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Section S1.  Materials and Methods 
Correlation matrices for IGPS from Thermotoga maritima (Tm-IGPS) are obtained from the same 
trajectories and following the same protocol as in reference 1, while yeast models (Sc-IGPS from 
Saccharomyces cerevisiae) are built ex-novo. 
The computational structural models for apo and PRFAR bound yeast IGPS complexes are based on 
the crystal structure of the bienzyme complex from S.cerevisiae at 2.4 Å resolution (Protein Data Bank 
code 1OX6-B).2 The HisH-HisF apo-complex having several missing residues (261-275, 301-304, and 
551-552) and three extra residues at the beginning of the chain required modeling prior to simulation. 
To complete the structure, first, we stripped the first three residues, then we aligned and added residues 
256-260 and 299-310 from 1OX4-B (removing overlapping residues from 1OX6 due to poor 
alignment). Finally, we added residues 550-552 from 1JVN-A, (removing residue 550 from 1OX6-B). 
We constructed the remaining residues (256-275) using different tools, using which we produced six 
different structures. One structure was generated using Modeller,3 a second one using Swiss-Model,4 
and four suitable homology models were found on modbase. PRFAR was bound to each model by 
aligning each structure to the effector-bound crystal structure of yeast IGPS (PDB code 1OX5).  
The twelve generated structures (six in the apo state, six bound to the effector) align with RMSD < 5 
Å. To allow for a direct comparison between the dynamics of IGPS enzymes from Tm- and Sc-IGPS 
we kept the simulation conditions analogous to the one used for bacterial IGPS in reference.1 For the 
sake of clarity, we report some essential details below. MD simulations of the apo and PRFAR-bound 
structures of yeast IGPS are based on the AMBER-ff99SB5 force field for the protein and Generalized 
Amber Force Field6 for the PRFAR ligand (see SI Text), as implemented in the Amber20 software 
package.7 We performed twelve independent MD simulations, one for each complex (apo and PRFAR-
bound) for a total simulation time of 1.2  μs.  
Structure refinements such as addition of hydrogen and explicit TIP3 water solvent molecules (reaching 
density values >= 0.9 mol•Å-3) are performed using AmberTools (2020). A constrained optimization 
with all atoms but solvent fixed at the crystal structure positions yields optimized solvated structures 
which are then slowly heated to 303 K, performing MD simulations (100 ps) in the canonical NVT 
ensemble using Langevin dynamics. We apply harmonic constraints to protein and PRFAR heavy 
atoms, with force constants set to 1 kcal•mol-1. During the heating procedure all positional constraints 
are gradually lifted until all atoms are set freed.  
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Unconstrained MD simulations are run for more than 9 ns, for total pre-equilibration simulation time 
of at least 10 ns. The pre-equilibrated systems are simulated in the NPT ensemble at 300 K and 1 atm 
using the Langevin dynamics for 100 ns. All simulations are performed using periodic boundary 
conditions. Van der Walls interactions are calculated using a switching distance of 10 Å and a cutoff of 
12 Å and electrostatic interactions are treated using the Particle Mesh Ewald method.8 We employ the 
multiple time-stepping algorithm,9 where bonded, shortrange nonbonded, and long-range electrostatic 
interactions are evaluated at every one, two, and four time steps, respectively, using a timestep of 
integration set to 1 fs. 
 

Section S2. Details on the computation of correlation values and their analysis through 
the eigenvector centrality metrics, principal component analysis and allosteric pathways 
across yeast and bacterial IGPS. 

Generalized correlation coefficients, eigenvector centrality and community network analysis 
We quantify the extent of the dynamical correlation of fluctuations in the positions of Cα-atoms by 
computing the generalized correlation coefficient between each pair of residues,10 

                                             (1) 
computed in terms of mutual information (MI), 11 

.                                            (2) 
Here, , ,  are the marginal and joint (Shannon) entropies for atomic vector 
displacements ( ), computed along twelve independent 100 ns MD simulations for both apo and 
PRFAR-bound yeast IGPS complexes. The resulting generalized correlation coefficient values  
values fall in between 0 and +1, representing respectively uncorrelated and fully correlated variables. 

