Electronic Supplementary Information for

Oxidative Functionalization of Benzylic C-H Bonds by DDQ

Victor S. Batista,* Robert H. Crabtree,* Steven J. Konezny, Oana R. Luca, Jeremy M. Praetorius

Yale Chemistry Department, 225 Prospect St., New Haven, CT, 06511 <u>*victor.batista@yale.edu; robert.crabtree@yale.edu</u>

Table of Contents

- S1: Electronic structure calculations
- S2: General Experimental Considerations
- S3: Experimental Procedures and Characterization
- S4: X-Ray Crystal Structure 1a

S1: Electronic Structure Calculations

As in previous studies,^{1,2,3} we applied density functional theory to calculate free energies and characterize the structural and spin/electronic properties of reaction intermediates. We used the BH&H hybrid density functional (50% Hartree-Fock exchange and 50% LSDA exchange) implemented in Gaussian 09⁴ because it is known to be capable of correctly reproducing π -stacking geometries and interactions.^{1,5,6} All minimum energy structures and free-energy changes were calculated at the BH&H/6-311++G(d,p) level.

Changes in the free energy in toluene $\Delta G(\text{tol})$ from reactants R to products P were found using the thermodynamic cycle:

where:

$$\Delta G(\text{tol}) = \Delta G(g) + \Delta G^{\text{P}}_{\text{solv}} - \Delta G^{\text{R}}_{\text{solv}},$$

and $\Delta G(g) = \Delta H(g) - T\Delta S(g)$ is the free energy state transition in the gas phase. The solvation free energies ΔG_{solv} used to correct the gas phase free energies were calculated using the Polarizable Continuum Model of Gaussian 09 (dielectric constant of $\varepsilon = 2.37$ for toluene).⁴

1:1	Complex		
С	0.298801	-1.095765	-1.091020
С	-0.722775	-0.039392	-1.250624
С	-0.469794	1.228635	-0.921922
С	0.853312	1.637258	-0.404368
С	1.862113	0.575456	-0.222487
C	1 604480	-0 690491	-0 537780
0	0 068540	-2 217092	-1 412783
0	1 088312	2 776690	-0 163823
CI	3 326672	1 080332	0 439837
C1	2 710284	-1 941302	-0 309631
C	-1 683477	-1 379143	1 320622
C	-2 662898	-0 398853	1 204376
C	-2 413355	0.896299	1 580750
C	-1 170901	1 246222	2 082221
C	-0 201810	0 278898	2.0022221
C	-0 458185	-1 022092	1 855082
с ц	-3 625693	-0 664928	0 786149
и П	-3 178/32	1 651212	1 461244
и П	0 067045	2,001010	1.401244
и П	0.765018	0 540438	2.501547
п тт	0.705010	1 700520	2.040754
п	0.307605	-1.700559	1.971010
	-2.190095	3.U01352 2.257466	-1.224110
N	-1.425915	2.25/400	-1.004956
	-2.950277	-0.808538	-2.232310
C	-1.960869	-0.457142	-1./91184
	-1.955597	-2.768025	0.876719
H TT	-2.252028	-2.789341	-0.1/4251
H	-1.0//381	-3.401175	0.986/41
н	-2.//1100	-3.206967	1.453110
TS -	– Hydride Mech	anism Transit	ion State
С	0.097714	-0.887367	-0.992469
С	-0.763601	0.224574	-1.116953
С	-0.395447	1.452518	-0.659774
С	0.963498	1.715014	-0.188291
С	1.870557	0.567093	-0.210238
С	1.448517	-0.658398	-0.557234
0	-0.276545	-2.044574	-1.376668
0	1.307960	2.799831	0.187661
Cl	3.446720	0.870210	0.317109
Cl	2.455599	-2.019872	-0.476848
С	-1.607026	-1.663278	1.140347
С	-2.656388	-0.708440	1.097214
С	-2.457735	0.560261	1.526855
С	-1.194511	0.956390	1.982956
С	-0.175049	0.034988	2.104177

Table S1. Atomic coordinates of the calculated minimum energy reaction intermediate structures referred to in Figure 3 of the main text.

С	-0.360764	-1.245580	1.655475
Η	-3.612528	-1.008627	0.689353
Н	-3.253609	1.289242	1.463986
Н	-1.031820	1.983331	2.283797
Н	0.785262	0.341179	2.496958
Н	0.439744	-1.972341	1.724084
Ν	-2.015876	3.420746	-0.743260
С	-1.278600	2.552193	-0.719284
Ν	-3.054281	-0.218427	-2.160965
С	-2.038594	-0.008921	-1.690546
С	-1.737261	-2.913995	0.563707
Н	-1.002181	-2.488635	-0.699997
Н	-1.016244	-3.687538	0.798852
Η	-2.700120	-3.232969	0.184501
TS -	- Radical Mech	anism Transit	ion State
С	-0.558430	1.346837	-0.798783
С	0.520770	0.580263	-1.282713
С	0.493772	-0.800520	-1.245457
С	-0.633278	-1.507773	-0.721461
С	-1.785034	-0.703831	-0.365011
С	-1.748709	0.645439	-0.412169
0	-0.441029	2.578511	-0.600322
0	-0.607059	-2.716804	-0.547659
Cl	-3.132524	-1.546265	0.209739
Cl	-3.051089	1.599959	0.102918
С	1.530565	1.046406	1.498164
С	2.695302	0.366994	1.078993
С	2.805542	-0.980795	1.238525
С	1.752075	-1.703917	1.791823
С	0.586511	-1.059931	2.198604
С	0.472711	0.289214	2.054714
Η	3.487883	0.938092	0.614097
Η	3.692681	-1.498098	0.902608
Η	1.828351	-2.778655	1.881595
Η	-0.230420	-1.637173	2.608856
Η	-0.429764	0.805286	2.358739
Ν	2.563023	-2.167607	-1.824610
С	1.624052	-1.563105	-1.589583
Ν	2.632344	1.837529	-1.969918
С	1.680285	1.276732	-1.689337
С	1.398624	2.455032	1.329980
Η	0.683987	2.618766	0.373210
Η	0.780942	2.948227	2.080059
Η	2.316357	2.985377	1.093481
Ion	Pair		
C	0.198908	0.769222	-1.119828
С	1.506595	0.446401	-0.750260
С	1.847507	-0.803434	-0.291936
С	0.858013	-1.833963	-0.108304
С	-0.480843	-1.450445	-0.534983

