamical
processes in both model systems can be controlled by applying a sequence of instantaneous phase-
kick pulses as described in the following sections.

2.1. Coherent Optical Control of Tunneling
The tunneling of a particle in the double-well potential introduced by the first model can be
analyzed by considering the evolution of the nonstationary state,

|$0〉 = 1√
2

(|χ0〉 +| χ1〉), (3)
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Figure 1
(a) Double-well model potential (red line), initial state $0(x) ( gray line) and tunneling dynamics quantified by
(b) the time-dependent population P (t) = 〈$t |h|$t〉 on the right side of the tunneling barrier. We compare
results in the absence of an external field (black line), affected by a sequence of 2π unitary pulses (blue lines)
stimulating resonance Raman transitions with the auxiliary state (blue arrows in panel a) during the time
window t = 5000–10,000 a.u., and in the presence of a Stark perturbation (red line). (c) Tunneling barrier
model potential (red line), initial state $0(x) ( gray line), and tunneling dynamics quantified by (d ) the
time-dependent population PL(t) = 〈$t |1 − h|$t〉 of the left side of the tunneling barrier. We compare
results in the absence of an external field (black line) or influenced by a sequence of 2π unitary pulses applied
at time intervals t = 0.025 (red ), 0.050 (blue), 0.25 ( green), and 0.50 a.u. ( purple), stimulating resonance
Raman transitions with an auxiliary state (blue arrows in panel c).

initially localized on the left of the potential energy barrier (see Figure 1a), as defined in terms of
the linear combination of the ground and first excited states |χ0〉 and |χ1〉, with Ĥ|χ j 〉 = E j |χ j 〉.
In the absence of an external perturbation, |$0〉 evolves in time as characterized by the survival
amplitude,

ξt = |〈$0 | $t〉|2 = 1
2

+ 1
2

cos((t), (4)

tunneling spontaneously back and forth through the potential energy barrier, with a Rabi frequency
( = (E1 − E0)/h̄. Figure 1b shows the time-dependent population P (t) = 〈$t |h | $t〉 on the
right side of the potential energy barrier, where the Heaviside step function h(x) = 1 for x > 0
and h(x) = 0 otherwise.

Tunneling dynamics can be controlled in the first model by repeatedly applying phase-kick
pulses, as shown in Figure 1b during the time window t = 5000–10,000 a.u. The phase kicks
result from ultrafast laser pulses stimulating resonance Raman scattering events (Figure 1a). The
pulses couple |$0〉 with an auxiliary excited state |$a 〉, leaving it unpopulated (i.e., 〈$a | $t〉 = 0)
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after and before application of the pulse described by the following operator:

Û2) = cos
(

*τ

2

)
(|$0〉 〈$0| + |$a 〉 〈$a |) − i sin

(
*τ

2

)
(|$0〉 〈$a | + |$a 〉 〈$0|) , (5)

where τ = 2)/* is the duration of the pulse of frequency */2. The results shown in Figure 1
correspond to 2π pulses, with ) = π . Each pulse introduces a π phase shift along the |$0〉 com-
ponent of the time-evolved wave packet |$t〉, and because the auxiliary state remains unpopulated,
the 2π pulse can be represented as follows:

Û2π (t) = 1 − 2 |$0〉 〈$0| . (6)

We consider N sufficiently frequent 2π pulses applied at equally spaced time intervals ,t = 2τ ,
starting at t0 when |$t0 〉 = c 0(t0)|$0〉 + . . . , with the remaining terms in the expansion orthogonal
to |$0〉. The time-evolved state at t = t0 + N,t can be described by

|$2Nτ+t0 〉 = c 0(t0)
(

e− i
h̄ Ĥτ Û2π e− i

h̄ Ĥτ
)N

|$0〉 + . . .

= c 0(t0)(−1)Ne− i
h̄ (E0+E1)2Nτ |$0〉 + . . . , (7)

where the second equality was obtained by substituting Û2π as defined by Equation 6 and |$0〉
according to Equation 3. Equation 7 shows that tunneling is completely suppressed during the
application of the phase-kick pulses because the population of |$0〉 remains constant. However,
tunneling is immediately resumed as soon as the sequence of pulses is interrupted.

Similar control methods based on sequences of phase-kick pulses have been applied to control
decay and decoherence in other systems (56, 64, 95–97). As an example, Figure 1c,d shows that a
sequence of instantaneous 2π pulses can achieve coherent control of spontaneous tunneling decay
into a continuum. Here, the effect of a sequence of 2π pulses (applied during the time window t =
10,000–20,000 a.u. at equally spaced time intervals in the ,t = 0.025–0.5-a.u. range) is quantified
by the time-dependent population PL(t) = 〈$t |1 − h|$t〉 on the left side of the potential energy
barrier. Figure 1c shows that the decay of the metastable initial state can be strongly suppressed by
a sequence of sufficiently frequent 2π pulses or otherwise accelerated by less frequent sequences,
without changing the potential energy surface responsible for the evolution of quantum dynamics
(6). These results are consistent with several other studies of coherent control based on sequences of
2π pulses that were successfully applied to inhibit unwanted transitions (4–6, 96, 98, 99), accelerate
decay into a continuum (95), and control the dynamics of molecular orientation (100, 101).

2.2. Dynamical Decoupling of Spin-1/2
Dynamical-decoupling methods (and, more generally, NMR techniques) aim at controlling the
dynamics of a system by designing sequences of control pulses based on the desired form of the
effective propagator U at time t > 0. In general, the design of pulse sequences requires appropriate
methods, the most common being the average Hamiltonian theory (66) described in Section 5.
For the particular example of the second model above, the goal is to freeze the system evolution
by achieving U(t) → 1. It is straightforward to verify that this may be accomplished (apart from a
global phase) with a sequence of instantaneous π pulses applied perpendicularly to the x direction,
such as Pz = exp[−iπσz/2], which rotates the spin by 180◦ around the z direction. The pulses are
applied after every time interval ,t of free evolution, so that at 2,t, we obtain

U(2,t) = Pz exp[−iBxσx,t]Pz exp[−iBxσx,t]

= (−1) exp[−iBx exp(iπσz/2)σx exp(−iπσz/2),t] exp[−iBxσx,t]

= (−1) exp[iBxσx,t] exp[−iBxσx,t] = −1. (8)
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The effect of pulsing is to reverse the system evolution, canceling out dephasing at times t = n2,t,
with n ∈ N. Equivalent to the tunneling problem discussed in Section 2.1, the effects of the pulses
may also be understood from the perspective of the state of the system. The pulse introduces a phase
change to the component |↓〉 of the coherent superposition, leading to destructive interference
and the subsequent restoration of the initial state (apart from a global phase):

ψ(0) = |↑〉 ,

U(,t)ψ(0) = cos(Bx,t) |↑〉 − i sin(Bx,t)〉,
PU(,t)ψ(0) = (−i ) [cos(Bx,t) |↑〉 + i sin(Bx,t) |↓〉] ,

U(,t)PU(,t)ψ(0) = (−i ) |↑〉 ,

PU(,t)PU(,t)ψ(0) = − |↑〉 . (9)

Section 5 generalizes the dynamical-decoupling scheme briefly introduced here with more complex
pulse sequences designed to eliminate noncommuting terms of the Hamiltonian. In the language
of optical control, these sequences address scenarios where multiple interfering quantum paths
are available.