 alone can be hard to decipher and require some post-processing to interpret protein behavior. 
Network analysis tools,12,13 including different centrality metrics14 can be applied for the interpretation 
of correlated protein motions and their allosteric behavior. Here, the Cα-atoms of the proteins’ amino-
acid residues constitute the nodes of a dynamical network graph, connected by edges (residue pair 
connection in terms of ). An adjacency matrix  is then constructed such that it can be used 
to identify the key amino acid residues of IGPS with high susceptibility to effector binding. A simple 
yet effective metric extract “central” nodes in  is the eigenvector centrality EC. The basic idea behind 
this measure is the assumption that the centrality index of a node is not only determined by its position 
in the network but also by the neighboring nodes, hence it measures how well connected a node is to 
other well-connected nodes in the network. The EC of a node is defined as the weighted sum of the 
centralities of all nodes that are connected to it by an edge, : 

,                                                        (3)  
where  is an eigenvector associated to the largest eigenvalue of . Being any eigenvector defined only 
minus a multiplicative constant we orient the eigenvector in the positive quadrant (whatever the sign 
obtained from the diagonalization). Additionally, an exponential damping factor with a length 
parameter  can be introduced to Eq. 3, by defining  as: 

.                                          (4)  
 controls the locality of the correlations under consideration based on the average distance between 

residues .  
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Hence, using short enough values of  will result in neglecting the correlation between residues that are 
far away from one another, revealing the effect of the locality in the allosteric pathway. On the other 
hand, by setting  to a very large value, all correlations, including those between residues separated by 
long distances, will be retained and . In the main text the results presented 
correspond to a value of .  
Because we are interested in analyzing how the information transmission is affected by the allosteric 
stimulator, we focus on the difference centrality values computed by as . The 
nodes with higher eigenvector difference centrality are those acting as the principal “channels” for 
momentum transmission across the protein.  
We visualize the  coefficient relative to each amino-acid in the protein structure, coloring each node 
from blue (zero centrality) to red (maximum centrality). In all of the cases, we apply a renormalization 
of the centrality values such that each falls in the -1, +1 range, as: 

 .                     (5) 
In the present study, we calculated generalized correlation coefficients based on mutual information 
and EC values independently on 100 ns apo and PRFAR-bound trajectories of yeast and bacterial IGPS 
and averaged over six and four replicas, respectively. As mentioned before, the trajectories used for 
bacterial IGPS are the same as in reference,1 hence the EC values reported both in the main text (Figure 
3A) and below (Figure S6) are the same as in reference 15 whereas those relative to yeast IGPS are 
computed ex novo, following the same procedure, as described Section S1. 
The protein-network can be used to determine the optimal pathways for the information transfer 
between two nodes, defined as the shortest paths connecting a specific pair of nodes. In this context, 
edge lengths, i.e. the internode distances in the graph, are defined using the  coefficients 
according to -log( ), implying that highly correlated pairs (featuring good communication) 
are close in distance in the graph. 
In particular we applied the Dijkstra algorithm to calculate the shortest pathways between residues 
fA233-fA234-A523/G524-R528 and hC84-C83, where each set of residues belongs to a different 
domain of bacterial and yeast IGPS, respectively. Hence, the computed pathways are composed of 
residue-to-residue steps that optimize the overall correlation (i.e., the momentum transport) between 
residues fA223-fA224 (at the effector site) and hC84 (in the glutaminase active site) in Tm-IGPS, and 
similarly residues K334, A523, G524 and C83 in His7.  

Principal Component Analysis 
Principal Component Analysis (PCA)16,17 has been employed to capture the essential motions of the 
simulated systems. In PCA, the covariance matrix of the protein Cα atoms is calculated and 
diagonalized to obtain a new set of coordinates (eigenvectors) to describe the system motions. Each 
eigenvector – also called Principal Component (PC) – is associated with an eigenvalue, which denotes 
how much each eigenvector is representative of the system dynamics.  
To avoid translational artifacts, we set the center of mass of each frame at the origin, and rotate each 
frame to its optimally aligned orientation relative to the average structure - computed over all apo 
trajectories - which also has its center of mass at the origin. Next, we evaluate the covariances of the 
positional fluctuations of each system over the apo and PRFAR-bound trajectories obtained by 
concatenation of the independent apo and effector-bound replicas. Because the motion of side-chains is 
mostly independent of the essential dynamics of IGPS, we restrict the covariance to the backbone atoms 
only. Projecting the original (centered) data onto the eigenvectors results in the PCs, whose associated 
eigenvalue (variance) is indicative of the portion of motion that the eigenvector describes.  
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Together, the first two principal components relative to Tm-IGPS incorporate 44% and 33% of the total 
motion of the bacterial apo and PRFAR-bound trajectories, respectively (Figure S3-A), while the 
percentages become 42% and 44% for His7 (Figure S3-B) . The contribution added by the third PC is 
much smaller hence we limited our analysis to the first two.  
The interest in projecting the trajectory coordinates onto the PCs is that we can visualize the essential 
motions induced by effector-binding in yeast and bacterial IGPS on the protein structure, along the 
trajectory. The procedure is described below. 
First, we project the original trajectory onto the first two PRFAR-minus-apo difference principal 
components ( ) and visualize their motion (details in SI). The weights over the  principal 
component relative to a given trajectory are given as 

