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ABSTRACT
While hundreds of thousands of new chemical reactions are reported annually, efficient use of this
vast collection of synthetic knowledge remains a persistent challenge in modern chemistry. Recent
applications of large language models (LLMs) have shown promise, but systems that reliably work
for de novo compounds and molecular transformations have remained elusive. Here we introduce
MOSAIC (Multiple Optimized Specialists for AI-Driven Chemical Prediction), a computational
framework that enables chemists to harness the collective knowledge of millions of reaction protocols.
In contrast to existing approaches relying on agentic models, MOSAIC leverages the open-source
Llama-3.1-8B-instruct architecture. By training 2,489 specialized chemical experts on Voronoi-
clustered reaction spaces, we establish a scalable paradigm that delivers reproducible and human-
readable experimental protocols for complex syntheses. Experimental validation demonstrates
MOSAIC’s ability to predict and execute previously unreported transformations, including challenging
reactions via Buchwald-Hartwig amination, Suzuki coupling, and olefin metathesis. We validate this
approach through the successful synthesis of over 35 novel compounds spanning pharmaceuticals,
materials, agrochemicals, and cosmetics. This framework establishes a new relationship between
computational and experimental chemistry, providing a foundation for accelerated chemical discovery
across disciplines.

Main

The rapid advance of chemical sciences demands efficient
methods to navigate and utilize the vast and ever-expanding
repository of synthetic knowledge. Every year, hundreds
of thousands of new chemical reactions are documented,
adding to millions of known transformations dispersed
across numerous repositories. Traditional approaches to
reaction planning often involve manual searches of the liter-
ature or databases to identify procedures using structurally
similar starting materials and products. This process is
time-consuming, highly dependent on individual exper-
tise, and introduces significant inefficiencies, creating a
bottleneck in chemical discovery and development. As
the field of chemistry expands into interdisciplinary areas

such as materials science, pharmaceuticals, and sustain-
able technologies, the challenge of effectively accessing
and applying this growing body of knowledge become
increasingly acute.

The nature of this challenge points to an intriguing solution:
as chemistry essentially progress through iterative syn-
thetic experimentation guided by insights from the chemi-
cal literature, the field is exceptionally well-suited for the
application of large language models (LLMs). These mod-
els, trained on extensive collections of scientific texts, can
capture the intricate relationships and contextual meanings
underlying chemical concepts, as exemplified by systems
such as GPT-4 [1, 2].
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Traditional AI approaches in chemistry have achieved mile-
stone success by developing bespoke models tailored to
specific tasks, such as predicting reaction conditions [3],
estimating overall yields [4, 5], or inferring pre-defined
reaction action sequences [6]. Recently, there has been re-
markable progress in leveraging LLMs as intelligent assis-
tants in chemical research [7]. Systems such as Coscientist
and ChemCrow [8, 9, 10], built on GPT-4’s advanced natu-
ral language processing capabilities, have demonstrated the
potential to coordinate laboratory automation and guide
synthesis planning, an exciting step toward AI-assisted
chemistry.

However, these early efforts have revealed fundamental
challenges that must be addressed for efficient AI-driven
chemical synthesis. A central limitation of approaches
that rely on proprietary models such as GPT-4 is the de-
pendence on closed-source systems whose architectures
or configurations can yet to be modified for chemistry-
specific tasks. These models generate different responses
to identical prompts across different sessions [11] (Sup-
plementary Section 11–15), compromising experimental
reproducibility. The absence of confidence metrics in these
systems make non-expert users unable to effectively in-
terpret the reliability of the outputs. While such methods
perform adequately with simple, well-studied substances
like aspirin or benzoic acid, their utility diminishes with
more complex or novel molecules requiring standarized
SMILES inputs [12] (Supplementary Section 11–15). Fur-
thermore, while existing combinations of non-LLM mod-
els can suggest relevant reaction conditions, they fall short
in providing details necessary for experimental implemen-
tation. Human experts are often required to make iterative
decisions [13] or needed to manually determine critical
parameters such as concentration equivalence ratios, sto-
ichiometry, order of addition, and residence times [14],
creating a persistent bottleneck in both automated and
manual experimental workflow.

Addressing these challenges requires a paradigm shift in
how we apply language models to chemistry. Recent devel-
opments in open-access models, such as Llama-3.1 [15],
and efficient fine-tuning techniques such as the Low-Rank
Adaptation (LoRA) [16], have opened new possibilities
for domain specialization in chemistry [17]. Building
on these advances, we introduce the Multiple Optimized
Specialist for AI-driven Chemical Prediction (MOSAIC)
model, a framework that transforms the Llama-3.1-8B-
instruct model into 2,489 specialized chemistry experts
using the Pistachio database [18], harnessing massively
scalable computational power.

MOSAIC’s architecture enables the optimization of in-
dividual models on partitioned subsets of chemical reac-
tions to develop domain-specific expertise across a broad
range of chemical transformations. By directly utilizing
SMILES strings as inputs, the expert models generate de-
tailed, human-reproducible reaction procedures, includ-
ing precise reagent and solvent stoichiometry information,
along with yield predictions. A distinctive feature of this

approach is the inclusion of confidence estimates, achieved
by quantifying the transformation distance from the query
to the domain of expertise, providing essential reliabil-
ity metrics. We experimentally validate these capabilities
on de novo compounds across pharmaceuticals, materials,
and cosmetics and agrochemical applications, demonstrat-
ing real-world practicality. The framework is designed to
scale continuously with increasing data volume and com-
putational resources. Through the parallel fine-tuning of
thousands of models and the generation of complete exper-
imental protocols, our model represents a significant step
to create an integrated, all-in-one system for synthesis and
chemical discovery.

