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ABSTRACT: We introduce the so-called “Classical Optimal Control
Optimization” (COCO) method for global energy minimization based on the
implementation of the diffeomorphic modulation under observable-response-
preserving homotopy (DMORPH) gradient algorithm. A probe particle with
time-dependent mass m(t;β) and dipole μ(r,t;β) is evolved classically on the
potential energy surface V(r) coupled to an electric field E(t;β), as described by
the time-dependent density of states represented on a grid, or otherwise as a
linear combination of Gaussians generated by the k-means clustering algorithm.
Control parameters β defining m(t;β), μ(r,t;β), and E(t;β) are optimized by
following the gradients of the energy with respect to β, adapting them to steer
the particle toward the global minimum energy configuration. We find that the
resulting COCO algorithm is capable of resolving near-degenerate states
separated by large energy barriers and successfully locates the global minima of
golf potentials on flat and rugged surfaces, previously explored for testing quantum annealing methodologies and the quantum
optimal control optimization (QuOCO) method. Preliminary results show successful energy minimization of multidimensional
Lennard-Jones clusters. Beyond the analysis of energy minimization in the specific model systems investigated, we anticipate
COCO should be valuable for solving minimization problems in general, including optimization of parameters in applications to
machine learning and molecular structure determination.

1. INTRODUCTION

Quantum optimal control enables manipulation of dynamics
and kinetics with unprecedented specificity through optimiza-
tion of controls of perturbational electromagnetic fields and
laser pulses.1−6 With this power, quantum control can steer the
outcomes of chemical reactions6−25 and direct dynamics in
varied environments.26−31 These techniques can in turn be
applied to advance technologies from nanostructures to
quantum computation and communication.32−41 However,
simulations of quantum optimal control are restricted by the
capabilities of quantum dynamics propagation methods,
particularly in applications to high dimensional problems,
since they face the challenge of overcoming the “curse-of-
dimensionality” problem.42 It is, therefore, of great interest to
develop classical analogues of quantum optimal control
methods. A classical analogue to quantum optimal control
theory would not only enable applications of the method to
more complex chemical and physical systems but would also
enable application of the method to multidimensional global
optimization problems.
In global optimization, the aim is to locate the greatest

maximum or minimum of a function. Global optimization
problems are common across fields from protein folding to
machine-learning,43,44 and improvements to global optimiza-
tion methods have the opportunity to impact many disciplines.
A wide variety of optimization algorithms have been developed

in this pursuit. Local optimization algorithms,45−47 including
methods which rely on calculation of the position-space
gradient,48 locate maxima or minima on the function but do
not guarantee the values constitute global optima. Global
optimization methods, such as molecular dynamics,49−51

simulated annealing,52−54 potential smoothing,55−59 and evolu-
tionary algorithms,60−67 rely on initial parameter choices, and
therefore, their success is predicated on the parameters chosen.
In addition to this dependence on initial conditions, local
“traps” of rugged potential energy surfaces often hinder global
optimization. Flat landscapes with localized minima, such as in
the “golf problem” (i.e., a shallow parabola with a distant
narrow hole), remain challenging benchmark problems for
directed optimization algorithms.57,68−75

Here, we introduce the classical optimal control optimization
(COCO) method to steer the classical dynamics of a probe
particle toward the global optimum, as a classical analogue of
the quantum optimal control algorithm76 based on the
dif feomorphic modulation under observable-response-preserving
homotopy (DMORPH).77−85 In contrast to iterative optimal
control methods that rely upon initial guesses near the
optimum,2,86−88 the noniterative DMORPH algorithm strictly
follows the control-space gradient allowing for initial guesses far

Received: February 5, 2018
Published: April 20, 2018

Article

pubs.acs.org/JCTCCite This: J. Chem. Theory Comput. 2018, 14, 3351−3362

© 2018 American Chemical Society 3351 DOI: 10.1021/acs.jctc.8b00124
J. Chem. Theory Comput. 2018, 14, 3351−3362

D
ow

nl
oa

de
d 

vi
a 

Y
A

L
E

 U
N

IV
 o

n 
M

ar
ch

 8
, 2

01
9 

at
 1

5:
07

:1
9 

(U
T

C
).