,                                          (6) 
where  is a vector containing the stacked cartesian coordinates of the selected group of atoms at time 
(t) and  are the mean (stacked x,y,z) coordinates along a selected (apo) trajectory.  is the  
principal component, having dimension ( ), with . The resulting 
weight vectors  are ( ) dimensional and the dimension of  is equivalent to that of each 
row/column of the covariance matrix, and will coincide with the length of the PCs. Then, the projected 
coordinates on PRFAR-minus-apo difference principal components ( ) are  
 

,                                                   (7) 
 
Here, the product of the weights  - computed at each timestep of the apo trajectory - with the  
difference eigenvector  accounts for the fluctuations around the mean on that axis (i.e., the 
fluctuations induced by PRFAR binding), so the projected trajectory  simply describes the effector-
induced fluctuations added onto the mean positions . 
 

Additional comments on generalized correlation coefficients, EC and PCA 

With regard to the analysis reported in the main text reported for yeast IGPS, it is worth 
discussing more in depth the outcomes of the single replicas as compared to the average. This 
analysis supports the finding in the text and shows the relevance of the simulations. 
MD simulations are inherently chaotic, hence two simulations started from similar inputs may 
end up in significantly different configurations, making it hard to verify whether the process 
under interest is actually captured within the dynamic trajectory. This is why running a single 
trajectory may not mean much and replicates are almost always required. Indeed, allowing for 
high variance in the simulations - as we do, for instance, using different homology models to 
construct representative initial states from which to start the dynamics, is paramount to ensure 
that the simulations capture the process of interest (in our case the allosteric events in the 
enzyme’s dynamics). We calculated generalized correlation coefficients based on mutual 
information and covariances of atomic displacements independently on each 100 ns apo and 
PRFAR-bound trajectories of yeast and bacterial IGPS and averaged over six and four replicas, 
respectively. A standard way to verify that a set of simulations contains a statistically relevant 
ensemble is to check that different simulations show similar ensemble average properties. The 
more unconstrained is the motion of a system of interest the more likely it will be that different 
dynamics sample different states of the system. The trade-off between considering a “large 
enough” number of independent simulations that will reliably capture a process of interest, 
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without averaging out important fluctuations, is system dependent and requires careful case-
by-case examination. These observations apply to the simulations described in this work. 
Correlations, covariances (and therefore all the metrics derived from these) are subject to 
changes depending on the dynamics. For Tm-IGPS the four 100 ns apo/PRFAR-bound replicas, 
based on which we calculated the average properties discussed in the main text, showed similar 
features (as discussed in the original publication1. We find rather larger deviations in the yeast 
as compared to Tm-IGPS. However, the average picture -obtained as the average apo-minus-
holo correlation profile computed across the different models (shown in Figure 2) - is 
representative of the allosteric process although the individual simulations present different EC 
and PCA profiles (as shown in Figure S5). Among the six apo and PRFAR-bound replicas the 
dynamics that encompasses most of the allosteric traits is labelled as sim1 in the figures reported 
below. Figures 3 and 4 in the main text are associated to the representative dynamics of sim1. 
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Section S3.  Supplementary figures and tables  

Breakdown of the secondary structural elements of His7 

Secondary 
Structural 
Element 

Residue 
numbers 

Label length Secondary 
Structural 
Element 

Residue 
numbers 

Label length 

Beta strand 3 – 7 hβ1 5 Helix 277 – 288 fα1 12 
Helix 15 – 23 hα1 9 Beta strand 292 – 299 fβ2 8 
Beta strand 27 – 33 hβ2 7 Helix 307 – 309  3 
Helix 34 – 36  3 Helix 311 – 319 fα2 9 
Helix 39 – 41  3 Turn 320 – 322  3 