С	-0.774664	-0.225804	-1.057919
0	-0.145182	1.971561	-1.556275
0	1.104357	-2.920991	0.362197
Cl	-1.664423	-2.655118	-0.410278
Cl	-2.334543	0.157066	-1.630573
С	-1.018922	2.038876	1.247195
С	0.264912	1.567572	1.625817
С	0.425358	0.305795	2.120105
С	-0.663789	-0.543781	2.168242
С	-1.958087	-0.082520	1.887603
С	-2.135361	1.175492	1.429338
Н	1.111542	2.236835	1.530764
Н	1.404844	-0.060956	2.393309
Н	-0.517670	-1.576234	2.462097
Н	-2.794774	-0.759893	1.978800
Н	-3.118171	1.534528	1.154981
Ν	4.235118	-1.252000	0.475390
С	3.165686	-1.072219	0.120657
Ν	3.038184	2.474687	-0.940615
С	2.427942	1.515411	-0.841205
С	-1.149115	3.223731	0.606000
Н	-2.109145	3.557869	0.236794
Н	-0.298640	3.876912	0.465866
Н	0.633077	2.512459	-1.722077
Radi	.cal Pair		
С	-0.421887	-0.600179	-1.360708
С	-1.521493	0.135103	-0.914663
С	-1.350786	1.350893	-0.300699
С	-0.036332	1.906933	-0.110607
С	1.071605	1.117548	-0.615107
С	0.878650	-0.083229	-1.217837
0	-0.550127	-1.772465	-1.916517
0	0.130433	2.973298	0.443882
CL	2.608861	1.765722	-0.404619
CL	2.166015	-1.015695	-1.804491
C	-0.484374	-1.868732	1.525717
C	-0.695033	-0.648018	2.195024
C	0.359554	0.134305	2.580615
C	1.661940	-0.269361	2.325793
C	1.894137	-1.469656	1.6/6985
C	0.845670	-2.255598	1.278259
H	-1.711319	-0.332995	2.399457
Н	0.176704	1.075176	3.082581
H	2.490736	0.355021	2.628552
H	2.908557	-1./836/3	1.471956
H	1.028515	-3.18/466	0./58417
N	-3.353949	2.630825	U.613U87
C NT	-2.449230	2.0/228/	0.201545
N	-3./53131		-1.28051/
C	-2./88225	-0.4646/5	-1.091285
C	-1.553941	-2.652569	1.103062

Η	-1.381669	-3.599163	0.609411
Η	-2.575252	-2.356170	1.298005
Н	-1.463588	-2.078452	-1.897000

References for Section S1

- (1) Luca, O. R.; Wang, T.; Konezny, S. J.; Batista, V. S.; Crabtree, R. H. New J. Chem. 2011, 35, 998-999.
- (2) Wang, T.; Brudvig, G.; Batista, V. S. J. Chem. Theory Comput. 2010, 6, 755-760.
- (3) Wang, T.; Brudvig, G. W.; Batista, V. S. J. Chem. Theory Comput. 2010, 6, 2395-2401.

(4) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, *Gaussian 09, Revision A.1*, Gaussian, Inc., Wallingford CT, **2009**.

(5) M. P. Waller, A. Robertazzi, J. A. Platts, D. E. Hibbs, P. A. Williams, J. Comput. Chem. 2006, 27, 267.

(6) A.Dkhissi, J. M. Ducéré, R. Blossey, C. Pouchan, J. Comput. Chem. 2009, 30, 1179.

S2: General Experimental Considerations

DDQ, triphenylphosphine and triethylphosphite were obtained from commercial sources and used as received. Liquid arylmethanes were stored over 4 Å molecular sieves prior to use. Toluene, diethyl ether and pentane were dried with a solvent purification system using a 1 m column containing activated alumina. Deuterated tetrachloroethane was distilled from CaH₂ and stored over 4 Å molecular sieves prior to use. All other deuterated solvents were used as received. ¹H and ¹³C NMR spectra were taken on 400 and 500 MHz Bruker and 500 MHz Varian spectrometers.