 
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

 

pubs.acs.org/JCTC
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.8b00124
http://dx.doi.org/10.1021/acs.jctc.8b00124


from the optimum.77−85 Classical Liouvillian dynamics is
employed, which can be parallelized and applied to high
dimensional problems. The k-means clustering algorithm89−91

is implemented to represent the time-evolved classical density
as a linear combination of Gaussians for efficient calculations of
the DMORPH gradients.
The COCO method is based on the classical phase-space

propagation of the density of states of a probe particle with
time-dependent mass m(t;β) and dipole μ(r,t;β), evolving on
the potential energy surface V(r), coupled to an electric field
E(t;β). The control parameters β are optimized to minimize the
ensemble average potential energy ⟨V(T)⟩ of a probe particle at
the final propagation time T. The ensemble average value of the
particle position ⟨r(T)⟩ then yields the location of the global
minimum. Given a sufficient number of controls,77−85 the
method locates the global minimum without getting stuck in
local minimum traps.76

2. METHOD

2.1. Quantum DMORPH. The quantum DMORPH
algorithm79−85 was used as the basis for formulation of the
classical DMORPH algorithm in section 2.2. In the DMORPH
algorithm, the derivative of the expectation value of an
observable Ô with respect to the controls βj is evaluated at
final time T

β
ψ

β
β β ψ

∂⟨ ̂ ⟩
∂

= ⟨ | ∂
∂

̂ | ⟩†O T
U T OU T

( )
[ ( , 0; ) ( , 0; )]

j
i

j
i

(1)

where |ψi⟩ is the initial wave function, β = {βj} is the complete
set of controls, and U is the quantum propagator. Application
of the chain rule to the right-hand side of the equation and
substitution of the derivative of the propagator Uβj and its

complex conjugate Uβj
† bestows on the DMORPH algorithm its

computational efficiency

∫β
ψ β ψ

∂⟨ ̂ ⟩
∂

=
ℏ

⟨ | ′ | ⟩β
O T

t H t
( ) 2

d Im[ ( , ) ]
j

T

b a0 j
(2)

where |ψa⟩ = U(t,0)|ψi⟩, |ψb⟩ = U(t,0)|ψc⟩, and |ψc⟩ = U†(T,0)
ÔU(T,0)|ψi⟩. Whereas calculation of the gradients via finite
differencing requires N + 1 propagations for N controls, the
quantum DMORPH gradient introduced by eq 2 requires only
four propagations. Two propagations are needed to form |ψc⟩,
including the forward propagation of |ψi⟩ to the final time T
and the backward propagation to time zero after application of
the operator Ô. The remaining two propagations are the
parallel forward propagations of |ψc⟩ and |ψi⟩ to the final time,
with the matrix element of the Hamiltonian gradient evaluated
at each intermediate time t. We note that the resulting
computational efficiency also reduces memory consumption as
only two intermediate wave functions, |ψa⟩ and |ψb⟩, are held
simultaneously in memory.
2.2. Classical DMORPH. In the spirit of quantum

DMORPH, we introduce classical DMORPH as a gradient-
based method to determine the value of the controls β that
optimize the ensemble average of a classical observable O(r, p).
Just as the Schrödinger equation prescribes the time evolution
of a wave function ψ in quantum DMORPH, the Liouville
equation prescribes the classical time evolution of the density of
states ρ in classical DMORPH

ρ ρ∂
∂

= −
t

i
(3)

where ̂ = −∂
∂

∂
∂

∂
∂

∂
∂i H

p x
H
x p

is the Liouvillian operator.

In Liouvillian classical dynamics, the derivative of the
ensemble average of the observable O(r, p) with respect to a
control βj is as follows:

∫β β
ρ

∂⟨ ⟩
∂

= ∂
∂

O T
O r p U T r p r p

( )
( , ) ( , 0) (0; , )d d
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where U is the classical propagator. As shown in Appendix A, in
analogy to ref 76, application of the chain rule and substitution
of the control-space gradient of the classical propagator Uβj

yields the computationally efficient classical DMORPH
gradient

∫ ∫β
ρ

∂⟨ ⟩
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= − β
O T

t r pO r p U T t t t r p
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d d d ( , ) ( , )( i ( )) ( ; , )
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where βj
is the gradient of the Liouvillian operator with

respect to the control βj.
Calculation of the gradient of the observable via classical

DMORPH therefore requires only three propagations,
independent of the number N of controls, including backward
propagation of the observable O(r, p) and two simultaneous
forward propagations of the quantity O(r, p)U (T,0) and the
initial density ρ(0;r, p). The classical DMORPH gradient, like
the quantum DMORPH gradient of eq 2, offers computational
advantages over finite differencing and reduced memory
requirements with only two quantities held in memory at
intermediate times.

