Supporting Information

Fabrication of modularly functionalizable microcapsules using protein-based technologies

Ashley C. Schloss,^{†,∫} Wei Liu,^{‡,∫} Danielle M. Williams,^{†,∫} Gilad Kaufman,[⊥] Heidi P. Hendrickson,[‡] Benjamin Rudshteyn,[‡] Li Fu,[§] Hongfei Wang,[§] Victor S. Batista,[‡] Chinedum Osuji,[⊥] Elsa C. Y. Yan,^{*,‡,#} and Lynne Regan^{*,†,‡,#}

Departments of Molecular Biophysics and Biochemistry[†], Chemistry[‡], Chemical and Environmental Engineering[⊥], and the Integrated Graduate Program in Physical and Engineering Biology[#], Yale University, New Haven, CT 06511 Division of Physical Sciences[§], Pacific Northwest National Laboratory, Richland, WA 99352

1. Protein Sequences	S3
2. Figures	S4
3. Tables	S8

1. Protein Sequences

WT BsIA	GPLGSMAESTSTKAHTESTMRTQSTASLFATITGASKTEWSFSD			
	IELTYRPNTLLSLGVMEFTLPSGFTANTKDTLNGNALRTTQILNN			
	GKTVRVPLALDLLGAGEFKLKLNNKTLPAAGTYTFRAENKSLSI			
	GNKFYAEASIDVAKRSTPPTQ			
C-terminally	GPLGSMAESTSTKAHTESTMRTQSTASLFATITGASKTEWSFSD			
Spytagged	IELTYRPNTLLSLGVMEFTLPSGFTANTKDTLNGNALRTTQILNN			
BsIA	GKTVRVPLALDLLGAGEFKLKLNNKTLPAAGTYTFRAENKSLSI			
	GNKFYAEASIDVAKRSTPPTQGGSGGSAHIVMVDAYKPTK			
N-terminally	GPAHIVMVDAYKPTKGGSGGSMAESTSTKAHTESTMRTQSTA			
SpyTagged	SLFATITGASKTEWSFSDIELTYRPNTLLSLGVMEFTLPSGFTAN			
BsIA	TKDTLNGNALRTTQILNNGKTVRVPLALDLLGAGEFKLKLNNKT			
	LPAAGTYTFRAENKSLSIGNKFYAEASIDVAKRSTPPTQ			
GST-BsIA	MSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNK			
	KFELGLEFPNLPYYIDGDVKLTQSMAIIRYIADKHNMLGGCPKER			
	AEISMLEGAVLDIRYGVSRIAYSKDFLKVDFLSKLPEMLKMFEDR			
	LCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDAFPKLVCF			
	KKRIEAIPQIDKYLKSSKYIAWPLQGWQATFGGGDHPPK			
	SDLEVLFQGPLGSMAESTSTKAHTESTMRTQSTASLFATITGAS			
	KTEWSFSDIELTYRPNTLLSLGVMEFTLPSGFTANTKDTLNGNA			
	LRTTQILNNGKTVRVPLALDLLGAGEFKLKLNNKTLPAAGTYTFR			
	AENKSLSIGNKFYAEASIDVAKRSTPPTQ			
GST-BsIA-	MSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWR			
SpyTag	NKKFELGLEFPNLPYYIDGDVKLTQSMAIIRYIADKHNMLGGCP			
	KERAEISMLEGAVLDIRYGVSRIAYSKDFLKVDFLSKLPEMLKM			
	FEDRLCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLDAFP			
	KLVCFKKRIEAIPQIDKYLKSSKYIAWPLQGWQATFGGGDHPP			
	KSDLEVLFQGPLGSMAESISIKAHIESIMRIQSIASLFAIIIG			
	ASKTEWSFSDIELTYRPNTLLSLGVMEFTLPSGFTANTKDTLN			
	I Y I FRAENKSLSIGNKFYAEASIDVAKRSTPPTQGGSGGSAHI			
One Ontot on				
SpyCatcher-				
GFP				
	GITHGMDELYKGGSGGSAMVDTLSRLSSEOGOSGDMTIEED			
	DFYLYPGKYTECRNRSTRRYGGSTAIPYSMEQGOVTVMASN			

2. Figures

Figure S1. Root Mean Square Fluctuations for SpyTag (red) + linker (navy) residues in a) C-terminally SpyTagged BsIA, and b) N-terminally SpyTagged BsIA. The RMSFs for C-terminal SpyTag appear quite large because the RMSF was determined based on the alignment of backbone atoms of BsIA residues only. However, these fluctuations capture the flexibility of the SpyTag with respect to the BsIA when in the N- or C-terminal position. The fluctuations of the N-terminal SpyTag are much smaller than those for C-terminal SpyTag, and they are also closer to the values observed for the BsIA residues, due to the hydrophobic interactions between N-terminal SpyTag and BsIA.