To the best of our knowledge, this is the first demonstration
of using a collection of large language models to achieve
fully elaborated, human-readable procedures for de novo
chemical compound synthesis employing arbitrary reac-
tions. The framework’s systematic approach to searching a
reaction space and providing confidence-aware predictions
establishes it as a valuable tool for accelerating discovery
across the chemical sciences. By combining the wealth
of knowledge from the expanding chemical literature with
the reasoning capabilities of foundation language models,
MOSAIC empowers chemists to focus on idea generation
while leveraging machine intelligence to optimize experi-
mental outcomes.

Model Framework and Design Logics

Training large language models on extensive datasets
presents significant computational challenges, particularly
in coordinating multiple GPU devices across nodes. Tradi-
tional approaches require complex data and model paral-
lelization strategies, alongside intricate synchronizations
mechanisms [20, 21]. For datasets of this magnitude, con-
ventional non-parallelization-optimized training methods,
with limited batch sizes, could extend training times to
several months for a single investigation.

To overcome these limitations, we equipped MOSAIC
with three distinct architectural components (Fig. 1a). The
first component implements a distance metric to quantify
similarities between chemical reactions. Specifically, we
developed a non-linear kernel function K:

K(V⃗1, V⃗2) ≈

∥∥∥∥∥∑
i

(φ(V⃗1,i)− φ(V⃗2,i))
2

∥∥∥∥∥ (1)

By design, this function assigns smaller values to similar
reactions and larger values to dissimilar ones represented
by V⃗ . We implemented this idea through a neural network
functioning as a non-linear map φ, where the Euclidean
distance between the pair of transformed reaction descrip-
tions (V⃗1 and V⃗2) approximates K. This architecture, des-
ignated as the Kernel Metric Network (KMN), processes
chemical transformations encoded in SMILES notation
and classifies them among 2,285 distinct reaction classes
(training details in Supplementary Section 1). We extract
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To a stirred solution of isopropyl 2-(4-(4-
chlorobenzoyl)phenoxy)-2-methylpropanoate (0.50 g,
1.41 mmol) in 1,4-dioxane (20 mL) was added 2-
(piperazin-1-yl)pyridine (0.26 g, 1.69 mmol) and
cesium carbonate (1.38 g, 4.2 mmol) at room
temperature. The reaction mixture was purged with
argon for 20 min. Then Pd2(dba)3 (0.13 g, 0.14
mmol) and X-phos (0.14 g, 0.14 mmol) were added to
the reaction mixture and refluxed to 110° C. for 16
h. After completion of the reaction (monitored by
TLC), the reaction mixture was filtered through a
pad of celite and evaporated to get the crude
product. The crude product was purified by silica
gel column chromatography using 20% EtOAc-hexane to
afford isopropyl 2-methyl-2-(4-(4-(4-(pyridin-2-
yl)piperazin-1-yl)benzoyl)phenoxy)propanoate (0.60
g, 1.16 mmol, 82% yield) as a yellow solid.

Buchwald-Hartwig Coupling

Figure 1: MOSAIC framework. a, Buchwald-Hartwig amination reaction fingerprint generation. The reaction
components are encoded using concatenated RDKit (blue outline) and Morgan (red outline) fingerprints. A difference
fingerprint is computed by subtracting the reactant from product fingerprints, where black represents +1, white -1, and
outlined elements 0. b, schematic illustration of the KMN. The input from the reaction is used by the KMN to classify
reaction classes during training. The feature before the output layer is taken as the Reaction Specific Fingerprint that
captures relevant reaction characteristics. c, Tree Map visualization [19] of RSFP-encoded reaction space, highlighting
Buchwald-Hartwig reactions (orange) against other reaction classes (blue). The KMN metric effectively distinguishes
between Chloro, Bromo, and Triflyloxy Buchwald-Hartwig couplings while maintaining intra-class clustering. d,
Conceptual illustration of Voronois of experts. The reaction universe is clustered into discrete Voronoi cells by FAISS.
Each Voronoi cell have one or several reactions of high similarity. And then training Meta’s Llama-3.1-8B-Instruct with
LoRA adapter using Voronoi domain knowledge. With the domain of related reactions, the LLM models are optimized
to produce specialized natural language responses resembling the knowledge seen during training (example shown for
Buchwald-Hartwig in consistent light blue background). e, distribution of reaction classes used to train expert 883. This
is the top expert for reaction depicted in a with the expert’s Voronoi centroid distance to the query reaction being 85.51.
The distribution shows predominant Chloro Buchwald-Hartwig amination expertise while maintaining a well-rounded
coverage of related C–N coupling reactions. f, the prediction from model for the novel compound. The model predicts
a human-reproducible procedure for this transformation. Details include chemical nomenclature, reagents, solvents,
quantitative ratio between each chemical, orders of addition, temperature, residence time, workup setup, product state,
overall yield, and possible characterization values. i-Pr, isopropyl; 2-Py, 2-pyridyl.
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the 128-dimensional feature vector—termed the Reaction-
Specific Fingerprint (RSFP) from the fully connected layer
preceding the classification heads. RSFP encodes essential
information about reaction classifications.