S3: Experimental Procedures and Characterization

(1a): To a flame dried 100 mL Schlenk flask with a magnetic stirrer under argon was added DDQ (2.27 mg, 10.0 mmol) and toluene (20 mL). The reaction mixture was heated to 110 °C with stirring. After 16 h of heating at 110 °C, the reaction mixture was allowed to cool. The reaction mixture was filtered and the obtained solid washed with cold diethyl ether to give a beige solid 2.49 g, 78 % yield). ¹³C NMR (d₆-DMSO, 125 MHz): δ 154.8, 150.1, 135.1, 134.2, 129.0, 128.9, 128.6, 113.7, 113.1, 109.0, 101.9, 101.7, 77.0 ppm. ¹H NMR (CD₂Cl₂, 400 MHz): δ 7.52 (m, 2H, Ar-CH); 7.43 (m, 3H, Ar-CH); 5.19 (s, 2H, Ar-CH₂-O) ppm. HRMS: 319.00 [M+H].

Method A: To a flame-dried 20 mL Schlenk flask under an atmosphere of argon is added an arylmethane (2 mL), then DDQ was added (0.1 equivalent *versus* the arylmethane) and the reaction was heated to 110 °C. After completion the reaction it was cooled to room temperature and the solid collected by filtration. The solids were washed with petroleum ether to give pure product as demonstrated by ¹H and ¹³C NMR.

Method B: To a flame-dried pressure tube under an argon atmosphere, the arylmethane (2 mmol) was dissolved in chlorobenzene. DDQ was then added (681 mg, 3 mmol), the reaction vessel sealed with a PTFE lined screw cap, and the mixture heated to 140 °C. After completion the reaction was cooled to room temperature, and the solid collected by filtration. The solid was washed with petroleum ether to give pure product as demonstrated by ¹H and ¹³C NMR.

(1b). Method B: 397.2 mg, 67 % yield. ¹³C NMR (d₆-DMSO, 125 MHz): δ 151.3, 150.3, 141.1, 140.0, 134.7, 130.0, 129.7, 129.4, 128.1, 127.3, 127.2, 114.2, 113.7, 109.3, 101.7, 76.7 ppm. ¹H NMR (d₆-DMSO, 500 MHz): δ 7.75 (m, 2H, Ar-C*H*); 7.70 (m, 2H, Ar-C*H*); 7.61 (m, 2H, Ar-C*H*); 7.48 (m, 2H, Ar-C*H*); 7.39 (m, 1H, Ar-C*H*); 5.16 (s, 2H, Ar-C*H*₂-O) ppm. HRMS unable to observe m/z due to hydrolysis.

(1c). Method A: 388.4 mg, 65 % yield. Method B: 432.5 mg, 60% yield. ¹³C NMR (d₆-DMSO, 126 MHz): δ 150.8, 150.0, 134.1, 133.6, 129.1, 128.6, 113.5, 113.1, 109.0, 101.9, 76.1 ppm. ¹H NMR (d₆-DMSO, 400 MHz): δ 7.51 (m, 4H, Ar-CH); 5.13 (s, 2H, Ar-CH₂-O) ppm. HRMS 352.96 [M+H]⁺.

(1d). Method A: a beige solid, 614.1 mg, 81% yield. ¹³C NMR (d₆-DMSO, 126 MHz): δ 154.8, 151.4, 150.8, 150.2, 134.1, 132.1, 129.1, 128.7, 125.3, 113.7, 108.9, 101.7, 76.9, 34.4, 31.1 ppm. ¹H NMR (d₆-DMSO, 400 MHz): δ 7.44 (m, 4H, Ar-C*H*); 5.08 (s, 2H, Ar-C*H*₂-O), 1.29 (s, 9H, -C(C*H*₃)₃) ppm. HRMS 375.06 [M+H]⁺.

(1e). Method B: 266.1 mg, 40% yield. ¹³C NMR (d₆-DMSO, 126 MHz): δ 171.9, 154.5, 150.2, 136.7, 133.5, 131.4 (d, J_{CF} = 8.7 Hz, C(3)), 117.8, 117.2, 115.4 (d, J_{CF} = 21.5 Hz, C(2)), 109.1, 102.0, 76.2, 70.7. ¹H NMR (d₆-DMSO, 400 MHz): δ 7.55 (m, 2H, Ar-C*H*); 7.26 (m, 2H, Ar-C*H*); 5.14 (s, 2H, Ar-C*H*₂-O) ppm. HRMS 336.99 [M+H]⁺.

(1f). Method A: 412.6 mg, 68 % yield. ¹³C NMR (d₆-DMSO, 125 MHz): δ 162.1 (d, J_{CF} = 244 Hz, C(3)-F), 154.9, 149.9, 137.8 (d, J_{CF} = 7.6 Hz, C(1)_{ipso}), 134.1, 130.6 (d, J_{CF} = 8.2 Hz, C(5)), 129.2, 124.7 (d, J_{CF} = 2.8 Hz, C(6)), 115.6 (d, J_{CF} = 20.9 Hz), 115.3 (d, J_{CF} = 21.7 Hz), 113.5, 113.0, 108.9, 101.8, 76.0 ppm. ¹H NMR (CD₂Cl₂, 400 MHz): δ 7.42 (m, 1H, Ar-CH); 7.28 (m, 2H, Ar-CH); 7.12 (m, 1H, Ar-CH); 5.18 (s, 2H, Ar-CH₂-O) ppm. HRMS 336.99 [M+H]⁺.

