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ABSTRACT
The simulation of multidimensional vibrational spectroscopy of condensed-phase systems including nuclear quantum effects is challenging
since full quantum-mechanical calculations are still intractable for large systems comprising many degrees of freedom. Here, we apply the
recently developed double Kubo transform (DKT) methodology in combination with ring-polymer molecular dynamics (RPMD) for evalu-
ating multi-time correlation functions [K. A. Jung et al., J. Chem. Phys. 148, 244105 (2018)], providing a practical method for incorporating
nuclear quantum effects in nonlinear spectroscopy of condensed-phase systems. We showcase the DKT approach in the simulation of the
fifth-order two-dimensional (2D) Raman spectroscopy of Lennard-Jones liquids as a prototypical example, which involves nontrivial non-
linear spectroscopic observables of systems described by anharmonic potentials. Our results show that the DKT can faithfully reproduce the
2D Raman response of liquid xenon at high temperatures, where the system behaves classically. In contrast, liquid neon at low temperatures
exhibits moderate but discernible nuclear quantum effects in the 2D Raman response compared to the responses obtained with classical
molecular dynamics approaches. Thus, the DKT formalism in combination with RPMD simulations enables simulations of multidimensional
optical spectroscopy of condensed-phase systems that partially account for nuclear quantum effects.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0015436., s

I. INTRODUCTION

Ultrafast spectroscopy has been demonstrated to be power-
ful in accessing dynamical information of chromophores in liq-
uids, such as time-dependent fluorescence Stokes shift for prob-
ing solvation dynamics1–4 and two-dimensional (2D) vibrational
spectra for correlating vibrations at different spatial and tem-
poral points.5–7 Most ultrafast spectroscopic techniques share a
common feature as in the traditional pump–probe approach: a
time-dependent laser pulse pumps the system either vibrationally
or electronically, and at a delayed time, the probe pulse is used
to read out the molecular response to the disturbance caused by

the pump pulse. At first glance, this pump–probe process involves
an explicitly time-dependent Hamiltonian, but if the pulses are
weak enough, one can express the nonequilibrium optical response
as an equilibrium time-correlation function (TCF) according to
the widely applicable linear response theory.1,2 In this context, the
fluctuation-dissipation theorem8 of linear response theory connects
the equilibrium fluctuations with the nonequilibrium relaxation of
observables and can be applied to treat multiple pumps as in mul-
tidimensional spectroscopy.9 Consequently, the nonlinear spectro-
scopic signal is expressed in terms of the convolution between the
optical response function and the laser-pulse envelopes in the time
domain. The response function carries all the information of the
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physical system and provides dynamical information such as cou-
pling between vibrational states and energy transfer pathways in
light-harvesting systems.10,11

Like most of the condensed-phase measurements, linear
spectroscopy—such as electronic, IR, THz, Raman, and sum-
frequency generation spectra—constitutes a dimensionality reduc-
tion from 3N to 2 for an N-atom system, whose response function
is usually an ensemble average of some spectroscopic observables
that reflects highly averaged molecular signatures. When we go
to multidimensional spectroscopy, e.g., two-dimensional spectra,6,12

extra structural and dynamical information can be revealed by
the correlation between multiple dimensions. A famous example
is the coupling between a pair of amide I local modes in pro-
teins via hydrogen-bonding, resulting in cross peaks in the 2D IR
spectra.13,14

The fifth-order 2D Raman spectroscopy15–23 introduces an
interaction (Hint = −E1 ⋅Π ⋅E2/2, where E1/2 are ultrafast electric
fields and Π is the many-body polarizability) prior to the con-
ventional third-order optical Kerr effect (OKE) spectroscopy,24–27

where the nonlinear order corresponds to the number of perturb-
ing electric fields, some of which may come from the same laser
pulse. The 2D Raman pulse sequence is shown in Fig. 1. Although
the 2D Raman signal is relatively weak due to the high nonlin-
ear order compared to the third-order cascaded contamination,18

it has been reported for CS2,19,20,28,29 benzene,30 and formamide
liquids,31 as well as photoactive proteins.23 Recently, the single-
beam spectrally controlled 2D Raman technique has been devel-
oped to overcome the cascading problem, leading to a rebirth of
interest in 2D Raman spectroscopy.32 Theoretical studies of 2D
Raman spectroscopy offer unique capabilities for studying vibra-
tional mode coupling,33,34 anharmonicity of interactions,35–37 and
dephasing processes in liquids.38,39