2.3. Classical Optimal Control Optimization. The
classical gradients of the observable O(r, p) = V(r), introduced
by eq 34, can be used to locate the global minimum of the
potential energy surface V(r). A probe particle with time-
dependent mass m(t;β) and dipole μ(r,t;β) is placed on the
potential energy surface V(r) and acted upon by an electric field
E(t;β). The dynamics is thus governed by the time-dependent
Hamiltonian

β
β

μ β β= + − ·H r t
p

m t
V r r t E t( , ; )

2 ( ; )
( ) ( , ; ) ( ; )

2

(6)

In multidimensional examples, the dynamics is governed by the
generalization of the above Hamiltonian to higher dimensions
D

∑

∑

β
β

μ β β

= +
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(7)

The total propagation time T and integration time step τ are
adapted to the problem, while the controls β = (β1, ..., βN) are
optimized to minimize the ensemble average value of the
potential energy at the final time
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Such optimization process localizes the density at the global
minimum of V(r) at time T. The classical DMORPH gradient
eq 34 is employed to minimize ⟨V(T)⟩ via the limited memory
Broyden−Fletcher−Goldfarb−Shanno with boundaries (L-
BFGS-B)92−94 conjugate-gradient method. The controls that
produced the lowest value of the expectation value of the
observable were considered as the optimal controls. The
ensemble average value ⟨r(T)⟩, obtained with the time-evolved
density ρ(T;r,p), gives the coordinates of the global minimum
of V(r). For global minimization of multidimensional
potentials, the location of the global minimum is then refined
through a second application of L-BFGS-B in position-space
with function tolerance Ftol = 0 and projected gradient
tolerance G = 10−8.
2.3.1. Interaction Hamiltonian. The control parameters

include the electric field Fourier coefficients βE,s/c
j as defined for

the quantum analogue, QuOCO76
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=
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Controls βμ,s/c
jn define the dipole, according to the Fourier series
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while the mass controls βm
j define the time-dependent mass of

the probe particle, according to the linear combination of Dirac
delta functions

∑ β δ τ= −
τ

=

m t t j( ) ( )
j

T

m
j

0

/

(11)

for the 30 lowest frequencies on the grid and the lowest
combinations of the wavenumber kj = (2πj)/(rmax − rmin) and
five lowest temporal change rates ln = n/T
COCO optimizations were carried out using 60 electric field

control parameters, 12 dipole controls, and 80 mass controls in
the interaction Hamiltonian. Poor initial guesses for the
controls were employed to demonstrate the success of global
minimization even when starting far from the optimal values

β = 0.003 auE,s (12)

β = 0.008 auE,c (13)

β =μ 1 au,c/s (14)

β = + −τ= ⎜ ⎟⎛
⎝

⎞
⎠m

i
1 ( 1)

80
i T

fmass
1,2,..., /

2

(15)

where mf served as an initial guess for the final mass. We note
that the mass controls were bounded

β τ≥
−r r
4

( )mass
max min

2
(16)

to ensure the mass could be represented on a grid in
benchmark grid-based calculations.

2.3.2. Liouvillian Dynamics and k-Means Density Approx-
imation. We explore the capabilities of COCO for finding the
global minima of various potential energy surfaces, after
initializing the density of states away from the global minima

ρ
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with σ = aur
1
2

and σ =
σ

aup
1
2 r

, initial momentum pk = 0.0

au, and initial position xk. In multidimensional examples, the
density is given by a product of Gaussians. Each component
Gaussian corresponds to one dimension in position- and

momentum-space as above with σ = aur
1

1000 2
and

σ =
σ

aup
1

1000 2 r
.

The evolution of the density of states ρ(T; r, p) was
determined by propagating a swarm of trajectories and
clustering them with the k-means algorithm,89−91 to represent
the propagated density of states as a sum of Gaussians.
Trajectory-based simulations were compared to benchmark
calculations based on propagation of the density of states
amplitudes on a phase-space grid. The grid-based method also
allowed for direct comparison to QuOCO.76 Where a grid was
employed, the time evolved density of states ρ(T; r, p) was
computed on a position grid spanning over the range r =
[−10,10] au (r = [0,10] au for multidimensional potentials)
with its corresponding momentum grid p with 28 equally
spaced grid points in both r and p. For efficiency, we set the
final simulation time as T = 8.0 au and integration time step τ =
0.1 au.