Benzyl(triphenyl)phosphonium 2,3-dichloro-5,6-dicyanohydroquinolate (2). To a flame-dried 25 mL round-bottomed Schlenk flask under an atmosphere of argon was added 1 (319 mg, 1 mmol) and triphenylphoshine (262 mg, 1.41 mmol). The solids were dissolved in mesitylene (5

mL), a reflux condenser was attached to the flask and the mixture was heated to reflux for 3 hours. After cooling to room temperature, the reaction was filtered washing with pentane. The solid was dissolved in acetone and the pure product precipated with diethyl ether, and filtered to give **2** as a brown solid (540 mg, 93% yield). ¹³C NMR (d₆-DMSO, 125 MHz): δ 135.1 (d, $J_{CP} = 3.1$ Hz), 134.0 (d, $J_{CP} = 9.8$ Hz), 130.8 (d, $J_{CP} = 5.6$ Hz), 130.1 (d, $J_{CP} = 12.3$ Hz), 129.5, 128.8 (d, $J_{CP} = 3.3$ Hz) 128.3 (d, $J_{CP} = 3.9$ Hz), 127.9 (d, $J_{CP} = 8.6$ Hz), 123.1, 117.8 (d, $J_{CP} = 86$ Hz), 114.1, 101.23, 28.1 (d, $J_{CP} = 47$ Hz) ppm. ¹H NMR (CD₂Cl₂, 400 MHz): δ 7.90 (m, 3H, Ar-CH); 7.75-7.65 (m, 12H, Ar-CH); 7.29 (m, 1H, Ar-CH); 7.22 (m, 2H, Ar-CH); 6.98 (m, 2H, Ar-CH), 5.20 (d, 2H, $J_{PH} = 15.7$ Hz, Ar-CH₂-P) ppm.

Synthesis of diethyl benzylphosphonic ester from **1a**. To a flame-dried 25 mL round-bottomed flask was added **1a** (323.1 mg, 1.01 mmol) and 2 mL of triethyl phosphite. A reflux condenser was attached to the flask and the mixture heated to reflux for 18 h. After cooling the reaction to room temperature, the excess triethyl phosphite was removed *via* vacuum distillation to give a brown oil. The crude material was then purified by column chromatography, eluting with 1:1 hexanes/ethyl acetate, to give a colourless oil (215 mg, 93% yield).

Representative example of a competition experiment used to determine the linear free energy relationship (see Figure 2). DDQ (4.7 mg, 0.021 mmol) was added to an oven-dried NMR tube and then purged with argon gas for 10 minutes. Toluene (22.0 μ L, 0.21 mmol) and *p*-chlorotoluene (24.5 μ L, 0.21 mmol) were then added *via* microsyringe, and all of the reagents dissolved in 0.7 mL of C₂D₂Cl₄. The reaction mixture was heated to 105 °C under an atmosphere of argon for 18 h, and then analyzed by 1H NMR. The ratio of products was 1:1.47 for *p*-H *versus p*-Cl.

Determination of the deuterium kinetic isotope effect. DDQ (54.3 mg, 0.239 mmol) was added to an oven dried 4-dram vial with a magnetic stirrer. The reaction vessel was purged with argon for 10 minutes. Toluene (0.25 mL, 2.35 mmol) and d₈-toluene (4.75 mL, 44.7 mmol) were then added and the reaction mixture heated to 110 °C for 4 days. The resulting mixture was transferred to a round-bottomed flask and concentrated. The resulting crude material was dissolved in a 1:1 mixture of DMSO and d₆-DMSO, and nitromethane and d₃-nitromethane added as internal standards. The amount of protiated and deuterated products was then determined and used to determine a DKIE of 5.2 ± 0.1 (average of two runs).

S4. X-ray Structure 1a

Data Collection

A colorless prism crystal of $O_2C_{15}H_8N_2Cl_2$ having approximate dimensions of 0.30 x 0.10 x 0.10 mm was mounted on a glass fiber. All measurements were made on a Rigaku Mercury275R CCD (SCX mini) diffractometer using filtered Mo-K α radiation. The crystal-to-detector distance was 49.90 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

For Z = 8 and F.W. = 319.15, the calculated density is 1.487 g/cm³. The reflection conditions of: h0l: l = 2n 0k0: k = 2nuniquely determine the space group to be: P2₁/c (#14).

The data were collected at a temperature of -50 °C to a maximum 20 value of 50.1°. A total of 360 oscillation images were collected. A sweep of data was done using ω scans from - 120.0 to 60.0° in 1.0° step, at $\chi = 54.0°$ and $\varphi = 0.0°$. The exposure rate was 60.0 [sec./°]. The detector swing angle was -28.40°. A second sweep was performed using ω scans from -120.0 to 60.0° in 1.0° step, at $\chi = 54.0°$ and $\varphi = 120.0°$. The exposure rate was 60.0 [sec./°]. The detector swing angle was -28.40°. The crystal-to-detector distance was 49.90 mm. Readout was performed in the 0.146 mm pixel mode.

Data Reduction

Of the 15658 reflections that were collected, 5016 were unique ($R_{int} = 0.0419$). Data were collected and processed using CrystalClear (Rigaku).