The simulation of 2D Raman spectroscopy has been challeng-
ing due to the multidimensional characteristics of the TCF involved.
In terms of classical mechanics, the 2D Raman response function
involves two nested Poisson brackets, although the outmost Poisson
bracket can be eliminated if the phase-space density is the equilib-
rium Boltzmann distribution.35,40 The computation of the remain-
ing Poisson bracket is challenging since it is a quantity related
to the stability of classical trajectories in phase space and is usu-
ally hard to converge for intrinsically chaotic many-body molecular

FIG. 1. Pulse sequence of the fifth-order two-dimensional (2D) Raman spec-
troscopy. The first pair of Raman pump electric fields E1, E2 is applied at time
0, and the second pair of Raman pump electric fields E3, E4 is applied at time
t1; then, the fifth-order Raman signal Es is scattered off from the impeding probe
electric field E5 at time t1 + t2. Including the signal field, the fifth-order Raman
scattering is a six-wave-mixing nonlinear optical process.

systems such as liquids.41–43 Thus, the direct evaluation of the Pois-
son bracket or equivalently the stability matrix is computationally
difficult. Ma and Stratt systematically investigated the fifth-order 2D
Raman spectra using all-atom classical molecular dynamics (MD)
simulation and the instantaneous-normal-mode (INM) theory 44

and elucidated the sensitivity of the 2D Raman signal with respect
to dynamical anharmonicity and nonlinear polarizability.17,35,36,45,46

Additionally, mode-coupling theory seems capable of reproducing
some features in 2D Raman spectroscopy of simple liquids.47 Tan-
imura and co-workers recently developed a hybrid equilibrium–
nonequilibrium molecular dynamics approach to address the high
computational overhead, where nonequilibrium molecular dynam-
ics simulations are used to evaluate the Poisson bracket by mimick-
ing the physical effect of the perturbing electric fields.48–50 It is also
worth noting that DeVane, Ridley, Space, and Keyes (DRSK) pro-
posed an alternative way to cast the classical 2D response function
into ordinary TCFs based on the harmonic approximation,51–54 as
discussed later in this paper.

The classical representation in atomistic simulations of liq-
uids may introduce errors in the spectrum due to the neglect of
nuclear quantum effects (NQEs)55 such as tunneling and zero-point
energy, which could be significant in systems containing light par-
ticles and at low temperatures. The NQEs of condensed matter
are typically modeled using Feynman’s path-integral formulation
of quantum mechanics. For time-independent or thermodynamic
properties such as structures or free energies, quantum statistical
mechanics is isomorphic to sampling in an extended configuration
space, treating each physical particle as a P-bead (or P-replica) ring
polymer where the adjacent beads are connected with harmonic
springs and the beads with the same bead index (1, . . ., P) belonging
to different physical particles, interacting with each other accord-
ing to the external potential, forming P “parallel bead universes.”
When P → ∞, we will have exact quantum statistics, but, in prac-
tice, we choose a finite number P with convergence. The sampling in
this extended ring-polymer space could be implemented fully clas-
sically using Monte Carlo as in path-integral Monte Carlo (PIMC)
or molecular dynamics with additional fictitious bead masses and
momenta as in path-integral molecular dynamics (PIMD).56–58 Since
e−βĤ with inverse temperature β = 1/kBT (kB is Boltzmann’s con-
stant) can be considered as a propagator e−iĤ t /̵h with imaginary time
t = −iβh̵, PIMC and PIMD are commonly addressed as imaginary-
time path-integral approaches, which are only used to sample the
extended configuration space to average time-independent quantum
properties. The averages converge quickly since the imaginary-time
path integral does not have oscillatory amplitudes as in the real-time
propagator.