Grid Base. In the grid-based method, the amplitude ρ(T; rj,
pk) was obtained for each grid point (rj, pk) in terms of the
initial density of states ρ(0; rj(0), pk(0)), after propagating the
coordinates and momenta (rj, pk) backward in time to the initial
coordinates and momenta (rj(0), pk(0)) by using the Velocity−
Verlet algorithm.95

Gaussian Ansatz. In the simplest (and most approximate)
trajectory based method, a single Gaussian ansatz is employed
to represent the time-evolved density of states as defined by the
first and second moments of the distribution of time-evolved
coordinates and momenta (i.e., the density of state ρ(T; r, p)
was approximated as a Gaussian with first and second moments
defined by the average position ⟨x(t)⟩, average momentum
⟨p(t)⟩, and corresponding second moments σx and σp).

Multi-Gaussian Ansatz. The more accurate trajectory-based
method allows for the description of density of states that may
have bifurcated or delocalized in phase space. In that
implementation, ρ(T; r, p) is represented as a sum of Gaussians
with each Gaussian parametrized by a cluster of time-evolved
trajectories within the swarm of trajectories. The clusters are
determined by the k-means clustering algorithm, using the
Euclidean phase-space distance to the center of each cluster as
the classification measure.89−91 Calculations based on a swarm
of trajectories initialized on a 256 × 256 grid were compared to
Monte Carlo simulations with 256 initial conditions sampled by
the Box−Muller algorithm.96

For the implementation of the k-means clustering algorithm,
the number of clusters k was determined through the entropy
maximization method97,98 in which the number of clusters k is
chosen to maximize the entropy
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where PI(J) is the probability that a particle in cluster I is in bin
J. For the model systems investigated, we chose equally spaced
bins covering the area of the particle swarm (B = 4 bins in each
direction of phase-space for one-dimensional potentials and B =
4 or B = 2 bins in each direction of coordinate-space area for
the first six coordinate-space directions for multidimensional
potentials). After the optimum number of clusters k was
determined, the swarm of particles was then partitioned into
the k clusters according to the k-means clustering algorithm, as
shown in Figure 1a for k = 14. Each cluster was represented by
a Gaussian ansatz with the average position ⟨x(t)⟩, momentum
⟨p(t)⟩ and standard deviations σx and σp of the cluster. The
sum of Gaussians weighted by the corresponding number of
trajectories per cluster defines the multi-Gaussian ansatz for the
density of state ρ(T; rj, pk). Figure 1b shows the comparison of
the resulting k-means ansatz approximation to the exact density
for the distribution of trajectories shown in Figure 1a.

All calculations were parallelized according to the paralleliza-
tion scheme discussed in section 2.4. The Liouvillian operator

in eq 3, necessary to compute the DMORPH gradients
defined by eq 34, was approximated through finite differencing
of the density ρ(t;x,p) with respect to x and p.

2.4. Parallelization. The implemented trivial parallelization
scheme exploits the simplicity of propagating classical
trajectories and achieves almost linear scaling with the number
of CPUs by distributing the propagation of individual phase-
space points among processing elements (Figure 2).
COCO could simply distribute the propagation of phase

space points over CPUs, according to the final value of
momentum. However, the final density of states obtained by
such a naive approach would have to be sent to the master
CPU for evaluation of observables, requiring expensive
communication of the entire set of phase space amplitudes.
Here, we implement a more efficient parallelization method
based on the distribution of partially overlapping phase-space
segments among CPUs, each of which includes two additional
position rows flanking the individual section of phase space.

Figure 1. Example of approximate classical density determined via the k-means clustering algorithm. The particle swarm is (a) divided into clusters
(colored points) in coordinate space, and (b) each cluster is represented by a Gaussian ansatz (thin colored lines); the sum of the Gaussians yields an
approximation (thick purple line) to the exact density (dashed black line).

Figure 2. Scaling of computational speed with number of CPUs using the naive parallelization scheme (a), as compared to our approach on an 8
CPU desktop (b) and on a larger cluster with 32 CPUs per node (c).