Clustering with FAISS and Voronoi Regions: The sec-
ond component leverages the Facebook AI Similarity
Search (FAISS) library for efficient clustering[22]. FAISS
implements Inverted File Indexing (IVF)[23], which gen-
erates quantized Voronoi centroids from vector databases.
While IVF was originally designed for rapid distance cal-
culations between query vectors and large databases, we
repurposed its clustering capability to partition the reaction
space into Voronoi regions. This approach first evaluates
distances between query vectors and Voronoi centroids,
then computes detailed distances only for vectors within
the selected Voronoi regions. Reactions processed during
KMN training and validation were encoded as RSFPs, con-
structing a comprehensive chemical transformation space
that captures reaction similarities. Within this space, 2,500
self-supervised clustered Voronoi regions were generated.
To develop LLM experts with domain-specific knowledge,
we filtered reactions using strict criteria, primarily requir-
ing detailed procedural descriptions (Supplementary Sec-
tion 2). This filtering process resulted in 2,489 non-empty
Voronoi regions, each representing a domain of chemical
knowledge. The Voronoi-clustering methodology effec-
tively groups related reaction types. For instance, Voronoi
regions containing Buchwald-Hartwig reactions typically
encompass related Goldberg and SNAr reactions (Fig. 1e),
demonstrating its systematic ability to recognize chemical
similarities.

Finally, the Voronoi were used to train domain-specific
LLM experts. Rather than initiating independent fine-
tuning processes, we first fine-tuned a base model trained
on the complete filtered dataset (Supplementary Section 2).
Subsequently, we continue fine-tuning individual expert
models using data from each Voronoi region. This pro-
gressive approach facilitates the expert models to maintain
diverse knowledge related to chemical nomenclature and
substance state characterization while developing special-
ized expertise in their reaction domains.

Prediction Methodology: For predicting procedures for a
novel reaction, MOSAIC first encodes the query reaction
using KMN to generate its RSFP representation. This fin-
gerprint is then used to identify the most relevant Voronoi
regions through FAISS, effectively locating the reaction
within the chemical transformation space. For instance,
when presented with a Buchwald-Hartwig coupling reac-
tion involving chloro-substituted aromatics (Fig. 1e), the
system identified Expert 883, whose knowledge composi-
tion predominantly consists of chloro Buchwald-Hartwig
amination and related C–N transformations. The system
activates these domain-specific LLM experts to provide
complete synthetic procedures. These detailed guides in
natural language are directly executable in laboratory set-
tings; affording amination product in 96% isolated yield
by exactly following the protocol shown in Fig. 1f.

Quantitative Assessment

The development of language models capable of gener-
ating comprehensive chemical procedures represents an
emerging frontier in synthesis planning. While prior work
has largely focused on specialized models tailored to spe-
cific prediction tasks, the ability to interpret and generate
end-to-end synthesis procedures, from reagent selection to
yield prediction, remains a nascent area of research. Here,
we introduce quantitative assessments for evaluating how
fine-tuned language models handle the complex task of
detailed synthesis procedures. We benchmark MOSAIC
against leading language models, including the ones that
are publicly accessible and subscription-based, offering
new perspectives on chemical reasoning in AI systems.

Yield Prediction Analysis

We first examined the model’s ability to predict reaction
yields based on complete experimental procedures. LLMs
represent yields as tokens rather than continuous numeri-
cal values, a different perspective on yield prediction com-
pared to traditional approaches. During predictions, MO-
SAIC processes the entire experimental procedure, includ-
ing reagents, solvents, and process descriptions, enabling
it to anticipate likely experimental outcomes by integrating
multiple dimensions of the synthetic considerations (Fig.
2c).

Binning Strategy for Token-Based Predictions: To eval-
uate yield predictions, we implemented a binning strategy
that groups yields into 10 intervals of 10 percentage points
from 0 to 100 (specifications in Supplementary Section
4). This approach not only accommodates the token-based
nature of the predictions while mitigating experimental
variability due to factors such as individual skill levels and
database-reported product impurity. Within each bin, we
compared the medians of the interval against the average
of corresponding true values within the bin.

Correlation and Robustness: Our analysis reveals that
MOSAIC demonstrates a qualitative understanding of yield
trends, evidenced by the correlation between predicted and
true yield medians (Fig. 2e). The model’s ability to inte-
grate information from complete experimental procedures
provides a complementary approach to specialized yield
prediction models. To ensure the robustness of these find-
ings, we conducted additional analysis by limiting a max-
imum of 20 instances per reaction class, confirming that
the system captures yield patterns across diverse reaction
types (Fig. 2d).

Reagent and Solvent Prediction Accuracy

To evaluate the accuracy of MOSAIC in predicting
reagents and solvents (detailed in Supplementary Section
9), we introduced a quantitative metric (D) to measure the
difference between predicted (Spred) and true (Strue) sets of
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Pd(OAc)2 (0.006 g, 0.028 mmol) and xantphos
(0.003 g, 0.006 mmol) were dissolved in
toluene, and then 1-bromo-4-fluorobenzene
(0.049 g, 0.278 mmol), methyl 4-(((2S,6R)-2,6-
dimethylpiperazin-1-yl)methyl)benzoate
(formula 13-2, 0.100 g, 0.278 mmol) and Cs2CO3
(0.227 g, 0.696 mmol) were added thereto. The
mixture was heated and stirred at 100° C. for
17 hours. Water was added to the reaction
mixture, followed by extraction with ethyl
acetate. The organic layer was concentrated
under reduced pressure. The concentrate was
purified by column chromatography (silicon
dioxide; ethyl acetate/hexane=15%) and
concentrated to afford the desired compound
(0.007 g, 7.1%) as a white solid.