The linear absorption coefficient, μ , for Mo-K α radiation is 4.590 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.651 to 0.955. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods² and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The positions of phenolic H atoms H1 and H3 were determined using a rotating group refinement. The final cycle of full-matrix least-squares refinement³ on F² was based on 5007 of the 5016 observed reflections and 381 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

R1 =
$$\Sigma$$
 ||Fo| - |Fc|| / Σ |Fo| = 0.0568
wR2 = [Σ (w (Fo² - Fc²)²)/ Σ w(Fo²)²]^{1/2} = 0.1481

The standard deviation of an observation of unit weight⁴ was 1.04. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.26 and -0.40 e⁻/Å³, respectively. Neutral atom scattering factors were taken from Cromer and Waber⁵. Anomalous dispersion effects were included in Fcalc⁶; the values for Δf and $\Delta f''$ were those of Creagh and McAuley⁷. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁸. All calculations were performed using the CrystalStructure⁹ crystallographic software package except for refinement, which was performed using SHELXL-9710.

References

(1) <u>CrystalClear</u>: Rigaku Corporation, 1999. CrystalClear Software User's Guide, Molecular Structure Corporation, (c) 2000.J.W.Pflugrath (1999) Acta Cryst. D55, 1718-1725.

(2) <u>SIR92</u>: Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M., Polidori, G., and Camalli, M. (1994) J. Appl. Cryst., 27, 435.

(3) Least Squares function minimized: (SHELXL97)

 $\Sigma w(F_0^2 - F_c^2)^2$ where w = Least Squares weights.

(4) Standard deviation of an observation of unit weight:

 $[\Sigma w(F_0^2 - F_c^2)^2 / (N_0 - N_V)]^{1/2}$

where N_0 = number of observations N_V = number of variables

(5) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(9) <u>CrystalStructure 4.0</u>: Crystal Structure Analysis Package, Rigaku and Rigaku Americas (2000-2010). 9009 New Trails Dr. The Woodlands TX 77381 USA.

(10) <u>SHELX97</u>: Sheldrick, G.M. (1997).

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	$O_2C_{15}H_8N_2Cl_2$
Formula Weight	319.15
Crystal Color, Habit	colorless, prism
Crystal Dimensions	0.30 X 0.10 X 0.10 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	a = 12.036(5) Å
	b = 23.769(9) Å
	c = 10.114(4) Å
	$\beta = 99.954(6)^{\circ}$
	$V = 2850.1(18) Å^3$
Space Group	P2 ₁ /c (#14)
Z value	8
D _{calc}	1.487 g/cm ³
F000	1296.00
μ(ΜοΚα)	4.590 cm ⁻¹

B. Intensity Measurements

Diffractometer	Rigaku Mercury275R CCD (SCX mini)
Radiation	MoKα ($\lambda = 0.71075$ Å)
Voltage, Current	50kV, 40mA
Temperature	-50.0°C
Detector Aperture	75 mm (diameter)
Data Images	360 exposures
$ω$ oscillation Range (χ =54.0, $φ$ =0.0)	-120.0 - 60.0 ^o
Exposure Rate	60.0 sec./ ^o
Detector Swing Angle	-28.40 ^o
$ω$ oscillation Range (χ =54.0, $φ$ =120.0)	-120.0 - 60.0 ^o
Exposure Rate	60.0 sec./ ^o
Detector Swing Angle	-28.40 ⁰
Detector Position	49.90 mm
Pixel Size	0.146 mm
20 _{max}	50.10
No. of Reflections Measured	Total: 15658
	Unique: 5016 (R _{int} = 0.0419)
Corrections	Lorentz-polarization
	Absorption
	(trans. factors: 0.651 - 0.955)

C. Structure Solution and Refinement

Structure Solution

Direct Methods

Refinement Function Minimized Least Squares Weights

 $2\theta_{max}$ cutoff Anomalous Dispersion No. Observations (All reflections) No. Variables Reflection/Parameter Ratio Residuals: R1 (I>2.00 σ (I)) Residuals: R (All reflections) Residuals: wR2 (All reflections) Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map Full-matrix least-squares on F² $\Sigma \mathrm{w} (\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$ $w = 1/[\sigma^2(Fo^2) + (0.0712 \cdot P)^2$ + 0.8456 · P] where $P = (Max(Fo^2, 0) + 2Fc^2)/3$ 50.10 All non-hydrogen atoms 5007 381 13.14 0.0568 0.0906 0.1481 1.045 0.001 $0.26 \text{ e}^{-}/\text{Å}^{3}$ -0.40 e⁻/Å³