2.3. Kinetic Control
Control of quantum tunneling dynamics can also be achieved by using kinetic control methods,
in which external electromagnetic fields are applied to affect the ensuing quantum dynamics by
modulating the potential energy landscape, collapsing the coherent evolution of the system, or
inducing mode-selective excitation. To compare coherent-control and kinetic-control methods,
we consider the Stark perturbation,

H1(x, t) = λx sin(ωt), (10)

that modulates the potential energy landscape of the symmetric double-well potential (the first
model system above). The parameters of the perturbation H1 are chosen with a suitable resonant
frequency ω = 0.01 and coupling parameter λ = 0.003171 (8). Figure 1b shows that such a
time-dependent perturbation, applied during t = 5000–10,000 a.u., inhibits tunneling.

Other kinetic control methods, such as scenarios based on the quantum Zeno effect (10),
collapse the coherent quantum evolution of the system owing to the influence of an external
perturbation (12, 13). The perturbation can either delay (Zeno effect) or accelerate (anti-Zeno
effect) the decoherence process (102). Unifying approaches based on an adiabatic theorem (9), or
that consider the quantum measurement theory in detail (11), have been proposed to explain the
various forms of Zeno effects.

All the methods discussed in this section belong to the general class of active control scenarios in
which the properties of engineered electromagnetic fields are externally manipulated to produce a
desired outcome of a dynamical process. The distinctive aspect of coherent-control and dynamical-
decoupling methods is that they affect the phases of wave-packet components responsible for
interference, without changing the potential energy surface or collapsing the coherent evolution of
dynamics. In contrast, kinetic control methods for dynamical localization, or coherent destruction
of quantum tunneling, affect the potential energy surface at which the system propagates (7, 8).

Many experimental studies have demonstrated control of quantum dynamics by applying sinu-
soidal driving potentials. Starting with the use of RF electromagnetic pulse sequences in NMR, RF
pulse techniques were subsequently used to achieve coherent control in a wide range of systems,
including applications to the renormalization of Landé g factors in atoms (103), the micromo-
tion of single trapped ions (104), the motion of electrons in semiconductor superlattices (105),
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the resonance activation of a Brownian particle out of a potential well modeling a current-biased
Josephson tunnel junction in its zero-voltage state (1) [also analyzed by theoretical studies (106–
111)], and the dynamical suppression of interwell tunneling of a Bose-Einstein condensate in a
strongly driven periodic optical potential (112, 113). Several other experiments have also reported
tunneling suppression (114, 115), and more recently dynamical localization and coherent sup-
pression of tunneling have been demonstrated for light propagating in coupled waveguide arrays
(116, 117). These experimental breakthroughs in the manipulation of oscillatory fields to achieve
control suggest that coherent-control scenarios with similar capabilities should be useful in con-
trolling the quantum dynamics of a variety of systems ranging from single atoms and molecules
to Bose-Einstein condensates and nanoscale devices (including QDs and QD molecules) and
ultimately in controlling quantum superpositions of macroscopically distinct states that can be
realized in Josephson junction–based devices. Therefore, the reviewed coherent-control scenarios
and dynamical-decoupling methods should raise significant experimental interest, particularly in
studies of coherent optical manipulation of electronic excitations in devices in which performance
is limited by quantum tunneling and decoherence.

3. COHERENT CONTROL OF DECOHERENCE IN A MODEL
QUANTUM DOT
Coherent-control scenarios based on sequences of unitary phase-kick pulses have been recently
investigated as applied to controlling decoherence in an electronic QD coupled to a free-standing
quasi two-dimensional silicon phonon cavity (see Figure 2) (6). The model allows one to inves-
tigate coherent control in a system analogous to suspended heterostructures typically built with
nanomachining technology (118, 119) that exhibits rich quantum chaotic behavior (120, 121). As
an example of such heterostructures, Figure 2 shows a square 1 × 1-µm free-standing phonon
cavity (50 nm thick), produced by the Cornell Nanofabrication Facility, with a QD of diameter
100–250 nm produced by doping selectively a circular area at the surface of the silicon plate or
by suspending metallic gates (122, 123). The results presented in this section correspond to a
QD of radius R = 125 nm, placed slightly off-center in the phonon cavity at the nonsymmetric
position (x, y) = (0.650, 0.575) µm. The position of the QD is important because it determines
the nature of the underlying relaxation dynamics owing to the interplay between the symmetries
of the circular QD eigenstates and the phonon modes of the rectangular cavity. In particular, the
spectrum of energy-level spacing is regular (i.e., described by a Poissonian distribution) when the
QD is placed at the center of the cavity (x, y) = (0.5, 0.5) µm (120, 121). However, it exhibits

Suspending
arms

Quantum dot Phonon cavity

a b

Figure 2
(a) Model quantum-dot structure in a free-standing square phonon cavity. (b) Free-standing silicon plate,
50 nm thick and 4 µm long, produced by the Cornell Nanofabrication Facility.
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a distinct quantum chaotic behavior characterized by a Gaussian Unitary Ensemble of random
matrices when the QD is placed at a nonsymmetric position such as (x, y) = (0.650, 0.575) µm
(120, 121).

The model Hamiltonian of the QD coupled to the phonon cavity has been described as a sum
of electron, phonon, and electron-phonon interactions:

Ĥ = Ĥel + Ĥph + Ĥel-ph

=
∑

k
Ekb+

k bk +
∑

α

(
n̂α + 1

2

)
h̄ωα +

∑

k′αk

Vk′αkb+
k′ [a+

α + aα]bk′ , (11)

where the electronic basis states |k〉 = |l, ν〉 correspond to the possible states of an electron in a two-
dimensional circular QD, where l is the angular momentum and ν is the radial quantum number.
The operators a+

α and aα create and annihilate phonon modes α and define the number operator
n̂α = a+

α aα . The electron-phonon coupling terms Vk′αk depend on the material properties, as well as
the geometry of the structure, carrying information on the symmetry of the nanoelectromechanical
system (120, 121). The Hamiltonian of the compound QD-phonon system, therefore, can be
written in the basis set of direct products of the one-electron states |k〉 and the multiphonon
states |n1n2n3 . . . nN〉, where nα = 0, 1, . . . , n denotes the number of phonon quanta in mode
α, considering a total of N = 27 distinct phonon modes and nα ≤ 30. A typical state for the
compound system can be represented as

|k; n〉 = |k〉
N∏

α

1√
nα!