Figure 2: Prompt design and quantitative metrics. a, prompt design. The prompt is split into four sections. The
first part introduces the product and reactant which define the reaction transformation. Reagents, solvents, and atom
mappings relevant to the reaction are then completed in the same SMILES format. To transition to full natural language
descriptions, the SMILES representations from the previous steps are translated into their chemical names. Lastly, the
full reaction procedures along with a possible reaction classification and yield characterization are predicted based on
the available information. b, based on the same prompt in a MOSAIC is compared with other publicly accessible as
well as subscription-only LLMs. The result shows superior performance from MOSAIC across all reaction categories
and in the averaged final scores. Responses with scores below 5.0 are often not usable for real synthetic practices. c,
partial paragraph information processing. To obtain yield prediction, the model is provided a partial paragraph before
the yield information. The predictions are averaged across beam-searched results. d, e, comparative yield prediction
analysis showing results with reaction classes capped at 20 examples (d) and unconstrained (e). Each plot combines
box and violin plots to display true yield distributions within prediction bins, with median-based fit lines plotted against
perfect correlation (dashed). f, distribution analysis of prediction accuracy, measured as the percentage overlap between
predicted and true reagent/solvent sets. A zero difference indicates an exact match. g, frequency distribution of total
predictions generated across three expert models. h, half-match of conditions (D = 0.5). The model suggests palladium
on carbon as a catalyst and ethanol as a solvent, which are typical for alkene hydrogenation reactions. i, no overlap with
the reference conditions (D = 1.0). For mesyl (methanesulfonyl) deprotection, the model predicts sodium hydroxide
in ethanol, which is a common strategy that experienced chemists often consider first. Both examples show that even
when predictions differ from reference conditions, the model suggests reasonable alternatives that could lead to viable
synthetic outcomes. Et, ethyl; Cy, cyclohexyl.
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molecules:

D = 1−
|Spred ∩ Strue|

|Strue|
(2)

A difference of zero (D = 0) indicates that the true set
is a subset of the predicted set, which is considered as an
exact match. Predictions were conducted using both one-
shot and multiple-shots approaches. In the one-shot case,
only the first prediction with highest beam score from the
closest expert to the query reaction was considered. And in
the multiple-shots approach, predictions from up to three
experts were aggregated. Additionally, following [24], we
also recorded performance for partial matches, defined as
cases where at least one molecule in the true set appears
in the predicted set (D < 1). The summarized results are
presented in Tab. 1.

In the simplest case of single predictions (one-shot), the
model achieves exact matches for reagents and solvents
in 22.4% and 29.8% of cases respectively, while partial
matches increase to 45.4% and 51.7%. When leverag-
ing predictions from multiple experts, the performance
improves dramatically with exact matches nearly double
for reagents to 43.0%, while solvent prediction accuracy
rises to 32.8%. Furthermore, the partial match success rate
in multiple-expert predictions reaches 76.0% for reagents
and 55.2% for solvents. The combined success rate for
predicting at least some correct components (reagents or
solvents) reaches 94.8%, indicating that MOSAIC almost
always identifies relevant reaction components, even if not
providing the exact conditions. These results demonstrate
that consulting multiple experts significantly improves pre-
diction accuracy, nearly doubling the exact match rate for
reagents and substantially enhancing partial matches for
both reagents and solvents.

Pred. Type Match Reagent Solvent Both

One-shot Exact 22.4 29.8 12.9
Partial 45.4 51.7 73.0

Multiple-shots Exact 43.0 32.8 28.9
Partial 76.0 55.2 94.8

Table 1: Reagents and Solvents Prediction Results (in %
Matches). "Both": solvents and reagents as one set.

Analysis of Model Behavior: In cases where no partial
match was achieved even with three experts, our analysis
revealed that MOSAIC frequently predicted chemically vi-
able alternatives rather than making erroneous predictions.
For example, in nitro-to-amino transformations, the model
oftern predicted iron as a reagent instead of the tin chloride
present in the true set, a valid alternative rather than hallu-
cination. This differentiation reflects the nuanced expertise
of the model; among the top 10 experts for such reactions,
all focused on nitro-to-amino chemistry, with one expert
(ranked sixth) specialized in tin chloride transformations
(details in Supplementary Section 5).

Two representative cases illustraing the "half-match" (D =
0.5) and "no-match" (D = 0) cases are analyzed in figure

2h, i. Even no-match cases, MOSAIC’s predictions often
represent plausible alternatives to achieve the desired trans-
formations. This conclusion is further supported by our
successful experimental validations despite the inherent
variability in synthetic approaches.

Comparison with Other LLMs

To evaluate the capabilities of current language models in
addressing chemistry-specific tasks, we conducted com-
parisons across diverse and important reaction types. Our
assessment included 12 reactions across Suzuki coupling,
olefin metathesis, Buchwald-Hartwig amination, Heck re-
actions, Sonogashira coupling, and esterification applied
to novel substrates with varying complexities. These
reactions were tested against leading language models:
ChatGPT-4o mini, Claude 3.5 Haiku, Claude 3.5 Sonnet
(10-22-24), and ChatGPT-o1 Pro (12-05-24). Of these
models, ChatGPT-4o mini and Claude 3.5 Haiku are pub-
licly accessible, while Claude 3.5 Sonnet and ChatGPT-
o1 Pro are subscriptions-based. The performances of the
publicly accessible models are particularly relevant to the
broader scientific community.

The evaluation framework considers criteria related to the
chemical understanding and experimental feasibility. Mod-
els were scored on their ability to: correctly map atoms in
SMILES notation (1 point), identify appropriate reagents
and solvents (1–2 points), detail experimental operation
procedures (1 point), specify quantitative parameters such
as molar ratios, temperatures, and yields (1–2 points), de-
scription of workup procedures (1 point), and accurately
classify reactions (1 point). Responses that failed to follow
instructions or merely replicated the provided examples
incurred a penalty of -2 points. This penalty distinguished
nonsensical or rote responses from those exhibiting gen-
uine chemical understanding. Each criterion was evaluated
independently, rather than binary success/failure assess-
ments. This granular scoring approach allowed us to cap-
ture variations in the model capabilities and provide a more
nuanced comparison of their chemical reasoning abilities.
To ensure reliability and account for response variations,
we repeated each prediction three times using identical
prompts which contain an example. (Fig. 2a). The re-
sults, summarized in Fig. 2b and also documented in the
Supplementary Section 11–16, corroborates MOSAIC’s
consistent advantage across all reaction categories.