Figure 3. COCO global optimization in (left) single-well golf potential eq 19 (light blue line), (middle) rugged potential eq 20, and (right) triple-
well golf potential yielding localization of the initial density (blue) at the final state (purple) after classical propagation for about 200 attoseconds.
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The resulting computational overhead allows for the local
finite-difference evaluation of the Liouvillian gradients. The
components of the observable defined by eq 8 and DMORPH
gradients introduced by eq 34 are thus evaluated locally and
summed by an efficient parallel reduction call. As shown in
Figure 2, the resulting parallelization scheme yields almost
linear scaling when the number of CPUs is much smaller than
the grid size. The predicted scaling deviates slightly due to the
addition of the two rows of phase space points, with a greater
impact for parallelization over more CPUs. Small deviations
from linear scaling in the runtime are also seen due to machine
specifications, such as system time measurement and network
overhead.

3. RESULTS
3.1. Golf and Triple Well Potentials: Benchmark Grid-

Base Calculations. Figure 3 and Table 1 show that the

COCO algorithm can successfully locate the global minima of
golf potentials with long, flat valleys and near-degenerate
minima. Optimal controls are converged within several hundred
propagations. The optimized controls successfully directed the
motion of the probe particle into the global energy minima
within about 200 attoseconds (T = 8.0 au). The ensemble
average value of the position at the final time ⟨x(T)⟩ provides
the position of the global minimum xgm within a standard
deviation σx.
COCO has successfully determined the global minimum of

the golf potential, shown in Figure 3 (left panel), of the form

σ
= − −

−⎛
⎝⎜

⎞
⎠⎟V x kx D

x x
( )

1
2

exp
( )

2
2 0

2

2
(19)

which consists of a shallow harmonic well (k = 0.04 au) at the
origin and a deep hole localized at x0 = 4 au far away from the
harmonic well minimum of width σ = 0.25 au and depth D = 12
au. A final mass initial guess mf = 50 au was employed in eq 15.
Considering the initial position of the probe particle at xk =

−2.0 au, the gradient of the potential followed by steepest
descent would lead the particle to the local minimum at xlm =
0.0 au. However, following the gradient of the controls,
according to eq 34, the probe particle is “lifted off” the surface
like a drone and led to the global minimum at xgm = 4.0 au.
The COCO method has successfully located the global

minimum of a rugged potential with a flat surface at the
minimum, shown in Figure 3 (middle panel), of the form

= −V x
x

x
( )

sin( )2

2 (20)

even when the initial position of the probe particle xk = −5.0 au
was far from the global minimum for initial guess final mass mf
= 50 au.
Furthermore, COCO successfully determined the global

minimum of a triple-well potential with near-degenerate
minima shown in Figure 3 (right panel)76,99 of the form

σ

σ

= − −
−

− ′

−
− ′
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⎛
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⎞
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x x
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2
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2

exp
( )

2

2 0
2

2

0
2

2
(21)

with harmonic constant k = 1.0 au; local minimum well depth
D = 10.0 au, position x0 = 3.0 au, and width σ = 0.7 au; and
global minimum well depth D′ = 30.0 au, position x0′ = 7.0 au,
and width σ′ = 1.5 au. The global minimum was found for the
initial guess final mass mf = 100 au and initial position xk = −2.0
au. We note that COCO successfully resolved the global
minimum, even though the potential involves near-degenerate
minima separated by a large barrier that surpasses the energy of
the initial density ρi.
The field of COCO succeeds at resolving the global

optimization problem of the triple-well without exploiting
quantum effects, such as tunneling, by simply lifting the probe
particle over the barriers and then localizing the density of
states at the global minimum (Figure 4). In fact, even QuOCO
turns out to be operating analogously (Figure 4) and thus both
methods are expected to exhibit similar capabilities. In fact, the
controls evolve similarly when propagated according to COCO
and QuOCO, as shown for the model golf potential eq 19
(Figure 4), with k = 1.0 au, D = 8 au, x0 = 4 au, σ = 1 au, and xk
= −2.0 au in eq 17 and an initial guess final mass mf = 8 au in eq
15.
The time snapshots for the transient density along QuOCO

and COCO optimization (Figure 4, top left) and comparison of
time-dependent ensemble average value of “kinetic energy”
(i.e., ⟨H(r,t;β) − V(r)⟩ in Figure 4, top right panels) show that
there is energy transfer between the perturbational field and the
probe particle, as necessary to lift the probe particle like a drone
over the potential barrier as seen at time t = 3.0 au, before
localizing it at the position of the global minimum at the final
propagation time t = 8.0 au. Even the control parameters
associated with the time-dependent mass (Figure 4, bottom
left), electric field (Figure 4, bottom center) and dipole (Figure
4, bottom right) are quite comparable for QuOCO and COCO
optimizations.