Table 1. Atomic coordinates and $B_{iSO}\!/B_{eq}$

atom	х	у	Z	B _{eq}
Cl(1)	0.60146(9)	-0.02921(4)	0.66364(12)	6.56(3)
Cl(2)	0.72036(10)	0.05807(4)	0.50650(12)	6.48(3)
Cl(3)	0.87585(8)	0.22498(4)	-0.19684(9)	5.04(2)
Cl(4)	0.75687(9)	0.31275(3)	-0.04265(10)	5.51(2)
O(1)	0.68703(19)	-0.14570(8)	0.6474(2)	4.19(5)
O(2)	0.90921(18)	0.01071(9)	0.3903(2)	3.93(4)
O(3)	0.8020(2)	0.10694(9)	-0.1616(2)	4.76(5)
O(4)	0.60379(18)	0.26255(9)	0.1256(2)	4.04(4)
N(1)	0.8717(3)	-0.22799(13)	0.5159(4)	6.44(8)
N(2)	1.0313(3)	-0.11203(14)	0.3183(4)	6.35(8)
N(3)	0.6422(3)	0.02378(12)	0.0055(3)	5.24(7)
N(4)	0.4856(3)	0.14063(13)	0.2036(3)	5.94(8)
C(1)	0.7367(3)	-0.10655(12)	0.5848(3)	3.34(6)
C(2)	0.7070(3)	-0.04962(13)	0.5815(3)	3.73(6)
C(3)	0.7605(3)	-0.01125(12)	0.5126(3)	3.71(6)
C(4)	0.8485(3)	-0.02722(12)	0.4479(3)	3.35(6)
C(5)	0.8768(3)	-0.08352(13)	0.4494(3)	3.42(6)
C(6)	0.8220(3)	-0.12323(12)	0.5175(3)	3.29(6)
C(7)	0.8506(3)	-0.18189(15)	0.5177(3)	4.20(7)
C(8)	0.9640(3)	-0.10024(14)	0.3782(3)	4.28(7)
C(9)	0.8651(4)	0.02351(19)	0.2524(4)	6.32(10)
C(10)	0.9491(3)	0.05998(15)	0.1993(3)	4.45(7)
C(11)	1.0387(4)	0.03597(16)	0.1522(4)	5.37(8)
C(12)	1.1147(4)	0.06911(18)	0.1003(4)	5.98(9)
C(13)	1.1003(4)	0.12686(17)	0.0954(4)	5.55(9)
C(14)	1.0139(4)	0.15035(16)	0.1439(4)	5.40(8)
C(15)	0.9390(3)	0.11749(16)	0.1966(4)	5.19(8)
C(16)	0.7546(3)	0.14655(13)	-0.0972(3)	3.39(6)
C(17)	0.7780(3)	0.20399(13)	-0.1038(3)	3.46(6)
C(18)	0.7259(3)	0.24262(12)	-0.0337(3)	3.55(6)
C(19)	0.6496(3)	0.22569(12)	0.0473(3)	3.46(6)
C(20)	0.6262(3)	0.16892(13)	0.0541(3)	3.39(6)
C(21)	0.6785(3)	0.12945(12)	-0.0173(3)	3.24(6)
C(22)	0.6578(3)	0.06981(15)	-0.0063(3)	3.94(6)
C(23)	0.5481(3)	0.15163(14)	0.1382(3)	4.14(6)
C(24)	0.5013(3)	0.28957(17)	0.0581(3)	5.65(9)
C(25)	0.4501(3)	0.32101(14)	0.1601(3)	3.98(6)
C(26)	0.3765(3)	0.29492(15)	0.2296(4)	4.94(8)
C(27)	0.3255(3)	0.32407(18)	0.3202(4)	5.80(9)
C(28)	0.3487(4)	0.38044(18)	0.3411(4)	5.57(9)
C(29)	0.4212(3)	0.40657(15)	0.2735(4)	5.23(8)
C(30)	0.4717(3)	0.37766(15)	0.1832(4)	4.72(7)

 $\mathsf{B}_{eq} = 8/3 \ \pi^2 (\mathsf{U}_{11}(\mathsf{aa^*})^2 + \mathsf{U}_{22}(\mathsf{bb^*})^2 + \mathsf{U}_{33}(\mathsf{cc^*})^2 + 2\mathsf{U}_{12}(\mathsf{aa^*bb^*})\mathsf{cos}\ \gamma + 2\mathsf{U}_{13}(\mathsf{aa^*cc^*})\mathsf{cos}\ \beta + 2\mathsf{U}_{23}(\mathsf{bb^*cc^*})\mathsf{cos}\ \alpha)$

Table 2. Atomic coordinates and $\mathrm{B}_{\mathrm{iSO}}$ involving hydrogen atoms

atom	х	у	Z	B _{iso}
H(1)	0.6415	-0.1306	0.6894	5.03
H(3)	0.8555	0.1207	-0.1926	5.72
H(9A)	0.7929	0.0432	0.2456	7.59
H(9B)	0.8527	-0.0113	0.1999	7.59
H(11)	1.0481	-0.0033	0.1555	6.44
H(12)	1.1759	0.0526	0.0683	7.18
H(13)	1.1509	0.1497	0.0584	6.66
H(14)	1.0050	0.1896	0.1415	6.48
H(15)	0.8797	0.1346	0.2314	6.22
H(24A)	0.4483	0.2612	0.0144	6.78
H(24B)	0.5189	0.3155	-0.0107	6.78
H(26)	0.3605	0.2565	0.2151	5.93
H(27)	0.2753	0.3057	0.3674	6.96
H(28)	0.3141	0.4007	0.4026	6.68
H(29)	0.4370	0.4450	0.2886	6.28
H(30)	0.5215	0.3965	0.1363	5.67