While operating with only 8 billion parameters compared
to the likely orders-of-magnitude larger commercial mod-
els such as ChatGPT-o1 Pro and Claude 3.5 Sonnet. Promi-
nently, MOSAIC demonstrated superior performance in
the obtaining atom mappings. Whereas commercial LLM
models consistently fail on this task despite identifying cor-
rect reaction classes. This performance gap suggests that
targeted fine-tuning and chemistry-specific optimization
can overcome raw parameter count advantages in special-
ized domains. Our experimental validation of MOSAIC’s
predictions substantiates its practical utility and indicates
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that domain expertise can be effectively encoded in smaller,
specialized architectures.

De Novo Compound Synthesis Across Reactions of
Broad Impact

We carried out extensive experimental validations to evalu-
ate MOSAIC’s ability to predict procedures for challenging
and practically important chemical transformations. These
experiments focused on reactions critical to drug devel-
opment, advanced materials, and consumer products. By
following MOSAIC’s procedures, we aimed at determine
its reliability and practical utility in guiding the synthesis
of novel compounds.

Experimental Design and Setup: For validation, up to
three experts employed per compound were employed, us-
ing a beam size of 20 with beam groups ranging from 2
to 20 (detailed in Supplementary Section 3). The highest-
ranked predictions from each expert are prioritized (Sec-
tion Experiment Prioritization), yielding predominantly
successful outcomes. For novel transformation types
shown in Fig. 4 13 where prediction confidence was low,
additional predictions were tested to ensure comprehensive
evaluation. All experimental trials are fully documented in
Supplementary Section 17 ensuring methodological trans-
parency and reproducibility.

Key Reaction Types and Results: We specifically chose
the three Nobel Prize-winning reactions that form the back-
bone of organic synthesis in particular modern pharmaceu-
tical and materials development [25, 26, 27, 28, 29].

1.Suzuki Coupling: A reaction that revolutionized drug
synthesis with its precision and safety, enabled access to
complex biaryls (Fig. 3 2a–d) containing sensitive func-
tional groups that typically pose significant synthetic chal-
lenges [30]. MOSAIC’s predictions navigated these com-
plexities, underscoring its utility in pharmaceutical devel-
opment.

2.Heck Coupling: MOSAIC demonstrated applicable in
Heck coupling reactions (Fig. 3 3a–d) including the cases
where prior attempts documented in the literature had
failed (Fig. 3 3d), demonstrating the system’s ability to
overcome documented limitations [31].This illustrates MO-
SAIC’s potential to address current synthetic bottlenecks.

3.Olefin Metathesis: (Fig. 3 4a, 4b) Reaction was equally
successful, enabling manipulation of carbon-carbon double
bonds, an essential capability for both small molecule syn-
thesis and polymer science [32, 33]. The late-stage mod-
ification of the pressure sensitive adhesive 4-acryloyloxy
benzophenone (ABP) [34] showcased the versatility of
its applications. Moreover, it allowed us to obtain the
monomer of a functional material (Fig. 3 4b) via ring
opening metathesis (ROM) [35, 36, 37].

4.Buchwald-Hartwig Aminations: Beyond these men-
tioned reactions, we validated MOSAIC on transforma-
tions relevant to drug development. The Buchwald-
Hartwig amination is responsible for forming carbon-

nitrogen bonds, found in over 80% of drug molecules [38].
MOSAIC not only successfully predicted conditions for
these challenging reactions, (Fig. 3 1a–c) but also showed
chemical insight by suggesting both palladium-catalyzed
Buchwald-Hartwig and copper-catalyzed Goldberg reac-
tions as viable pathways across different substrates. This
versatility proved valuable in synthesizing derivatives of
important drugs such as the Nortriptyline (antidepressant)
and the Fenofibrate (cholesterol-lowering medication).

5.Sonogashira Coupling: MOSAIC excelled in predict-
ing conditions for transformations of alkynes, occurring
among natural products to functional materials [39], in-
cluding dual-catalyst systems for Sonogashira coupling
reactions (Fig. 3 5a), critical for synthesizing materials
used in optoelectronic device development [40]. This ca-
pability underscores the model’s relevance in advanced
material applications.

6.Diaryl Ether Synthesis: Diaryl ethers are one of the
most common and enduring scaffolds in medicinal chem-
istry and agrochemicals applications [41]. Among this
category, MOSAIC provided multiple viable pathways for
synthesizing estrone derivatives (Fig. 3 6a, 6b), effec-
tively adapting established methods for the modification
of complex bioactive molecules.

In addition to catalytic reactions, we investigated prevalent
reactions in organic synthesis where controlling selectivity
and reactivity continues to be a key challenge. MOSAIC’s
predictions guided experiments across several important
reaction classes, showcasing its applicability in complex,
chemoselective, and stereoselective transformations.

1.Chemoselective and Controlled Oxidation: MOSAIC
provided conditions for the controlled oxidation of a deriva-
tive of Pentaerythritol, a versatile building block for explo-
sives, plastics, paints, and appliances, to its corresponding
aldehyde (Fig. 3 7a). Notably, this transformation avoided
the use of toxic metal like chromium [42], underscoring
the model’s utility in providing safer and more sustainable
synthetic pathways.

2.Site- and Stereoselective Transformations:
2.1. Conjugate Addition to Chiral Pool Materials: MO-
SAIC predicted successful conjugate addition to (S)-
carvone (Fig. 3 7b), a chiral monoterpene frequently used
in stereospecific natural product synthesis. This result
demonstrates the model’s ability to manage site-selective
transformations in complex chiral substrates.