3.2. COCO Implementation Based on a Swarm of
Particles. Here, we explore the capabilities of the COCO
algorithm as implemented with approximate gradients obtained
with a Gaussian ansatz for the propagated density of states. The
first and second moments of the single Gaussian ansatz are
defined by the coordinates and momenta of a swarm of
trajectories propagated according to the classical equations of
motion. Initial conditions are sampled by Monte Carlo
according to the initial density of states. Such a gridless
implementation of COCO is expected to be particularly
relevant to optimization of systems with high dimensionality
that remain sufficiently localized in phase space. A general-
ization to an ansatz based on multiple Gaussians (as necessary
for density of states that bifurcate or become delocalized in
phase space) is discussed later in this section as implemented in
conjunction with the k-means algorithm.89−91

Table 1. Results (in atomic units) of Global Optimization of
Potentials with Ensemble Average Value of the Position at
the Final Time ⟨x(T)⟩ Localized near Global Minimum
Location xgm within Standard Deviation σx

a

potential eq ⟨x(T)⟩ xgm σx ⟨V(T)⟩ props.

19 3.982 3.984 0.156 −10.407 264
20 0.038 0.000 0.151 −0.999 152
21 6.489 6.484 0.091 −7.215 68

aThe minimum ensemble average value of potential ⟨V(T)⟩ is found
after given number of propagations (props.).
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Figure 5 and Table 2 show that the gridless implementation
of COCO, based on a single Gaussian ansatz, successfully
locates the global minima of the three benchmark model
potentials discussed in Sec. 3.1. The parameters defining the
potentials and initial conditions are described in section 3.1,

with the exception of mf in eq 15 for the golf potentialshere,
mf = 16 au for the single-well golf potential introduced by eq 19
and mf = 150 au for the triple-well golf potential introduced by
eq 21. In all cases, the ensemble average value of the position at
the final time ⟨x(T)⟩ was located within a standard deviation σx

Figure 4. Comparison of results of quantum and classical optimal control optimization.

Figure 5. Global optimization based on a swarm of trajectories for the (a) single-well golf potential defined by eq 19 (light blue line); (b) rugged
potential defined by eq 20; and (c) triple-well golf potential defined by eq 21. The initial density (blue) is evolved by the control field to the final
density in global minimum well (purple).
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of the location of the global minimum xgm within a couple
hundred attoseconds and several hundred propagations.
Clustering of trajectories by using the k-means algorithm

enabled the generalization of the gridless implementation of
COCO to systems whose density of states might spread or
bifurcate in phase space as it evolves in time. For the model
systems investigated, the implementation of COCO based on
clustering of trajectories also led to successful global
minimization, as shown in Figure 6 and Table 3. Parameters
were identical for the Gaussian ansatz implementation, with the
exception of mf in eq 15 (mf = 25 au for the single-well golf
potential eq 19 and rugged potential eq 20 and mf = 150 au for
the triple-well golf potential eq 21).
Furthermore, clustering yielded successful global minimiza-

tion of a single-well golf potential eq 19 that confounded the
grid-based global optimization method of section 3.1, as shown
in Figure 7. Through the iterations of the optimizer from the
initial density at position xk = −5.0 au of mf = 16 au, the
clustering algorithm capitalized on a cluster of particles in the
global minimum well at position x0 = 4.0 au of width σ = 0.25
au and depth D = 12 au despite its distance from the harmonic
well (k = 1.0 au). The ability of the clustering algorithm to
locate distant minima suggests clustering may be used to locate
distant global minima in general.
3.3. Lennard-Jones Clusters: Multidimensional COCO.

Grid-free COCO was implemented for the optimization of
Lennard-Jones clusters. COCO was found to determine the
minimum energy configuration of Lennard-Jones clusters of the
form99,100

∑

∑ σ σ

=

= ϵ −

> =

> =

⎡
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V V r

r r

r( ) ( ) (22)

4 (23)

i j

N

ij

i j

N

ij ij

1

1

12 6

Results were determined for N particles of interatomic
distances r = {rij}, atomic diameter σ = 2. au, and well depth
ϵ = 1. au (ϵ = 10. au for 4 to 13 particles) at minimum

σ=r 2ij
6 . To ensure the particles were optimized as a single

cluster, a harmonic trapping potential of strength constant k =
0.1 au was included for clusters of less than 4 particles with the
form99,101,102

∑=
> =

V
k

rr( )
2i j

ij
1

2

(24)