    Beta strand 327 – 332 fβ3 6 

Beta strand 45 – 49 hβ3 5     
Helix 53 – 62 hα2 10 Helix 346 – 356 fα3 11 
Helix 66 – 74 hα2' 9 Beta strand 359 – 363 fβ4 5 
Beta strand 79 – 83 hβ4 5 Helix 365 – 376 fα4 12 
Helix 84 – 87 hα3 4 Helix 386 – 394 fα4' 9 

    Helix 396 – 398 fα4'' 3 

Beta strand 90 – 93 hβ5 4     

    Beta strand 399 – 403 fβ5 5 

Beta strand 104 – 111 hβ6 8 Beta strand 405 – 412 fβ5' 8 
Turn 114 – 116  3 Helix 413 – 415 fα5 3 
Beta strand 119 – 125 hβ7 7 Beta strand 433 – 440 fβ6X 8 
Beta strand 143 – 150 hβ8 8 Turn 441 – 444  4 
Helix 155 – 163 hα4X 9 Beta strand 445 – 450 fβ6 6 
Beta strand 167 – 173 hβ9 7 Helix 451 – 460 fα6 10 
Beta strand 176 – 184 hβ10 9 Beta strand 465 – 468  4 
Beta strand 187 – 193 hβ11 7 Helix 471 – 473  3 
Helix 194 – 196  3 Turn 474 – 476  3 
Helix 198 – 209 hα4 12 Helix 482 – 491 fα6 10 
Helix 221 – 227 hα4' 7 Beta strand 496 – 498  3 
Helix 232 – 235 hα4'' 4 Helix 505 – 514 fα7 10 
Beta strand 240 – 248 fβ1 9 Beta strand 518 – 523 fβ8 6 
Beta strand 250 – 252  3 Helix 524 – 527 fα8' 4 
Beta strand 254 – 257  4     

 
Table S1. Full topography of secondary structural elements of yeast IGPS from 
https://www.uniprot.org/uniprot/P33734 
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Sequence alignment 
Using the jFATCAT rigid algorithm implemented in the RCSB PDB Comparison Tool Reference 
(https://www.rcsb.org/alignment), we aligned structurally the amino acid sequence of HisH (PDB entry: 
3ZR4.C), HisF (3ZR4.D) and His7 (1OX5.A). The sequence alignments are reported in Table S2. The 
structures of HisF and His7 are aligned for residues hM1–hS197 and P5–Q215 and the sequences of 
HisF and His7 are aligned for residues fM1–fE251 and G238–D553. Despite a similarity of ~ 50-60% 
(see Alignment Summary Table), the alignments show good structural similarity with a RMSD of the 
C-alpha backbone atoms ~ 2 Å. The alignments of the 3D structures are also reported in Fig. 1 in the 
main text.  
 

Alignment 
Summary 

RMSD Sequence 
 Identity% 

Sequence 
Similarity% 

Length 

HisF-His7 2.03 46 63 241 

HisH-His7 1.93 30 52 192 

 
Table S2. Sequence alignment of His7 from Saccharomyces cerevisiae and HisH, HisF from 
Thermotoga maritima. 
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Correlation matrices from Elastic Network Model  

 
Figure S1. Difference of theoretical cross-correlation matrix between the holoenzyme and the 
apoenzyme in T. maritima (right) and S. cerevisiae (left). Cross-correlation matrices were computed 
with a Gaussian Network Model18 using the pre-equilibrated structures of model 1 for apo and PRFAR-
bound of T. maritima and S. cerevisiae. Kirchoff matrices build with a cutoff of 10 Å and a spring 
constant of 1. Only the first 20 modes were taken into account in the computation. 
 
 
Correlation matrices  

 
Figure S2. Generalized correlation coefficient matrices computed over six 100 ns replicas of simulated 
dynamics of apo and PRFAR-bound His7.  
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Figure S3. Left to right: average generalized correlation coefficient matrices over over apo, PRFAR-
bound trajectories and difference (PRFAR-bound-minus-apo) computed over the six 100 ns replicas of 
simulated dynamics of Tm-IGPS. 
 