(
a+

α

)nα |0〉 . (12)

The dynamics of decoherence has been investigated by computing the time evolution of the
electronic angular momentum Lel = Tr{ρ̂el(t)L̂}, where ρ̂el(t) = Trph{ρ̂(t)} is the reduced elec-
tronic density matrix and Trph designates the trace over phonon states. The decoherence dynamics
was quantified by computing *el = Tr{ρ̂2

el(t)}. These calculations required the integration of
the time-dependent Schrödinger equation, after diagonalization of the compound QD-phonon
Hamiltonian.

The dynamics of decoherence has been manipulated by a coherent-control scenario comprising
a sequence of 2π pulses (6). Each pulse is described by the unitary operator,

Û2π = (Û2π )el ⊗ Iph,

= (I − 2| l = 1, ν〉〈l = 1, ν|)el ⊗ Iph, (13)

and introduces a π phase shift in the l = 1 component of the time-evolved state, with Iph as the
identity matrix in the basis set of phonon states.

The initial electronic state was chosen to be the first excited rotational eigenstate, as defined
by the undisturbed electronic states of the circular two-dimensional QD of radius R,

φk (r, θ ) =
J|l |

(
αlν

r
R

)
exp [ilθ ]

√
π R

∣∣J|l |+1 (αlν )
∣∣ , (14)

where k ≡ (l, ν) and l = 0, ±1, ±2, . . . , with αlν as the υ-th root of the Bessel function of order
|l |, J|l|(αlυ x). The corresponding energies of the one-electron states |φk〉 are Ek = h̄2

2me

α2
lν

R2 , where
me is the electron effective mass. The initial state of the phonon bath was defined according to the
density matrix, at finite temperature T,

ρ ph
nn =

exp
(
−Eph(n)/kB T

)
∑
{n}

exp
(
−Eph(n)/kB T

) , (15)

www.annualreviews.org • Coherent Control of Quantum Dynamics 301

A
nn

u.
 R

ev
. P

hy
s. 

Ch
em

. 2
00

9.
60

:2
93

-3
20

. D
ow

nl
oa

de
d 

fro
m

 a
rjo

ur
na

ls.
an

nu
al

re
vi

ew
s.o

rg
by

 Y
al

e 
U

ni
ve

rs
ity

 S
TE

RL
IN

G
 C

H
EM

IS
TR

Y
 L

IB
RA

RY
 o

n 
04

/2
3/

09
. F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV373-PC60-15 ARI 25 February 2009 18:31

0 0.5 1 1.5 2 2.5 3
Time (μs) Time (μs)

–0.2

0

0.2

0.4

0.6

0.8

1

L el
0 0.5 1 1.5 2 2.5 3

0.5

0.6

0.7

0.8

0.9

a

Γ el

b

0.4

1

Figure 3
(a) Time-dependent angular momentum Lel = Tr{ρ̂el (t)L̂} and (b) decoherence measure *el = Tr{ρ̂2

el (t)}
associated with the dynamics of an electron in a quantum-dot structure, coupled to a two-dimensional,
free-standing thermal phonon cavity. The freely evolving propagation (black line) is compared to the
dynamics of the system perturbed by a sequence of 2π pulses, applied at intervals ,τ = 0.9 ns during the
time window t = 0.1–1.5 µs (red line).

TiO2: natural form of
titanium oxide, a
semiconductor
material commonly
used in a wide range of
applications, including
dye-sensitized solar
cells

where Eph(n) =
∑
α

(nα + 1
2 )h̄ωα is the energy of the multimode phonon cavity state n ≡

(n1, n2, . . . , nN).
Figure 3 shows the evolution of the time-dependent electronic angular momentum Lel =

Tr{ρ̂el(t)L̂} and the decoherence measure *el = Tr{ρ̂2
el(t)} during the early time relaxation after

initializing the electronic state in the first excited rotational state Lel = 1, with |k〉 = |l = 1, ν = 1〉
in interaction with the phonon bath at T = 200 mK. It also shows the evolution of Lel and
*el , corresponding to the dynamics of the system perturbed by a sequence of 2π pulses. The
decoherence dynamics is inhibited and ultimately halted by the sequence of phase-kick pulses,
without collapsing the evolution of the system. Once the sequence of perturbational pulses is
complete (at t = 1.5 µs), the decoherence dynamics is reestablished.

The results reviewed in this section show that sequences of phase-kick pulses can be applied to
coherently control electronic decoherence in QDs coupled to a thermal bath. When one considers
the possibility of engineering this type of semiconductor device that can test quantum tunneling
and decoherence phenomena, it is natural to anticipate considerable experimental interest in exam-
ining the proposed coherent-control scenario. In particular, QDs have already been recognized
as physical realizations of artificial atoms and molecules whose properties (e.g., structural and
transport) can be engineered for specific applications and modulated in the presence of external
fields (124–126). Proposals include arrays of coupled QDs for applications to create charge or
spin qubit gates (48, 49, 127) or quantum memory units (128). However, efficient methods for
coherent optical manipulation of decoherence and quantum tunneling dynamics have yet to be
established.

4. COHERENT CONTROL OF SUPEREXCHANGE
ELECTRON TRANSFER
Recent theoretical studies have addressed the feasibility of creating and coherently manipulating
electronic excitations in TiO2 semiconductor surfaces, functionalized with molecular adsorbates
(4, 6). These studies aimed at exploring realistic models of molecular qubits based on existing semi-
conductor materials, building upon previous work focused on the characterization of timescales
and mechanisms of interfacial electron transfer in sensitized TiO2-anatase nanoparticles (129–132)
and earlier studies of coherent optical control of molecular processes (29–31, 37).
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Figure 4
(a) Schematic energy diagram of the electronic structure of the TiO2-anatase surface functionalized with molecular adsorbates,
including the valence and conduction bands of TiO2 and the energy levels due to the molecular adsorbate. The arrows indicate the
photoinjection process and the relaxation of the hole in the manifold of near-resonant energy levels localized in the adsorbates.
(b) TiO2-anatase functionalized with catechol molecules and isosurface density, representing a nonstationary hole state delocalized on
the molecular adsorbates after 15 ps of relaxation dynamics.