A cutoff of V(rij) = V(0.5σ2) for small interatomic distances rij
2 <

0.5σ2 prevented numeric overflow. The cluster position was
also fixed by the choice of particle i coordinates (xi,yi,zi) of x1 =
y1 = z1 = y2 = z2 = z3 = 0.103

The global minimum was located for various Lennard-Jones
clusters, as shown in Figure 8 and Table 4. The global minima
were found for an initial guess final mass of mf = 1024 au in all
cases. The optima were found with a Gaussian initial density eq
17 centered at

= −r [3, 3, 3, 3, 3, 3] auk (25)

for 2 to 4 particles or

= − − −r [2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2k (26)

− − − − − −1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2 (27)

− − − − − −2, 0, 0, 1, 1, 2, 1, 2, 0] au (28)

Table 2. Results (in Atomic Units) of Global Optimization
with Grid-Free Propagation Comparing Ensemble Average
Value of Position of the Final Density ⟨x(T)⟩ and Location
of Global Minimum Well xgm within Standard Deviation σx
and Giving the Ensemble Average Value of Potential at the
Final Time ⟨V(T)⟩ after Given Number of Propagations
(props.) of the Optimizer

potential eq ⟨x(T)⟩ xgm σx ⟨V(T)⟩ props.

19 3.688 3.984 0.821 −7.705 128
20 0.002 0.000 0.401 −0.987 100
21 6.623 6.484 0.533 −6.566 32

Figure 6. Global optimization with clustered particle swarm propagation of (a) single-well golf potential eq 19 (light blue line), (b) rugged potential
eq 20, and (c) triple-well golf potential eq 21 localizes initial density (blue) as final density in global minimum well (purple).

Table 3. Results (in Atomic Units) of Global Optimization
with Clustered Particle Swarm Propagation Comparing the
Ensemble Average Value of Position of the Final Density
⟨x(T)⟩ and Location of Global Minimum Well xgm within
Standard Deviation σx and Giving the Ensemble Average
Value of Potential at the Final Time ⟨V(T)⟩ after Given
Number of Propagations (props.) of the Optimizer

potential eq ⟨x(T)⟩ xgm σx ⟨V(T)⟩ props.

19 3.989 3.984 0.382 −8.712 232
20 0.058 0.000 0.282 −0.995 216
21 6.438 6.484 0.147 −7.118 48
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for 13 particles. As shown in Figure 8 and Table 4, the global
minima found via COCO agreed with the lowest reported
global minima.104

4. TOWARD APPLICATIONS
The current method is expected to be applicable for
optimization of any function in position-space. However, the
method as stated has limitations in control space. Successful
optimization requires a sufficient number of controls and a
sufficient final time T for propagation. Moreover, the current
method is primarily applicable to smooth functions of control
space due to the inclusion of the L-BFGS-B optimizer in
application of the D-MORPH gradient eq 34. For example, in
the case of a 13-particle Lennard-Jones cluster, the L-BFGS-B
algorithm located the global minimum but the solution did not
meet the conditions for completion of the L-BFGS-B line
search. The early termination of the algorithm suggested the
surface may have been sufficiently nonsmooth or ill-
conditioned to cause difficulties with the L-BFGS-B algorithm.
In the future, these limitations can be overcome with a
sufficient number of controls, conversion of the final time T
from a parameter to a control, and use of a nonsmooth
alternative to the L-BFGS-B optimizer.

COCO presents an efficient method for global optimization
of multidimensional functions. In contrast to the calculation of
the function at every point, the method requires only
calculation of the function “on-the-fly” along the dynamical
path of a particle swarm. The path of the particles may
constitute a small subset of the full points on the surface, which
can lead to computational savings in the number of function
evaluations. As a global optimization method, COCO also
exhibits advantages over local optimization methods. In global
minimization applications of local optimization methods, the
local method may be used repeatedly to determine a set of local
minima of which the lowest is understood to be the global
minimum. However, unless the function is calculated every-
where, the true global minimum may not be among this set. In
contrast, COCO uses the control-space gradient to find the
global minimum through the directed motion of particles. In
this way, the number of necessary function evaluations is
reduced and, given sufficient number of controls, the optimizer
is led directly to the global minimum.79