 
 
 

 
Figure S4. Left to right: average generalized correlation coefficient matrices over over apo, PRFAR-
bound trajectories and difference (PRFAR-bound-minus-apo) computed over the six 100 ns replicas of 
simulated dynamics of His7. 
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Eigenvector centrality 

 
Figure S5. Centrality differences (PRFAR-bound-minus-apo) projected onto the apo structure of Sc-
IGPS, computed different values of λ. Regions in red and blue correspond to gains and loss of centrality. 
To note, the EC values relative to sim1 recover most of the allosteric traits as it can be inferred by the 
similarity of the centrality pictures showing the averaged values over the six independent replicas (last 
row).  
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Analysis of first and second principal components in apo and PRFAR-bound yeast and 
bacterial IGPS 

 
 
Figure S6. (A) and (B) Cumulative variance of the first and second PCs computed for the apo (A) and 
PRFAR-bound (B) trajectories, showing the comparison between Tm-IGPS (red) and Sc-IGPS (green). 
(C) and (D) show the correlation between first and second principal components computed along the 
trajectories of yeast and bacterial IGPS. (C) In Sc-IGPS PC1 and PC2 are poorly correlated, confirming 
that they account for distinct motions, while the higher correlation shown in (D) suggests that PC1 and 
PC2 in Tm-IGPS have some degree of overlap. 
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Essential motions of the trajectory through principal component analysis 

 
Figure S7. Projection of the original apo trajectory of Tm-IGPS (A) and Sc-IGPS  onto the difference 
(PRFAR-minus-apo) second principal components computed along the yeast ( ) and bacterial (

) IGPS trajectories, as discussed in Section S2. This figure provides a zoom in of Figure 3E and 
3F in the main text for better visualization of the dynamic low-vibrational motions of the two enzymes. 
Panels C and D show positive variations in the EC coefficients due to the long-range component of 
correlations in Tm-IGPS and His7 respectively. The largest increase in the long-range centrality 
coefficients upon PRFAR binding interests different regions in Tm and Sc. The values in Tm are 
consistent with the presence of an interdomain “breathing” motion shown with black dashed black lines 
and forming an angle φ). In Sc, the largest structural (long-range) rearrangements are associated with 
the motion of the connector and of the secondary structure elements fα8, fα1, hα4, hβ9, marked in the 
figure. Long-range EC centralities match description of low vibrational motions provided by the 
analysis of first principal components.  
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Figure 8. Projection of the apo trajectory of Tm-IGPS (A) and Sc-IGPS  onto the difference (PRFAR-
minus-apo) second principal components computed along the yeast ( ) and bacterial ( ) 
IGPS trajectories, as discussed in Section S2. 
 

Role of loop1 in Tm-IGPS and Sc-IGPS 

 
Figure S9. The motion of loop1 has a behavior in His7 and Tm-IGPS, upon binding of the effector. 
While in His7 the binding induces an increased mobility of loop1, in Tm-IGPS, binding of PRFAR 
constrains the motion of loop1. This behavior is consistent with the different role of the loop in the two 
systems, as suggested in the main text.  
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Distance profiles K334-D335 profile across six 100 ns replicas of simulated dynamics of 
His7. 

Figure S10. The K334-D335 salt bridge is mostly present in the APO simulation and breaks upon 
PRFAR binding as the effector interacts with residue K334. The dissolution of the K334-D335 is 
particularly evident in Sim1, in accordance with our observation of Sim1 best capturing the allosteric 
process. 
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Distance profiles of the hydrophobic cluster across six 100 ns replicas of simulated 
dynamics of His7. 

Figure S11. Distance profiles of I333-A350, V329-Y353, V329-F354 computed across six apo (blue) 
and PRFAR-bound (red) 100 ns replicas of simulated dynamics of His7. 
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Hinge Motion 
Figure S12. Hinge motion 
profile six apo (blue) and 
PRFAR-bound (red) over the 
concatenated dynamics of Tm-
IGPS(left) and Hisy (right), 
measured through the angle  
defined using different 
residues. The standard 
definition of  G51-W124-
Y394) used in other 
publications is included. The 
oscillation mostly ranges 
between 10 and 20 degrees 
with no significant changes to 
the PRFAR bound profiles as 
compared to the apo. 
The distribution of  supports 
our hypothesis of a reduced 
importance of the hinge 
motion in the allosteric process 
of His7, as compared to that of 
Tm-IGPS. 
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Relevant salt-bridge interactions in Tm- and Sc-IGPS 

Figure S13. Profile of the E91-R59 (Tm-IGPS) and D8-R355 (His7) salt-bridge interactions along 100 
ns of apo and PRFAR bound states of dynamics. As suggested by the large modification of the profiles 
upon effector binding these interactions are crucial in the signaling mechanism of bacterial and yeast 
IGPS, respectively. 
 