2.2. Prenylation of Sclareolide: The sesquiterpene lac-
tone natural product Sclareolide underwent a prenylation
reaction (Fig. 3 7e), an important reaction used in post-
translational modification to increase the structural diver-
sity and bioactivity of peptides and proteins [43]. This
showcases MOSAIC’s ability to predict conditions for se-
lective modifications of biologically relevant molecules.

2.3. Olefination of Carbonyl Compounds: MOSAIC
successfully predicted Horner-Wadsworth-Emmons re-
action conditions for stereoselective olefination of L-
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Perillaldehyde (Fig. 3 7c), a monoterpenoid volatile oil
derived from perilla herb, widely used in the flavor and
perfumery industries [44].

3.Site-Specific Functional Group Manipulation: Selec-
tive silyl protection of Hesperetin(Fig. 3 7d), a naturally
occurring antioxidant, and anti-inflammatory agent, was
successfully achieved using MOSAIC’s procedures, high-
lighting it’s ability to orchestrate complex functional group
reactivity in intricate molecular scaffolds, providing viable
and selective synthetic procedures.

These results validate the model’s versatility for a
widespread transformations including natural product syn-
thesis and derivatization.

Translational Applications

The practical impact of MOSAIC spans diverse chemical
industries, from pharmaceuticals to advanced materials,
catalysis, agriculture, and cosmetics. These translational
applications underscore its versatility and potential to drive
innovation in both established and emerging fields.

Pharmaceutical Development: Our validation studies en-
compassed both the creation of new drug-like molecules
(Fig. 4 8a) and strategic modifications of existing drugs
(Fig. 4 8b–d). These capabilities prove critical for enhanc-
ing drug safety, efficacy, and pharmacokinetic properties
[45]. Through precise predictions of functionalization con-
ditions and novel scaffold construction, the system enables
rapid prototyping of therapeutic candidates.

Catalysis: In the realm of catalyst design, we achieved syn-
thesis of the specialized ligand 9a (Fig. 4) – a bipyridine
ligand, essential for diverse catalytic applications includ-
ing industrial chemical processes [46]. Notablty, predicted
amination conditions afforeded new analogs of photocata-
lyst (Fig. 4 9b, 9c), compounds that harness light energy to
drive chemical reactions. This advancement in sustainable
chemistry holds significant promise for reducing environ-
mental impact [47].

Advanced Materials: Through systematic prediction of
reaction conditions, novel conjugated compounds (Fig.
4 10a, 10b) emerged as promising candidates for elec-
tronic devices, including organic semiconductors and light-
emitting diodes. While larger molecules demanded more
extensive computational searches, the resulting predictions
proved actionable [48], highlighting the system’s potential
in functional materials science.

Agrochemicals: The development of new agrochemical
variants, particularly derivatives of pyrabactin (Fig. 4 11a–
c) [49], demonstrated promising results. These advances
pave the way for more effective and environmentally con-
scious agricultural practices.

Cosmetics and Fragrance Development: Our investiga-
tions yielded new fragrance analogs (Fig. 4 12a, 12b) de-
rived from hedione. In addition, we have obtained citronel-
lylretinoate (Fig. 4 12c), a variant of anti-aging chemeical
retinylretinoate [50]. The successful prediction of syn-

thesis protocols for these complex cosmetic ingredients
underscores the system’s value in consumer-focused appli-
cations.

Methodology Discovery: The realm of translational appli-
cations expands with the development of new methods as a
result of the new tools and strategies facilitating chemical
space exploration, importance of which can even be traced
back to several Nobel Prizes in recent years including the
ones mentioned earlier [51]. However, the development of
new chemical transformations relies on a thorough under-
standing of reaction mechanisms, fundamental reactivity
trends, and the underlying principles that govern them, re-
quires trial and error processes for fine adjustments of the
reaction conditions. Gratifyingly, MOSAIC’s capability of
processing the collective knowledge enables to guide new
reaction discovery, exemplified by new heterocycle ring
synthesis protocols (Fig. 4 13a) [52], allowing access to
under-explored bioisosteric analogs of indoles [5]. This
methodological versatility expands the synthetic toolkit
while enabling exploration of novel chemical space

These diverse applications highlight the system’s poten-
tial to accelerate innovation across the chemical sciences,
from therapeutic development to sustainable materials and
consumer products. The demonstrated ability to predict
conditions for a wide range of practically significant trans-
formations indicates readiness for deployment in both re-
search and industrial settings. Furthermore, these results
validate our domain specialization approach, offering dis-
tinct advantages over existing LLMs that struggle with
standard chemical notations and lack robust confidence
measurements in their predictions.

Discussion

Model Limitations and Future Directions

While MOSAIC demonstrates remarkable capabilities in
predicting reliable synthetic procedures, it operates within
certain boundaries that reflect the current state of AI in
chemistry. The model excels at identifying and adapt-
ing known reaction patterns but cannot discover entirely
new transformations involving unprecedented reagents—a
limitation that connects with the fundamental role of ex-
perimental chemistry in advancing new synthetic method-
ologies.

For specialized applications, MOSAIC’s general-purpose
architecture necessarily trades some precision for breadth.
For instance, while it can predict yields for specific
Buchwald-Hartwig reactions between 4-methylaniline and
aryl halides, it does not match the precision of bespoke
models [4] that are optimized for this task using curated
datasets [53]. However, this trade-off enables MOSAIC
to address a vastly broader range of chemical challenges,
making it versatile for real-world applications.