5. CONCLUSIONS

We have introduced the COCO algorithm for energy
minimization, based on classical dynamics steered by a
controllable external adaptive field. COCO is a classical
analogue of the recently introduced QuOCO method that
exploits the diffeomorphic modulation under observable-
response-preserving homotopy (DMORPH) gradient and the
Broyden Fletcher Goldfarb Shanno (BFGS) iterative scheme
for nonlinear optimization. We have shown that the classical
analogue DMORPH gradients of the ensemble average values
with respect to the controls can be obtained in terms of
gradients of the classical Liouvillian, requiring only 3
propagations independent of the number N of control
parameters. The classical DMORPH gradients thus introduce
significant computational advantages relative to finite difference

Figure 7. Global optimization of benchmark single-well golf potential eq 19 (light blue line) with particle swarm propagation (a) without and (b)
with clustering algorithm localizes initial density (blue) as final density in global minimum well (purple). (c) The final density successively locates
the global minimum through iteration from the initial guess result (lightest blue) to the final optimized result (dark purple).

Figure 8. COCO optimization of Lennard-Jones clusters eq 23 determines global minimum configuration (dark purple) from initial guess (light
purple).

Table 4. Results (as Multiple of Depth Parameter ϵ) of
Global Optimization of Lennard-Jones Clusters Eq 23 with
Differing Number of Particles (No. Particles) Comparing
Ensemble Average Value of Potential at the Final Time
⟨V(T)⟩ to the Previously Reported Global Minimum
(GM)104 after Given Number of Propagations (Props.) of
the Optimizer

no. particles ⟨V(T)⟩ GM props.

3 −3.000ϵ −3.000ϵ 240
4 −6.000ϵ −6.000ϵ 112
13 −44.327ϵ −44.327ϵ 84
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methods that require N + 1 propagations. We have compared

benchmark grid-based implementations (i.e., by propagating

the amplitudes of the density of states on a phase-space grid in

the Eulerian frame) to implementations based on classical

trajectories in the Lagrangian frame with time-evolved density

of states approximated by a single-Gaussian or a multiple-

Gaussian ansatz generated by the k-means clustering algorithm.

We have shown the capabilities of the COCO algorithm as

applied to resolving the global minima of golf potentials, rugged

surfaces, and multiwells with near degenerate minima separated

by high energy barriers. COCO has also been shown to

successfully locate the global minima of multidimensional

Lennard-Jones clusters. The reported results show promise for

practical implementations.

■ APPENDIX A. DERIVATION OF CLASSICAL
DMORPH

The classical DMORPH algorithm can be derived in analogy to

the quantum DMORPH algorithm through the method

presen ted in re f 76 . The c l a s s i c a l p ropaga to r

= − ∫ ′ ′U t( , 0) e t ti d ( )t
0 for Liouvillian operator fulfills the

Liouville equation, as follows:

∂
∂

=
t

U t t U ti ( , 0) ( ) ( , 0)
(29)

Application of the product rule to eq 29 and the adjoint

Liouville equation derived in Appendix B yields
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Integrating eq 32, we obtain the classical DMORPH expression

for the gradient propagator

∫ β= −β β
−U T U T U t t U t t( , 0) i ( , 0) ( , 0) ( , ) ( , 0)d

T

0

1
j j

(33)

in complete analogy to the corresponding quantum expres-

sion.76

Substitution of the control-space gradient of the classical

propagator eq 33 into the equation for the control-space

gradient of the ensemble average of the observable eq 4 yields

the classical DMORPH gradient, as follows:
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in analogy to the quantum DMORPH gradient eq 2.

■ APPENDIX B. ADJOINT LIOUVILLE EQUATION
We derive the adjoint Liouville equations as a classical analogue
of the adjoint Schrödinger equation. The backward propagator
from time t to time 0 is

= = =† − −U t U t U t U t( , 0) ( ( , 0)) ( , 0) (0, )1 1
(35)

where

= = =† −U t U t U t U t( , 0) ( , 0) ( , 0) ( , 0) Id const1
(36)
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where Id is the identity operator. For the quantum propagator

βℏ ∂
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=i
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(38)

Therefore, the propagator can be shown to obey the equation
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where the last line is obtained by applying U†(t,0) from the
right, giving the adjoint Schrödinger equation which was
derived using the inverse property of the backward propagator,
never invoking the adjoint operation or the self-adjoint
property of the Hamilton operator.
In analogy to the adjoint Schrödinger eq 41, a temporal

inverse of the classical propagator = − ∫ ′ ′U t( , 0) e t ti d ( )t
0

introduced by eq 29 can be obtained, as follows:
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