Figure S14. (A) Residues that participate in the network of salt-bridges at sideR of Tm-IGPS, induced 
by PRFAR binding. In Sc-IGPS (B), there are no corresponding surface-charged residues that can allow 
communication between the two active sites through the coupling of fα3-fα2 similar to that of Tm-IGPS. 
Instead, in Sc-IGPS the signal travels across fα3 and fβ3. 
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Closeup view of the glutaminase active site and PGVG sequences in yeast and bacterial IGPS 

Figure S15. (A) The hydrogen bond between A393-N52 is mostly present in the apo structure and 
loosens upon PRFAR binding. Unlike in Sc apo, the h48-PGVG sequence Tm-IGPS is not within 
hydrogen-bonding distance to the glutaminase domain. (B) In Tm apo, residue hV50 is tightly bound in 
a hydrogen bond with hP10, while the corresponding distance varies significantly across the dynamics 
of Sc-apo, suggesting a different cross communication between the Ω-loop and PGVG in the two 
enzymes. The hydrogen bond between hV50 and hP10 in Tm-IGPS dissolves in the presence of PRFAR. 
This bond rupture marks the transition between the inactive state (apo) and the pro-active state. 
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Time-evolution  of hydrogen bond at the interface of His7 

Figure S16. Distance profile of the N52:H-A393:O bond computed along the six replicas of the apo 
(blue) and PRFAR-bound (red) simulated dynamics of His7. The last row shows the mean values 
averaged on the different replicas, as well as a histogram representation of the same distribution. At the 
interface, the hydrogen bond between the backbone atoms of A393 and N52 elongates in the presence of the 
effector. 
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Movie legends 
A way to investigate the essential motions of the trajectory is to project the original trajectory onto each 
of the principal components, to visualize the motion of the principal component. The resulting 
trajectories computed by projecting the original coordinates onto the first difference (∆PC1) and second 
(∆PC2) principal components are shown in the enclosed jupyter-notebook: 
 
A way to investigate the essential motions of the trajectory is to project the original trajectory onto 
each of the principal components, to visualize the motion of the principal component. Instead of 
including all atoms of the trajectories one can focus on selected atom groups, for instance the 
backbone atoms.  
 
The principal component analysis presented in this work is performed by selecting the backbone atoms 
of the apo and PRFAR-bound trajectories of either Tm-IGPS or Sc-IGPS. 
The product of the weights wi(t) for the ith principal component relative to the apo trajectory with the 

difference eigenvector describes the fluctuations 
around the mean on that axis, induced by PRFAR binding, 

 
The projected trajectory ri(t) is simply the fluctuations added onto the mean positions. (See description 
in section Principal Component Analysis at page 2). 
The resulting trajectories computed by projecting the original coordinates onto the difference first 
(∆PC1) and second (∆PC2) principal components are shown in the three videos enclosed to the 
Supplementary material. 
 

1- Video named DELTA_PC1.mov shows projected trajectories of Tm-IGPS and Sc-IGPS along 
the first difference principal component ∆PC1 (PRFAR-bound-minus-apo). 

 
2- Video named DELTA_PC1rot.mov shows projected trajectories of Tm-IGPS and Sc-IGPS 

along the first difference principal component ∆PC1 (PRFAR-bound-minus-apo), where the 
Sc-IGPS is shown in a rotated view with respect to the Video 1, to highlight the motion of the 
connector. 
 

3- Video named DELTA_PC2.mov shows projected trajectories of Tm-IGPS and Sc-IGPS along 
the second difference principal component ∆PC1 (PRFAR-bound-minus-apo). 

 
The videos altogether show the difference in the dynamics of the low-vibrational motions of the two 
enzymes. While Tm-IGPS adopts a hinge-like breathing motion that modifies the opening of the 
interface between the two subunits, Sc-IGPS displays a rather different spring-like motion located at 
the core of the enzyme, coupled with large variations at the connector site and loop1. 
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