The current implementation inherits constraints from stan-
dard LLM tokenization strategies. While these tokens
effectively capture chemical knowledge [54], they could
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Figure 5: Examples of successful applications of MOSAIC. By following the provided synthesis and workup
procedures precisely, the separated compounds (Figures 3, 4 and SI) were compared to the model-predicted products.

struggle with complex molecular structures, particularly
in translating between SMILES notation and compound
names for large molecules with multiple heterocyclic rings.
Interestingly, even when nomenclature details are imper-
fect, the model maintains accurate recognition of func-
tional groups and reaction patterns, demonstrating robust
chemical understanding (Supplementary Section 17).

These observations point to exciting opportunities for fu-
ture development. Implementation of chemistry-specific
tokenization approaches, such as mixed atom-character
encoding [55] or multi-modal representations with explicit
connectivity information [56], could further enhance MO-
SAIC’s performance. Moreover, while our implementation
uses Llama-3.1-8B-instruct as the base model, the frame-
work’s architecture is model-agnostic and could seamlessly
incorporate larger models such as Llama-3.1-70B or 405B
[15], or more recent versions such as Llama-3.3 series,
which demonstrate superior performance in general lan-
guage tasks. This flexibility, combined with MOSAIC’s
scalable architecture, ensures that it can readily incorporate
future advances in both language modeling and chemical
representation, further narrowing the gap between compu-
tational prediction and experimental outcomes.

Delicate Control of Reaction Metrics

One of MOSAIC’s key strengths lies in its ability to pre-
dict detailed procedural steps that are critical for syn-
thetic success. Beyond basic reaction conditions, the sys-
tem provides precise guidance on factors such as reagent
addition order, temperature control, and workup proce-
dures—elements traditionally refined through years of lab-
oratory experience.

Here we discuss several examples to show how these pro-
cedures become decisive:

1.Oxidative Transformations: When using mCPBA, ini-
tial addition at -20°C followed by controlled warming
prevents side reactions such as epoxide ring-opening side
reactions [57].

2.Nozaki-Hiyama-Kishi Coupling: Premature addition
of oxidants, before complete formation of organometallic
intermediates, leads to substrate degradation, while slow
addition over 30–60 minutes ensures selective carbonyl
addition [58].

3.SN2 Reactions: Trace catalytic additives like iodide salts
(5–10 mol%) can dramatically increase yields from <10%
to >90% through halide exchange catalysis [59].

4.Sonogashira Coupling: Copper(I) iodide facilitates
transmetallation reaction with palladium catalyst that en-
ables reactions at lower temperatures [40].

5.Photoredox Transformations: Precise setup protocols,
such as degassing of the reaction mixture (e.g., freeze-
pump-thaw cycles and nitrogen bubbling) prevents oxygen
quenching of excited states, while optimal light source
positioning (e.g. 3–5 cm from the reaction vessel) ensures
sufficient photon flux without causing localized heating
[60].

6.Ring-Closing Metathesis: Adding 1–5 mol% 1,4-
benzoquinone prevents catalyst decomposition [61].

7.C–H Functionalization: Addition of catalytic amount
of pivalic acid (30 mol%) in palladium-catalyzed C–H
arylation of arenes generates a highly active catalyst, while
minimizes the formation of undesired byproducts [62].

8.Workup Procedures: Proper uses of specific buffer so-
lutions and saturated ammonium chloride solution prevent
decomposition of sensitive products [63].

Unlike bespoke models that often omit such details, MO-
SAIC systematically captures these nuances, allowing for
more comprehensive and accurate predictions. Mastering
these nuances of chemical synthesis traditionally demands
years of laboratory experience, yet in an era where chem-
ical knowledge expands at an unprecedented rate, even
decades of expertise cannot keep pace with the expanding
frontiers of synthetic possibility. This intrinsic limitation
in knowledge acquisition and synthesis planning will lead
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researchers to naturally gravitate toward computational
frameworks like MOSAIC which systematically processes,
integrates, and applies the collective intelligence.

Information Overload to Actionable Knowledge

The challenge of identifying viable reaction procedures is
also evidenced by the paradox in modern chemical search
systems: the wealth of available information can be as prob-
lematic as its absence. A typical structure-based search
in chemical databases such as SciFinder can return hun-
dreds of thousands of related procedures, creating what
appears to be a comprehensive resource but effectively
presents a time-consuming challenge to determine which
procedure to implement. For this reason, chemists may
ignore this abundance of data and instead determine the
optimal conditions through iterative optimizations.

MOSAIC addresses this information overload through the
domain-expert design. Rather than using all possible in-
formation, only the most relevant is used followed by the
decision from the LLM itself. This approach effectively
distills vast amounts of reaction data into actionable proce-
dures that guide experimental outcomes.

Confidence Estimate

One of the most significant advancements in the applica-
tion of large language models to chemistry is the ability to
provide reliable confidence estimates. In MOSAIC, con-
fidence metrics are inherently data-driven, derived from
the distance between a query reaction and the centroid
of the domain expert responsible for the prediction. This
distance-based confidence measure offers intuitive inter-
pretation: predictions from experts with centroids closer
to the query reaction carry higher confidence.

Our analysis, detailed in Appendix figures (Fig. 6 and 7),
reveals distinct confidence thresholds that correlate with
prediction reliability:

1.Distances < 50: High confidence predictions with strong
structural and mechanistic resemblance, sharing similar
transformation patterns and maintaining close similarity in
both reactant and product structures.

2.Distances of 100–200: Moderate confidence predic-
tions, retaining core transformation patterns while showing
greater variation in substrate and product structures.

3.Distances > 200: Predictions falling within the same
broad reaction category but often involving different reac-
tive groups or reaction conditions.

Importantly, even predictions with lower confidence scores
can provide valuable insights. For instance, when querying
a Buchwald-Hartwig coupling reaction of aryl bromides
at a distance of 300, analogous couplings with aryl io-
dides were identified. Such matches can serve as useful
inspirations or suggest alternative synthetic approaches.