Functionalization results from the adsorption of molecules onto the semiconductor surface. As
a result, molecules are covalently attached, forming surface complexes that introduce electronic
states in the semiconductor band gap (see Figure 4a). The host semiconductor material is thus
sensitized to photoabsorption at lower frequencies, characteristic of the molecular adsorbates,
leading to ultrafast interfacial electron injection when there is a suitable energy match between
the photoexcited electronic states in the surface complex and the electronic states in the conduc-
tion band of the semiconductor surface. The resulting photoexcitation and interfacial relaxation
process has already raised significant experimental interest because it is central in applications to
photovoltaic devices for solar-energy conversion (133, 134) and photocatalysis (129, 135–139).

Recent computational studies have addressed the relaxation dynamics of electron holes left
within the semiconductor band gap after photoinduced electron injection (see Figure 4) (4, 5,
131). The distinctive aspect of holes localized in these intraband states is that they remain off-
resonance relative to the semiconductor (valence and conduction) bands, naturally protected from
dissipation into the semiconductor material. However, superexchange hole tunneling into near-
resonant states localized in adjacent adsorbate molecules often occurs, even under low-surface-
coverage conditions, when the electronic states of the adsorbates are only indirectly coupled by
the common host substrate (see Figure 4).

Computations of transient hole populations have been based on mixed quantum-classical sim-
ulations of dynamics, treating the evolution of electronic states fully quantum mechanically in
conjunction with the classical propagation of an ensemble of nuclear trajectories evolving on
effective mean-field potential energy surfaces (4, 5, 130, 131).

Figure 5a shows the evolution of time-dependent hole populations P(t) of the three adsorbate
molecules functionalizing the TiO2 nanostructure shown in Figure 4. P(t) is quantified by the
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Figure 5
(a) Time-dependent hole population P(t) for the three adsorbates C, L, and R. The arrows indicate the start
and the end of the sequence of 2π pulses. The real ( gold ) and imaginary (blue) parts of the off-diagonal
elements of the reduced density matrix are indicated by the labels. (b) Schematic energy diagram of adsorbate
complexes C and L and electronic transitions associated with the coherent control of superexchange hole
tunneling based on multiple phase-kick pulses. CB, conduction band; VB, valence band.

304 Rego · Santos · Batista

A
nn

u.
 R

ev
. P

hy
s. 

Ch
em

. 2
00

9.
60

:2
93

-3
20

. D
ow

nl
oa

de
d 

fro
m

 a
rjo

ur
na

ls.
an

nu
al

re
vi

ew
s.o

rg
by

 Y
al

e 
U

ni
ve

rs
ity

 S
TE

RL
IN

G
 C

H
EM

IS
TR

Y
 L

IB
RA

RY
 o

n 
04

/2
3/

09
. F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV373-PC60-15 ARI 25 February 2009 18:31

diagonal elements of the reduced density matrix ρ (t), associated with the subspace of electronic
states localized in the adsorbate molecules MOL = (left, center, right). These results indicate
that the hole tunnels between adjacent adsorbate molecules. These are covalently attached to the
TiO2 nanoparticle approximately 1 nm apart from each other. Therefore, the direct electronic
coupling is negligible because there is negligible overlap of molecular orbitals. Electronic cou-
plings with off-resonant states in the common host substrate, however, induce superexchange
hole tunneling. The underlying relaxation dynamics thus keeps the hole localized in the mono-
layer of adsorbates rather than injecting it into the semiconductor host substrate. The analysis of
individual members of the ensemble indicates that population transfer is most prominent when
the electronic states of adjacent adsorbates become near resonant (131). Quantum coherences
during the entire simulation time are characterized by the nonzero off-diagonal elements of the
reduced density matrix (Figure 5) and by the decoherence parameter Tr[ρ2(t)] (131). These results
suggest that the observation of Rabi oscillations, associated with the adsorbate electronic popu-
lations, could provide a simple experimental probe of the predicted quantum coherent relaxation
dynamics.

Computational studies have addressed the nontrivial question of whether the underlying
superexchange hole-tunneling dynamics, associated with electronic relaxation in monolayers
of adsorbate molecules, could be coherently controlled by the application of (deterministic
and stochastic) sequences of unitary phase-kick pulses (see Figure 5) (4, 6). As an example,
Figure 5 shows the perturbational effect of a sequence of 2π pulses on the relaxation dynamics
of electron holes undergoing superexchange hole transfer between adsorbate molecules function-
alizing a TiO2 nanoparticle. The pulses are applied during the t = 15–60 ps time window at
intervals of 550 fs, starting at t = 15 ps when there is maximum entanglement between adsor-
bates C and R [i.e., when the off-diagonal elements 〈C| ρ (t) |R〉 are maximum)]. The analysis
of off-diagonal elements of the reduced density matrix ρ (t) indicates that the pulse sequence
influences the interference between electronic states by rapidly affecting the relative phase of
states responsible for relaxation, without collapsing the coherent quantum evolution of the hole.
The coherent hole tunneling is reestablished once the sequence of phase-kick pulses is complete.
Whereas the results illustrated in Figure 5 correspond to deterministic sequences of 2π pulses,
one can achieve similar coherent control over relaxation dynamics with stochastic 2) pulses,
where ) is a random phase. The intervals between pulses can also be varied stochastically so
long as the pulses are applied sufficiently frequently (5). These results suggest the feasibility of
applying currently available femtosecond laser technology to achieve coherent optical manipula-
tion of electronic excitations in functionalized TiO2 surfaces, under a wide range of experimental
conditions.

5. DYNAMICAL DECOUPLING
This section reviews the basic ideas of dynamical decoupling, including the underlying group
theoretical framework, strategies to improve protocol performance, and a brief discussion of
relevant frames and the control settings. Throughout, spin-1/2 refers to a model for any two-level
system, being therefore frequently exchanged with the more general idea of a qubit. We present
two scenarios as illustrative examples: the frozen evolution of an isolated spin-1/2 chain through the
removal of unwanted internal interaction (emphasizing the advantages of randomization) and the
suppression of decoherence in the case of a single spin-1/2 coupled to a bosonic bath (addressing
the phenomena of decoherence acceleration and asymptotic saturation).

www.annualreviews.org • Coherent Control of Quantum Dynamics 305

A
nn

u.
 R

ev
. P

hy
s. 