Table 3. Anisotropic displacement parameters

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.0046(5) 0.0034(5) 0.0018(4) 0.0005(4) 0.00100(10) 0.0103(10) 0.0108(11) 0.0055(10) 0.0013(18) 0.0055(15) 0.0059(17)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.0048(5) 0.0034(5) 0.0018(4) 0.0005(4) 0.0030(10) 0.0103(10) 0.0108(11) 0.0055(10) 0.0055(10) 0.0055(15) 0.0059(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0034(5) 0.0018(4) 0.0005(4) 0.0030(10) 0.0103(10) 0.0108(11) 0.0055(10) 0.0013(18) 0.0055(19) 0.0065(15) 0.0059(17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0018(4) 0.0005(4) 0.0030(10) 0.0103(10) 0.0108(11) 0.0055(10) 0.0013(18) 0.0055(19) 0.0055(15) 0.0059(17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} 0.0003(4) \\ 0.0030(10) \\ 0.0103(10) \\ 0.0108(11) \\ 0.0055(10) \\ 0.0013(18) \\ 0.0055(19) \\ 0.0055(15) \\ 0.0059(17) \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.0030(10) \\ 0.0103(10) \\ 0.0108(11) \\ 0.0055(10) \\ 0.0013(18) \\ 0.0055(19) \\ 0.0055(15) \\ 0.0059(17) \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.0103(10) \\ 0.0108(11) \\ 0.0055(10) \\ 0.0013(18) \\ 0.0055(19) \\ 0.0065(15) \\ 0.0059(17) \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00108(11) 0.0055(10) 0.0013(18) 0.0055(19) 0.0065(15) 0.0059(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0055(10) 0.0013(18) 0.0055(19) 0.0065(15) 0.0059(17)
N(1) 0.088(3) 0.0510(20) 0.107(3) 0.0154(19) 0.020(2) -	0.0013(18) 0.0055(19) 0.0065(15) 0.0059(17)
3.7(A) 0.004(A) 0.004(A) 0.004(A)	0.0055(19)).0065(15)).0059(17)
N(2) = 0.075(2) = 0.082(2) = 0.100(3) = 0.0046(19) = 0.088(2) = -0.0000(3) = 0.000(3) = 0.000(3) =	0.0065(15)).0059(17)
N(3) 0.074(2) 0.0458(18) 0.080(2) -0.0073(17) 0.0160(17) 0.0160(17)).0059(17)
N(4) = 0.088(2) = 0.077(2) = 0.076(2) = -0.0083(19) = 0.0529(19) = 0	0.000000
C(1) 0.047/(17) 0.0438(18) 0.0446(17) -0.0059(15) 0.0169(14) -	0.0008(13)
C(2) 0.0482(18) 0.0458(18) 0.0534(18) -0.0005(16) 0.0244(15) 0.0005(16) 0	0.0061(14)
C(3) 0.0507(19) 0.0357(17) 0.0571(19) -0.0041(16) 0.0163(16) -	0.0011(14)
C(4) 0.0426(17) 0.0418(18) 0.0442(17) -0.0070(15) 0.0109(14) 0.0109(14)).0002(13)
C(5) 0.0398(17) 0.0516(19) 0.0413(16) -0.0030(16) 0.0148(13) -0.0030(16) 0.0030(16) 0.0030(16) 0.0030(16) 0.0030(16) 0.0030(16) 0.0030(16) 0.0030(16) 0.0030(16) 0.0030(16) 0.0030(16) 0.0030(16) 0.0030(16) 0.0030(16) 0.0030(16) 0.0030(16) 0.0030(16) 0.0030(16) 0.003(16	0.0027(14)
C(6) 0.0419(17) 0.0396(17) 0.0448(17) -0.0011(15) 0.0112(14) -0.0112	0.0024(13)
C(7) 0.050(2) 0.048(2) 0.065(2) 0.0023(18) 0.0192(16) -0	0.0024(16)
C(8) 0.0514(20) 0.052(2) 0.064(2) 0.0002(17) 0.0251(18) 0).0010(16)
C(9) 0.076(3) 0.103(3) 0.055(2) -0.031(2) -0.0028(19) 0).024(2)
C(10) 0.065(2) 0.066(2) 0.0378(17) -0.016(2) 0.0080(16) (0.000)).0113(15)
C(11) 0.097(3) 0.052(2) 0.057(2) -0.010(2) 0.019(2) (0).0023(17)
C(12) 0.088(3) 0.083(3) 0.064(2) 0.000(3) 0.033(2) -(0.005(2)
C(13) 0.081(3) 0.075(3) 0.058(2) -0.024(2) 0.022(2) 0).0107(19)
C(14) 0.088(3) 0.052(2) 0.065(2) -0.005(2) 0.015(2) (0.0000)).0098(18)
C(15) 0.070(2) 0.073(3) 0.056(2) -0.000(2) 0.0151(19) (0).0092(18)
C(16) 0.0421(17) 0.0477(18) 0.0425(16) 0.0018(16) 0.0175(14) -(0.0047(13)
C(17) 0.0441(17) 0.0461(18) 0.0447(17) -0.0071(15) 0.0166(14) (0).0031(14)
C(18) 0.0543(19) 0.0409(17) 0.0418(17) 0.0014(16) 0.0143(15) (0).0015(13)
C(19) 0.0472(18) 0.0436(18) 0.0431(17) 0.0062(16) 0.0149(14)	0.0016(13)
C(20) 0.0422(17) 0.0494(19) 0.0406(16) 0.0006(15) 0.0166(13) (0).0010(13)
C(21) 0.0457(17) 0.0360(16) 0.0444(17) 0.0005(15) 0.0159(14) (0.0159(14))).0023(13)
C(22) 0.0497(20) 0.055(2) 0.0481(18) -0.0010(18) 0.0168(15) (0).0007(15)
C(23) 0.059(2) 0.0533(20) 0.0512(19) 0.0008(18) 0.0260(17)(0.0029(15)
C(24) 0.076(3) 0.086(3) 0.052(2) 0.035(2) 0.0099(19) -(0.0054(19)
C(25) 0.0525(20) 0.057(2) 0.0426(17) 0.0142(18) 0.0110(15) (0.0110(15))	0.0007(15)
C(26) 0.070(2) 0.047(2) 0.072(2) 0.079(19) 0.014(2) (0.014(2))	0.0048(17)
C(27) 0.069(3) 0.089(3) 0.072(3) 0.013(2) 0.038(2) (0.038(2))	0.020(2)
C(28) 0.073(3) 0.080(3) 0.061(2) 0.030(2) 0.019(2) -(0.009(2)
C(29) 0.071(2) 0.050(2) 0.074(3) 0.010(2) 0.004(2)	0.0134(18)
C(30) 0.055(2) 0.062(2) 0.064(2) 0.0008(19) 0.0134(17) (0	