Extended Utilities

Beyond its current applications, the Reaction Similarity
Framework Platform (RSFP) serves as a robust and ver-
satile tool for chemical knowledge retrieval and analysis.
By referencing analogous reactions, RSFP facilitates data-
driven assessments of critical parameters such as reaction
scalability, green chemistry metrics, cost-effectiveness, and
synthetic feasibility. These assessments can be used to nar-
row down massive synthetic possibilities such as those gen-
erated by retrosynthesis modeling tools [64, 65, 66, 67, 68]
before MOSAIC provides detailed experimental proce-
dures for the most promising pathways.

The scalability of the framework suggests significant poten-
tial from integration with public repositories [69, 70] and
comprehensive databases such as Reaxys and SciFinder,
which contain over 100 million document records, nearly
100 times of our current training data. This could enable
the stronger generalization and recognition of emerging
synthetic methods as domain knowledge, including spe-
cialized approaches in photochemistry and electrochem-
istry. This attribute ensures that MOSAIC remain aligned
with the rapidly evolving landscape of chemical synthe-
sis, enabling it to address increasingly complex synthetic
challenges.

Conclusion

Our development of MOSAIC embodies the principle
that methods leveraging the computational search tend
to scale effectively with increasing amount of data and
resources. By partitioning the vast chemical reaction space
into searchable Voronoi regions and assigning specialized
experts to these regions, MOSAIC can continuously ex-
pand its coverage and precision as more data becomes
available. The search mechanism through FAISS enables
efficient navigation of this chemical space, allowing the
system to quickly identify the most relevant expert models
for any given query. This architecture allows us to grow the
number of expert models as new reaction classes emerge
while maintaining an efficient search through the centroid-
based approach. Importantly, this approach avoids the
limitations of strict definitions of reaction types, instead
allowing the system to discover and utilize similarities
across transformation patterns directly from the Voronoi
cells.

Chemists have already adapted to the use of many changes
to the way literature is accessed from the physical book
to online depositories, and the advent of large language
models offers to provide the next transition. We envi-
sion MOSAIC to function as an essential navigational tool
in modern chemical synthesis. The integration of large
language models with comprehensive reaction databases
creates a powerful in silico platform that enables chemists
to systematically obtain reaction procedures and identify
viable synthetic routes with unprecedented speed and pre-
cision. What once required extensive human labor for each
reaction to determine suitable conditions can now be ac-
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complished within minutes, dramatically accelerating the
pace of discovery. While seasoned chemists may not rely
on such tools for routine transformations, these computa-
tional frameworks are becoming increasingly indispens-
able in contemporary laboratory practice, accelerating sci-
entific discoveries across organic synthesis, pharmaceutical
innovation, advanced materials science, and agrochemi-
cal research. Chemistry remains an empirical science,
where novel methodologies often emerge through meticu-
lous mechanistic investigation and serendipitous discovery.
By integrating this empirical insights with advanced model-
ing approach, we bridge the intuition of chemical synthesis
with data-driven inspirations. This approach significantly
reduces the time, resources, and environmental impact
associated with reaction development and optimization,
while simultaneously expanding the boundaries of syn-
thetic possibilities. This synergy fosters a powerful cycle
for addressing complex synthetic challenges, empowering
breakthroughs in both academic and industrial settings.

Prompt Design

We developed a structured prompt template inspired by the
Alpaca framework’s input-response format [71], specifi-
cally adapted for chemical contexts. The template logically
organizes chemical information to enable reaction predic-
tion and procedure generation. Our implementation uses
the structure described in Fig. 2a. The prompt structure
leverages the inherent auto-regressive prediction capabil-
ities of transformer-decoder architectures [72] through a
carefully arranged sequence to process chemical informa-
tion. The prediction begins with the processing of the
provided product and reactant as primary inputs. From
here, the model further generates atom mapping via re-
action SMILES strings, incorporating both reagents and
solvents. The model then derives specific reagents and
solvent SMILES from the complete reaction mapping. Be-
fore generating natural language descriptions, the model
converts all SMILES notations into standardized chemical
names or accepted abbreviations. Using this translated
chemical nomenclature, the model synthesizes detailed
reaction procedures. Finally, the classification and reaction
yields are predicted based on the aggregated information
from the previous steps. This sequential approach enables
consistent and chemically meaningful outputs while main-
taining the natural flow of information processing.

Experiment Prioritization

We define a prioritization scheme that assigns integer ranks
starting from 1, with higher values indicating lower priori-
ties for experiments. Given N experts, where each expert e
provides Me predictions (Me vary by expert), we establish
a ranking function R(e, p) where e ∈ [1, N ] represents the
expert index and p ∈ [1,Me] denotes the prediction index
for expert e. The ranking is determined by:

R(e, p) = N(p− 1) + e

This formulation ensures a systematic ordering where all
predictions at priority level p are ranked before proceeding
to level p + 1, while maintaining a consistent ordering
among experts within each priority level. When an expert
has exhausted their predictions, they no longer contribute
to subsequent priority levels.

Safety Guidelines

All chemical procedures produced by MOSAIC must only
be carried out by individuals with appropriate safety train-
ing and within properly equipped laboratory environments.
Many chemical reactions involve hazardous materials, po-
tentially dangerous conditions, or risks that may not be
fully detailed in the procedural descriptions. Safe and suc-
cessful execution requires thorough knowledge of chem-
ical reactivity and strict adherence to established safety
protocols.
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Figure 6: Referencing reactions at smaller distances (higher confidence)
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Figure 7: Referencing Reactions at larger distances (lower confidence)
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