Ch
em

. 2
00

9.
60

:2
93

-3
20

. D
ow

nl
oa

de
d 

fro
m

 a
rjo

ur
na

ls.
an

nu
al

re
vi

ew
s.o

rg
by

 Y
al

e 
U

ni
ve

rs
ity

 S
TE

RL
IN

G
 C

H
EM

IS
TR

Y
 L

IB
RA

RY
 o

n 
04

/2
3/

09
. F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV373-PC60-15 ARI 25 February 2009 18:31

5.1. Theoretical Framework
In dynamical-decoupling methods, a time-dependent control Hamiltonian Hc (t) is added to the
Hamiltonian H0(t) of the system whose dynamics we want to modify. The time-evolution operator
in the physical (Schrödinger) frame under the total Hamiltonian becomes

U(t) = τ exp
[
−i

∫ t

0
[H0(u) + Hc (u)]du

]
, (16)

whereas the control propagator is Uc (t) = τ exp[−i
∫ t

0 Hc (u)du], where we set h̄ = 1 and τ denotes
time ordering. In the ideal case of bang-bang control, the pulses Pk are instantaneous and depend
only on Hc (t), whereas during the intervals ,t = tk − tk−1 between control operations, the system
evolves freely according to H0(t). The propagator at tn = n,t, n ∈ N, is then

U(tn) = PnU(tn, tn−1)Pn−1U(tn−1, tn−2) . . . P1U(t1, 0)P0

= (Pn Pn−1 . . . P1 P0︸ ︷︷ ︸
Uc (tn)

) (Pn−1 . . . P1 P0)+U(tn, tn−1)(Pn−1 . . . P1 P0) . . . (P1 P0)+U(t2, t1)(P1 P0)P+
0 U(t1, 0)P0

︸ ︷︷ ︸
Ũ(tn)

, (17)

where Ũ(tn) stands for the evolution operator in the logical frame

Ũ(t) = τ exp
[
−i

∫ t

0
H̃(u)du

]
, and H̃0(t) = U+

c (t)H0(t)Uc (t). (18)

The logical (also known as toggling) frame corresponds to a time-dependent interaction repre-
sentation that follows the control. It is a theoretical tool often used in the design of dynamical-
decoupling protocols along with the average Hamiltonian theory (18, 19). The latter consists of
writing the logical propagator in terms of a single exponential and identifying the appropriate
sequence of pulses leading to the desired form of the effective propagator at a final time tn. For a
time-independent system Hamiltonian H0, we find

Ũ(tn) = exp[−i H̃n,t] . . . exp[−i H̃2,t] exp[−i H̃1,t] = exp

[

−i
∞∑

k=0

(
H̄(k)(tn)

)
tn

]

, (19)

where H̃n = (Pn−1 . . . P1 P0)+ H0(Pn−1 . . . P1 P0) are transformed Hamiltonians, and the Baker-
Campbell-Hausdorff expansion was used to derive the last equality [the Magnus expan-
sion (18, 19) is required when dealing with a time-dependent system Hamiltonian]. Each
H̄(k)(tn) is proportional to (,t)k/tn and involves k time-ordered commutators of transformed
Hamiltonians.

For cyclic control with cycle time Tc [that is, Hc (t + nTc ) = Hc (t) and Uc (t + nTc ) = Uc (t)],
the physical and logical frames coincide at every Tn = nTc ; therefore, U(nTc ) = Ũ(nTc ). At
these instants, the system appears to evolve under a time-independent average Hamiltonian H̄ =∑∞

k=0 H̄(k) leading to Ũ(nTc ) = Ũ(Tc )n = exp[−i H̄nTc ]. Thus, to analyze the system evolution at
Tn it suffices to derive the propagator at Tc . Pulse sequences are then constructed based primarily
on the appropriate form of the dominant terms in the average Hamiltonian. Given Tc = M,t,
where M is a number determined by the sequence considered, the three first dominant terms
are

H̄(0) = ,t
Tc

M∑

k=1
H̃k, (20)

H̄ (1) = −i
(,t)2

2Tc

M∑

l=2

l−1∑

k=1
[H̃l , H̃k], (21)
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H̄(2) = − (,t)3

6Tc

{
M∑

m=3

m−1∑

l=2

l−1∑

k=1
{[H̃m, [H̃l , H̃k]] + [[H̃m, H̃l ], H̃k]}

+ 1
2

M∑

l=2

l−1∑

k=1
{[H̃l , [H̃l , H̃k]] + [[H̃l , H̃k], H̃k]}

}

. (22)

For short times and in the limit Tc → 0, reshaping the Hamiltonian based on the dominant terms
leads to dynamics close enough to the desired one.

In NMR spectroscopy, the design of control protocols usually aims at specific systems. Another
approach, often considered in the field of quantum information, invokes group theory (55, 57), in
which the purpose is to map the dominant term H̄(0) into a group-theoretic average H̄G. The pulses
are successively drawn from a discrete dynamical-decoupling group G = {g j }, j = 0, 1, . . . , |G|−
1, where |G| is the size of the group and Tc = |G|,t, so that

Ũ(Tc ) =
|G|−1∏

j=0
Uj+1, (23)

with

Uj+1 = g+
j U(tj+1, tj )g j , H̃ j+1 = g+

j H0g j , Pj+1 = g j+1g+
j , P0 = g0,

and

H̄G = 1
|G|

|G|∑

k=1
H̃k = H̄ (0). (24)

In order to freeze the system evolution and achieve Ũ(Tc ) → 1, the primary goal becomes first-
order decoupling, that is, guaranteeing that at least H̄(0) = 0. To illustrate the method, we consider
the simplest possible system, that of a single spin-1/2 (qubit) in two situations: (a) H0 = Bzσz and
(b) H0 = /B · /σ = Bxσx + Byσy + Bzσz, where σx, σy , σz are Pauli matrices; Bz is a magnetic field
in the z direction; and /B is a magnetic field in a supposedly unknown direction.

To freeze the first situation, one needs to frequently undo the phase evolution by rotating the
spin 180◦ around a direction perpendicular to z. This may be accomplished with a sequence of
π pulses Px = exp[−iπσx/2] applied after every ,t, as determined by the group G = {1, σx}.
Cyclicity is ensured by subjecting the system to an even number of pulses. Because the two trans-
formed Hamiltonians (H̃1 = Bzσz and H̃2 = Bzσxσzσx = −Bzσz) commute, exact cancellation of
all orders (k) in the average Hamiltonian is achieved at every Tc , leading to Ũ(nTc ) = U(nTc ) = 1.
This ideal result does not hold when dealing with realistic finite pulses, in which case H̄ 0= 0, and
special strategies have been developed to eliminate the dominant terms in H̄ (19, 67).