Figure S2. Orientation of methyl groups in hydrophobic and hydrophilic regions of BsIA. (a) Top: Principle axis of WT BsIA oriented along the Z-axis. Bottom: Schematic illustrating the total methyl group unit vector and angle with respect to the protein principle axis (θ) of WT BsIA, which was determined by averaging the unit vector of each methyl group over each frame in the MD trajectory. (b) Top: Connolly surfaces of the hydrophilic (blue) and hydrophobic (orange) regions of BsIA. Bottom: Orientation angle (θ) for the trajectory-averaged sum of individual methyl group unit vectors. (For the hydrophilic region, θ =97°, and for the hydrophobic region, θ =28°.)

Figure S3. C-terminally SpyTagged BsIA and SpyCatcher-GFP form a covalent linkage, detected by SDS PAGE analysis. **Lanes 1-3:** The protein components SpyCatcher-GFP, GST-BsIA and GST-BsIA-SpyTag. **Lane 4:** Unreacted control obtained by incubating SpyCatcher-GFP and GST-BsIA together for one hour. The presence of two distinct bands and no new higher molecular weight band indicates that the two proteins do not react to form a covalent linkage. **Lane 5:** Reaction product obtained by incubating SpyCatcher-GFP and GST-BsIA-SpyTag together for one hour. The appearance of a new, higher molecular weight band corresponds to the formation of the covalently linked SpyCatcher-GFP + GST-BsIA-SpyTag protein complex. This conclusion is supported by the concomitant depletion of the bands corresponding to the unreacted proteins.

Figure S4. Schematic representation of ssp polarization settings for SFG experiments: the projection of the electric field of p-polarized and s-polarized light onto the laboratory coordinates.

3. Tables

Parameters	N-terminal SpyTagged BsIA	C-terminal SpyTagged BsIA	WT BsIA	Assignment
_{NR} (a. u.)	0.0000±0.0086	0.0000±0.0068	0.0000±0.0047	Non
				resonance
(cm⁻¹)	1675.0±1.45	1675.0±1.21	1675.9±0.2	β-turn
A (a. u.)	2.75±0.38	3.21±0.36	2.92±0.19	
Г (а. и.)	17.71±2.22	18.58±1.80	15.16±0.98	
(cm⁻¹)	1693.1±0.08	1692.3±0.67	1693.5±0.4	Antiparallel β-
A (a. u.)	0.23±0.15	0.28±0.14	0.29±0.08	sheet B1
Г (а. и.)	4.22±1.92	4.58±1.61	3.68±0.83	mode

Table S1a. Fitting parameters of SFG spectra of BsIA proteins at the air-waterinterface in the amide I region.

Parameters	N-terminal	C-terminal	WT BsIA	Assignment
	BsIA	BsIA		
_{NR} (a. u.)	0.0003±0.0040	0.0130±0.0058	0.0026±0.0018	Non resonance
(cm⁻¹)	2858.0±0.6	2855.9±0.7	2857.2±0.2	$CH_2 SS$
A (a. u.)	0.37±0.08	1.03±0.29	0.32±0.03	
Г (а. и.)	5.10±1.06	9.34±1.8	4.19±0.39	
(cm⁻¹)	2883.8±0.4	2874.5±0.47	2875.7±0.2	CH₃ SS
A (a. u.)	1.67±0.11	1.86±0.23	2.13±0.05	
Г (а. и.)	9.49±0.58	9.01±0.78	10.86±0.28	
(cm⁻¹)	2913.7±1.4	2917.4±0.9	2915.1±0.6	CH ₂ FR
A (a. u.)	0.54±0.17	1.27±0.17	0.82±0.09	
Г (а. и.)	10.00±2.88	11.20±1.64	11.57±1.25	
(cm⁻¹)	2946.1±0.6	2940.9±0.5	2942.7±0.3	CH₃ FR
A (a. u.)	3.79±0.20	0.88±0.14	1.78±0.09	
Г (а. и.)	16.44±0.69	6.20±0.77	11.70±0.49	
(cm⁻¹)		2970.9±1.1	2970.6±0.5	CH₃ AS
A (a. u.)		-0.69±0.19	-0.27±0.05	
Г (а. и.)		7.80±1.93	5.86±1.07]

Table S1b. Fitting parameters of BsIA SFG spectra at the air-water interface in the C-H stretch region.

System	RMSF of BsIA alpha carbons (Å)		RMSF of BsIA hydrophobic alpha carbons (Å)		RMSF of BsIA hydrophilic alpha carbons (Å)	
		Std				
	Average	dev	Average	Std dev	Average	Std dev
WT BsIA	0.56	0.26	0.69	0.31	0.53	0.24
N-Terminally						
SpyTagged						
BslA	0.62	0.40	0.92	0.60	0.56	0.31
C-Terminally						
SpyTagged						
BslA	0.60	0.35	0.79	0.54	0.56	0.27

Table S2. Average root mean square fluctuations (Å) of the BsIA alpha carbonsover the MD trajectories.