 $\text{The general temperature factor expression: } \exp(-2\pi^2(a^{*2} U_{11}h^2 + b^{*2} U_{22}k^2 + c^{*2} U_{33}l^2 + 2a^{*}b^{*} U_{12}hk + 2a^{*}c^{*} U_{13}hl + 2b^{*}c^{*} U_{23}kl)) \\ \text{The general temperature factor expression: } \exp(-2\pi^2(a^{*2} U_{11}h^2 + b^{*2} U_{22}k^2 + c^{*2} U_{33}l^2 + 2a^{*}b^{*} U_{12}hk + 2a^{*}c^{*} U_{13}hl + 2b^{*}c^{*} U_{23}kl)) \\ \text{The general temperature factor expression: } \exp(-2\pi^2(a^{*2} U_{11}h^2 + b^{*2} U_{22}k^2 + c^{*2} U_{33}l^2 + 2a^{*}b^{*} U_{12}hk + 2a^{*}c^{*} U_{13}hl + 2b^{*}c^{*} U_{23}kl)) \\ \text{The general temperature factor expression: } \exp(-2\pi^2(a^{*2} U_{11}h^2 + b^{*2} U_{22}k^2 + c^{*2} U_{33}l^2 + 2a^{*}b^{*} U_{12}hk + 2a^{*}c^{*} U_{13}hl + 2b^{*}c^{*} U_{23}kl)) \\ \text{The general temperature factor expression: } \exp(-2\pi^2(a^{*} U_{11}h^2 + b^{*} U_{22}k^2 + c^{*} U_{33}h^2 + 2a^{*}b^{*} U_{12}hk + 2a^{*}c^{*} U_{13}hl + 2b^{*}c^{*} U_{23}kl)) \\ \text{The general temperature factor expression: } \exp(-2\pi^2(a^{*} U_{11}h^2 + b^{*} U_{23}h^2 + 2a^{*}b^{*} U_{12}hk + 2a^{*}c^{*} U_{13}hl + 2b^{*}c^{*} U_{23}kl)) \\ \text{The general temperature factor expression: } \exp(-2\pi^2(a^{*} U_{13}h^2 + b^{*} U_{23}h^2 + 2a^{*}b^{*} U_{13}h^2 + 2a^{*}b^{*} U_$

Table 4. Bond lengths (Å)

atom	atom	distance	atom	atom	distance
Cl(1)	C(2)	1.704(4)	Cl(2)	C(3)	1.715(3)
Cl(3)	C(17)	1.704(3)	Cl(4)	C(18)	1.714(3)
O(1)	C(1)	1.325(4)	O(2)	C(4)	1.354(4)
O(2)	C(9)	1.437(4)	O(3)	C(16)	1.328(4)
O(4)	C(19)	1.361(4)	O(4)	C(24)	1.452(4)
N(1)	C(7)	1.126(5)	N(2)	C(8)	1.127(5)
N(3)	C(22)	1.120(5)	N(4)	C(23)	1.116(5)
C(1)	C(2)	1.399(4)	C(1)	C(6)	1.385(4)
C(2)	C(3)	1.374(5)	C(3)	C(4)	1.390(5)
C(4)	C(5)	1.380(4)	C(5)	C(6)	1.398(4)
C(5)	C(8)	1.428(5)	C(6)	C(7)	1.436(5)
C(9)	C(10)	1.500(6)	C(10)	C(11)	1.375(6)
C(10)	C(15)	1.372(5)	C(11)	C(12)	1.378(6)
C(12)	C(13)	1.383(6)	C(13)	C(14)	1.345(6)
C(14)	C(15)	1.369(6)	C(16)	C(17)	1.398(4)
C(16)	C(21)	1.383(4)	C(17)	C(18)	1.376(4)
C(18)	C(19)	1.392(5)	C(19)	C(20)	1.383(4)
C(20)	C(21)	1.398(4)	C(20)	C(23)	1.432(5)
C(21)	C(22)	1.447(5)	C(24)	C(25)	1.491(5)
C(25)	C(26)	1.371(5)	C(25)	C(30)	1.383(5)
C(26)	C(27)	1.375(6)	C(27)	C(28)	1.378(6)
C(28)	C(29)	1.349(6)	C(29)	C(30)	1.366(6)