In general, however, even when the system is subjected to bang-bang pulses, the transformed
Hamiltonians do not commute. This is the case of the second situation listed above. Here, the
cancellation of H̄(0) requires alternating 180◦ rotations of the spin around two perpendicular axes,
so that each cycle consists of four pulses. An option corresponds to having P1 = P3 = exp[−iπσx/2]
and P2 = P4 = exp[−iπσy/2], although any other path chosen to traverse the group G =
{1, σx, σz, σy } is also viable. The four noncommuting transformed Hamiltonians (H̃1 = Bxσx +
Byσy +Bzσz, H̃2 = Bxσx−Byσy −Bzσz, H̃3 = −Bxσx−Byσy +Bzσz, and H̃4 = −Bxσx+Byσy −Bzσz)
lead to H̄(0) = 0, but H̄ (1) 0= 0. A deterministic pulse sequence, which guarantees only first-order
decoupling, has been named periodic dynamical decoupling (PDD).
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5.2. Strategies to Improve Protocol Performance
The design of dynamical decoupling protocols aims at increasing averaging accuracy in the effective
Hamiltonian and at slowing down the accumulation of residual averaging errors. Here, we give
an overview of some deterministic and randomized strategies to achieve these goals and discuss
the advantages of combining both approaches.

5.2.1. Deterministic schemes. Strategies exist to push beyond PDD and eliminate or reduce
higher-order terms in H̄. Time symmetrization, for instance, corresponds to reversing the pulse
sequence, so that at every Tn = 2nTc , H̄ (1) and all odd terms in H̄ are cancelled. In the second
example above, any of the possible PDD sequences [Ũ(Tc ) = Us ·Ur ·Uq ·Up , with p ∈ {1, 2, 3, 4},
q ∈ {1, 2, 3, 4} −{ p}, r ∈ {1, 2, 3, 4} −{ p, q }, and s ∈ {1, 2, 3, 4} −{ p, q , r}] leads to

H̄ (1) = −i (,t)2

2Tc

{
[H̃s , H̃r ] + [H̃q , H̃ p ]

}
, (25)

where the above simplified form was obtained by using the equality

H̃ p + H̃q + H̃r + H̃s = 0. (26)

It is straightforward to verify that the symmetric sequence Ũ(2Tc ) = Up ·Uq ·Ur ·Us ·Us ·Ur ·Uq ·Up

leads to H̄ (1) = 0.
Whenever the basic PDD sequence requires only four pulses, second-order decoupling may

also be achieved by swapping the elements in pairs of subsequent transformed Hamiltonians during
the interval [4,t + 8n,t, 8,t + 8n,t] so that

Ũ(2Tc ) = Ur · Us · Up · Uq · Us · Ur · Uq · Up . (27)

One may further extend this last alternative to achieve third-order decoupling at every Tn = 6nTc .
Using Equation 26, H̄(2)may be written

H̄(2) = −(,t)3

6Tc

{[
(2H̃ p + H̃q ), [H̃ p , H̃q ]

]
+

[
(2H̃s + H̃r ), [H̃s , H̃r ]

]}
. (28)

This term is suppressed with a supercycle scheme built up by arranging three 8,t sequences:

Ũ(6Tc ) = (Uq ·Us ·Ur ·Up ·Us ·Uq ·Up ·Ur )·(Up ·Us ·Uq ·Ur ·Us ·Up ·Ur ·Uq )·(Ur ·Us ·Up ·Uq ·Us ·Ur ·Uq ·Up ).

We refer to this protocol as the H2 scheme.
Concatenation (68, 69) and cyclic permutations (66) are other examples of strategies to im-

prove protocol performance. In four-pulse sequences, half the concatenation procedure at the
second level coincides with Equation 27 (66), whereas cyclic permutations are inspired by the
MLEV decoupling sequence in NMR (140, 141). In the particular case of a single spin-1/2 sys-
tem, concatenation has proven to be the most efficient scheme (82–84), a fact associated with the
irreducibility of the group considered (66). This should be contrasted with the reducible group em-
ployed in Section 5.4, in which we find (in increasing order of performance) time symmetrization,
concatenation, cyclic permutations, and the H2 scheme (66).

In periodically repeated sequences, the accumulation of residual errors caused by imperfect
averaging is coherent (quadratic in time) and therefore extremely detrimental for long time evo-
lutions. The key ingredient for efficient averaging at long times is the frequent scrambling of the
order of the applied dynamical-decoupling pulses, an idea already implicit in concatenation and
cyclic permutation and entirely at the heart of randomized methods.
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5.2.2. Randomized schemes. The most straightforward randomized dynamical-decoupling pro-
tocol is obtained by picking elements uniformly at random over the decoupling group G, such
that the control action at each tn = n,t (t0 = 0 included) corresponds to P (r) = gi g+

j , where
i, j = 0, 1, . . . , |G| − 1. Such scheme is expected to outperform deterministic protocols at long
times but not at short times. One can construct high-level randomized protocols, ensuring good
performance at both short and long times, by merging together advantageous deterministic and
stochastic features. One option consists of selecting a deterministic sequence that guarantees high
power of ,t in the effective average Hamiltonian and embedding it with random pulses (85),
which slows down error accumulation. Another alternative consists of randomly choosing at every
Tn = n|G|,t a control path to traverse the group (88); this sequence may be further improved if
it is time symmetrized (66, 87).

A main characteristic of randomized methods is the great variety of control realizations; analyses
of protocol performance are then based on averages over large samples of realizations. This
enormous number of possible control realizations associated with large systems and long final times
hinders the search for optimal deterministic sequences at arbitrary times and favors randomization.

5.3. Frames and Control
The theoretical design of pulse sequences and the evaluation of their performances are usually
completed in the logical frame, whereas experiments are actually performed in the physical frame.
These differences are disregarded when dealing with periodic sequences because the two frames
coincide at the end of each cycle, but acyclic sequences (as randomized schemes) may require a
frame-correcting pulse before data acquisition (66, 87, 89).

In realistic control settings, to modify the system dynamics, one couples the system, for instance,
to an oscillating control field linearly polarized in the x direction according to

Hc (t) = 2((t) cos[ω f t + ϕ(t)]
X
2

, (29)

where X, Y, and Z correspond to σx, σy , and σz, respectively, in the case of a single spin-1/2
system and to

∑N
i=1 σx,i ,

∑N
i=1 σy,i , and

∑N
i=1 σz,i , respectively, for a system of N spins-1/2. The

experimentalist has control of the amplitude (power) 2(, the carrier frequency ω f , and the phase
ϕ, as well as the interval τ during which Hc (t) is on, and the separation ,t between successive
pulses.

All the results of this section are provided in a frame rotating with the frequency ω f of the
carrier. In this frame, by using the rotating wave approximation, the control Hamiltonian becomes

HR
c (t) = ((t)

[
X
2

cos ϕ(t) + Y
2

sin ϕ(t)
]

. (30)

The control field is applied in resonance with the frequency of the spin we want to rotate. The
phase ϕ determines the direction around which the rotation is realized in the rotating frame, and,
in the case of rectangular pulses, (τ characterizes the rotation angle. For example, a π pulse
around the x direction requires (τ = π and ϕ(t) = 0.

In the idealized scenario of bang-bang pulses (as considered here), the power is infinity and
the pulse duration is zero. However, a complete analysis of dynamical-decoupling protocols also
requires the consideration of nonidealities such as finite pulses, flip-angle errors, and transients
(19, 66), as well as pulse shapes (142–144).
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5.4. Isolated Heisenberg Spin-1/2 System with Nearest-Neighbor Interactions
Here we show the advantages of randomization in dynamical-decoupling methods applied for the
case of a chain with N spin-1/2 particles (qubits) coupled via isotropic nearest-neighbor interac-
tions, as described by the Heisenberg model:

H0 = HZ + HNN =
N∑

i=1

ωi

2
σz,i +

N−1∑

i=1
J/σi ./σi+1, (31)

where ωi is the Zeeman splitting energy of qubit i, J is the coupling parameter between the spins,
and open boundary conditions are assumed. This Hamiltonian models quasi-one-dimensional
magnetic compounds (145) and Josephson junction arrays (146). It is also a fairly good ap-
proximation for couplings that decay with the distance between the qubits (for cubic decay,
see 87).

Our goal is to freeze the evolution of the system for long times. We assume the possibility of
individually addressing the spins with selective pulses and study the system in a combined logical-
rotating frame, whereby one-body terms are removed from the Hamiltonian, so that H̃R

0 ≈ HNN.
First-order decoupling can be achieved through a simple system-size-independent scheme whose
cycle is closed after four collective pulses. The sequence has one direction associated with odd
qubits and the other direction linked to even ones. A possible representation of the control group
for N even is then given by

G = {1, σz,1σz,3 . . . σz,N−1, σz,1σy,2σz,3σy,4 . . . σz,N−1σy,N, σy,2σy,4 . . . σy,N}. (32)

The path leading to the pulses P1 = P3 = exp(−iπ
∑N−1

j=1,3 σ j,z/2) and P2 = P4 =
exp(−iπ

∑N
j=2,4 σ j,y/2) gives the four transformed Hamiltonians:

H̃1 =
N−1∑

i=1
Jσx,iσx,i+1 +

N−1∑

i=1
Jσy,iσy,i+1 +

N−1∑

i=1
Jσz,iσz,i+1,

H̃2 = −
N−1∑

i=1
Jσx,iσx,i+1 −

N−1∑

i=1
Jσy,iσy,i+1 +

N−1∑

i=1
Jσz,iσz,i+1,

H̃3 =
N−1∑

i=1
Jσx,iσx,i+1 −

N−1∑

i=1
Jσy,iσy,i+1 −

N−1∑

i=1
Jσz,iσz,i+1,

H̃4 = −
N−1∑

i=1
Jσx,iσx,i+1 +

N−1∑

i=1
Jσy,iσy,i+1 −

N−1∑

i=1
Jσz,iσz,i+1. (33)

Among the deterministic strategies described in Section 5.2.1, the supercycle H2 sequence

Ũ(6Tc ) = U2·U4·U3·U1·U4·U2·U1·U3·U1·U4·U2·U3·U4·U1·U3·U2·U3·U4·U1·U2·U4·U3·U2·U1 (34)

is by far the best deterministic protocol because it is the only one guaranteeing third-order de-
coupling; that is, it eliminates H̄ (0), H̄ (1), and also H̄(2). Figure 6 compares the performance of
this efficient deterministic protocol with two randomized schemes: an H2 sequence embedded
with random pulses characterized by products of π rotations performed at arbitrarily selected
spins around any of the three randomly chosen directions (x, y, or z) and a third-order decoupling
sequence in which the path for the interval [24n,t, 24n,t + 4,t] is picked at random.

The quantity considered to quantify protocol performance is the input-output fidelity

F (t) = |〈ψ(0)|U(t)|ψ(0)〉|2, (35)

where we consider as the initial pure state an eigenstate of a random matrix belonging to a Gaussian
Orthogonal Ensemble.
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Figure 6
System described by H̃R

0 ≈ HNN with N = 8. Data acquired at Tn = 24n,t, ,t = 0.1J−1. The blue line
represents a deterministic H2 scheme leading to H̄ (0), H̄ (1), H̄ (2) = 0; the green line represents the
randomized protocol RH2 constructed by randomly choosing a group path for each interval
[24n,t, 24n,t + 4,t]; and the red line represents the randomized protocol EH2 obtained by embedding
the H2 sequence with random pulses. The angled brackets denote an average over 100 realizations.

At long times, the randomized protocols are significantly better, with the fidelity decay much
slower than for the deterministic method. Both schemes, embedding the deterministic sequence
with random pulses or applying path randomization, showed similar performance, but whether it
is better to consider one or the other depends on the system at hand (66, 87, 88). Even though an
optimal deterministic sequence may exist for a particular system at a specific final time, identifying
it may be hard, in which case resorting to a simple yet efficient randomized sequence, such as the
ones described here, is a more practical strategy.

5.5. Suppression of Decoherence: Spin-1/2 Coupled to a Bosonic Bath
Let us consider a target system S consisting of a spin-1/2 (qubit) coupled to a bosonic environment
E corresponding to independent harmonic modes, as described by the total Hamiltonian

H0 = HS + HE + HSE , (36)

where

HS = ω0

2
σz,

HE =
∑

k
ωkb+

k bk,

HSE = σz

∑

k
gk(b+

k + bk), (37)

ω0 is the Zeeman splitting of the spin, b+
k and bk denote creation and annihilation bosonic operators

of the environmental mode k with frequency ωk, and gk determines the coupling parameter between
the system and mode k. The system-bath coupling HSE leads to a purely dephasing process, with
the spin population unaffected by the environment. The advantage of such a simple model is that
it allows for exact analytical derivations.

The purpose of dynamical decoupling here is to average out the evolution generated by HSE

and prevent decoherence. After every ,t, the deterministic sequence corresponds to subjecting
the system to a pulse Px = exp[−iπσx/2], whereas for the randomized scheme, we choose at
random whether the spin is rotated. Studies of protocol performance are based on the behavior of
the off-diagonal elements of the reduced density matrix ρ01, which is obtained after tracing over
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the degrees of freedom of the reservoir; ρ01 contains all relevant phase information. The analysis
is developed in a frame that removes both the control field and the free evolution due to HS, which
is referred to as logical–interaction picture frame.

By assuming that the system and the environment are initially uncorrelated and that the bath is
in thermal equilibrium at temperature T (the Boltzmann constant is set equal to 1), the expression
for the system coherence in the logical–interaction picture frame at time tn = n,t is given by

ρ̃ I
01(tn) = ρ01(0) exp[−*(tn)], (38)

where *(tn) is the decoherence function. For an ohmic bath in the continuum limit, we find, in
the absence of control,

*(tn) = α

∫ ∞

0
dωωe−ω/ωc coth

( ω

2T

)1 − cos[ωtn]
ω2 ; (39)

for the deterministic scheme (56, 76),

*(tn) = α

∫ ∞

0
dωωe−ω/ωc coth

( ω

2T

)1 − cos[ωtn]
ω2 tan2

(
ω,t

2

)
; (40)

and for the randomized scheme (65),

*(tn) = α

∫ ∞

0
dωωe−ω/ωc coth

( ω

2T

)1 − cos[ωtn]
ω2

[

n + 2
n−1∑

k=1
cos(kω,t)

n−k−1∑

l=0
χlχl+k

]

, (41)

where α is the interaction strength between the system and the bath, ωc is an ultraviolet cutoff
frequency, and χk is a Bernoulli random variable that accounts for the history of spin flips up to tk
in a given realization (it takes the values +1 or −1 with equal probability) (65).

Figure 7 compares the three decoherence functions above, considering both high- and
low-temperature baths. Figure 7a shows the high-temperature limit, which corresponds to an
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Figure 7
Decoherence rate from a bosonic ohmic bath in units of T−1 (α = 0.25 and ωc = 100): (a) T = 100ωc and
ωc ,t = 0.1, (b) T = 0.01ωc and ωc ,t = 0.1, and (c) T = 0.01ωc and ωc ,t = 2.5. The green solid line
represents no control, the red dashed line is a randomized scheme, the blue dotted line is a deterministic
sequence, and the purple solid line is a deterministic sequence with ωc ,t = 0.05. The angled brackets
denote an average over 100 realizations.
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effectively classical bath dominated by thermal fluctuations. In the absence of control, decoher-
ence is very fast on the timescale determined by the bath correlation time τc = ω−1

c , and coherence
preservation requires very short intervals between pulses. When the bath is at low temperature
(Figure 7b,c), decoherence is slower, and a rich interplay between thermal and vacuum fluctuations
occurs. Larger values of ,t may be analyzed before total coherence loss takes place.

5.5.1. Decoherence freezing. For short intervals between pulses (ωc ,t 2 1) and at long times
(ωc tn 3 1), *(tn) obtained with the deterministic sequence becomes independent of tn. It is given
by *(tn) = O(αTωc ,t2) in the case of high temperatures and by *(tn) = O(αω2

c ,t2) in the case
of low temperatures (Equation 40). This asymptotic saturation is verified in Figure 7a,b, where
ωc ,t = 0.1. The deterministic protocol eventually freezes decoherence at long times. This
saturation was also verified in studies of an electron spin decohered by a nuclear spin environment
in a QD (82–84). In NMR, saturation is associated with the pedestals seen in the long-time
magnetization signal under pulsed spin-locking conditions (19).

5.5.2. Low-temperature bath and decoherence acceleration. The phenomenon of decoher-
ence acceleration, in which pulses induce destructive interference (56, 64), happens when the
interval between pulses is larger than the correlation time of the bath, ωc ,t > 1 (Figure 7c). In
experimental situations in which the cutoff frequency of the reservoir cannot be overcome by the
pulsing frequency, it is therefore better not to perturb the system. We discuss a similar scenario in
Section 2.1, showing that tunneling becomes accelerated when the applied sequences of 2π pulses
are not sufficiently frequent.

5.5.3. Randomization and stability. In Figure 7, whenever ωc ,t < 1, the randomized protocol
is outperformed by the deterministic scheme. For the simple model of a single spin interacting
with its environment, efficient deterministic protocols have been identified for bosonic (72) as
well as fermionic reservoirs (68, 69, 82–84). Yet the advantages of randomization in these models
become perceptible when the system Hamiltonian is time dependent and little knowledge about
it is available; randomization may then allow for enhanced stability against parameter variations
(65). For the case of a time-dependent system with more than one qubit, Reference 87 illustrates
the robustness of randomized schemes.

SUMMARY POINTS

1. The development of practical methods for controlling quantum dynamics with elec-
tromagnetic fields has a long history and remains an outstanding challenge of great
technological interest.

2. Coherent-optical-control, NMR, and dynamical-decoupling methods have emerged
from the realm of different scientific communities and evolved rather independently for
more than 30 years, partially because of the different nature of applications and different
timescales involved. However, considering the common physical principles reviewed in
this article, it is natural to expect that these control methods should be of interest to sci-
entific communities beyond the particular fields in which they were originally developed.

3. Coherent-optical-control, NMR, and dynamical-decoupling methods share the common
goal of controlling quantum dynamics through the use of unitary pulses. These pulsing
schemes can affect the phases and therefore the ensuing interference phenomena in a wide
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range of systems, without necessarily changing the potential energy surfaces responsible
for quantum dynamics, or collapsing the coherent unitary evolution of the system.

4. The reviewed simulations of coherent optical control suggest the feasibility of applying
currently available femtosecond laser technology to effectively suppress or accelerate the
quantum tunneling, or decoherence, of electronic excitations in QDs and functionalized
TiO2 surfaces.

5. Dynamical decoupling aims at modifying the system dynamics by applying sequences of
control operations. A group theoretical framework underlies the method, and various
strategies to design pulse sequences with high-level performance have been developed
to suppress unwanted internal couplings and interactions with an environment.

6. To freeze the system evolution for long times, it is advantageous to merge together
efficient deterministic sequences (such as the presented scheme leading to third-order
decoupling) with randomized protocols. Randomization also proves useful in a time-
varying system about which one has limited knowledge.

7. Although all protocols are essentially equivalent in the ideal limit of arbitrarily fast
control, the outcome of sequences with finite intervals between controls is sensitive
to the scheme selected, the final time considered, and the particularities of the sys-
tem. Pulses insufficiently frequent may eventually lead to decoherence and tunneling
acceleration.

8. Considering recent breakthroughs in active control methods based on electromagnetic
pulses, we anticipate that the control scenarios reviewed in this article should raise sig-
nificant experimental interest.
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