Approximate methods such as centroid molecular dynamics
(CMD)59–61 and ring-polymer molecular dynamics (RPMD)62–64

have been proposed to incorporate NQE in time-dependent prop-
erties such as TCFs, where the trajectories of the ring polymers
are viewed as real-time dynamics with delocalized nuclei. With
recently developed thermostat and propagation algorithms, CMD
and RPMD have shown great potential for the simulation of linear
spectroscopy in liquids.65–68 However, a general approach for incor-
porating NQE into multidimensional spectroscopy and multi-time
correlation functions was introduced only recently, as shown for the
2D spectroscopic response function expressed in terms of double
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Kubo transformed (DKT) correlation functions, estimated by using
RPMD.69

In this paper, we focus on the simulation of 2D Raman spec-
troscopy of atomic liquids using RPMD. Using the DKT approach,
the 2D response function in the frequency domain can be broken
into real (symmetric) and imaginary (asymmetric) parts of the DKT
correlation functions, where the symmetric part can be directly sim-
ulated via RPMD and is assumed to be dominant. Neglecting the
asymmetric part is the only approximation in the DKT approach
and was tested to be valid in 1-dimensional model systems.69 In
this paper, we apply and test the DKT approach to more realistic
and anharmonic Lennard-Jones (LJ) liquids, including Xe and Ne, to
account for NQEs in their 2D Raman spectra obtained from RPMD
simulations and to test the validity of the approximation involved
in the DKT approach for atomic liquids. Lennard-Jones poten-
tials are simple atomic liquid models; however, the anharmonic
interaction in 3N-dimensional atomistic space and the nonlinear
many-body polarizability observable make these calculations rather
challenging.

This paper is organized as follows: Sec. II summarizes the the-
ory of 2D Raman spectroscopy evaluation of DKT correlation func-
tions with RPMD as well as classical MD including the equilibrium
approach involving the stability matrix, the DRSK TCF approach,
and the hybrid equilibrium–nonequilibrium approach. Section III
describes the Lennard-Jones liquid models (Xe and Ne) and the sim-
ulation details. Section IV discusses the comparison between the
classical and quantum 2D Raman spectra for Xe and Ne. Concluding
remarks are given in Sec. V. More detailed accounts of some of the
mathematical derivations are given in the Appendix.

II. THEORY
A. 2D Raman spectroscopy: Classical molecular
dynamics approaches

The optical observable in fifth-order 2D Raman spectroscopy
can be expressed in terms of the two-time response function as9

R(5)(t1, t2) = (
i
h̵
)

2
Tr(Π̂(t1 + t2)[Π̂(t1), [Π̂(0), ρ̂eq]]). (1)

Here, Π̂ represents the many-body polarizability tensor, Â(t)
= eiĤ t /̵hÂe−iĤ t /̵h is the operator evolved in the Heisenberg picture,
[Â, B̂] = ÂB̂ − B̂Â is the quantum commutator, and ρ̂eq = e−βĤ/Z
is the equilibrium density operator with system Hamiltonian Ĥ,
inverse temperature β = 1/kBT, and partition function Z = Tr[e−βĤ].
By selecting the polarization of the perturbing electric fields Ei cou-
pled to the Raman interactions (Fig. 1), different elements of the
many-body polarizability tensor Π can be probed. In this study, we
focus on the fully polarized 2D Raman response for which the ele-
ment Π̂ = Π̂ = Π̂zz in Eq. (1) (generalization to other polarization
conditions is straightforward).

A classical mechanical limit of the 2D response function can
be obtained by invoking the mapping relation between the quantum
commutator and the Poisson bracket,70

− i
h̵
[Â, B̂] Ð→ {A,B}, (2)

where

{A,B} = ∂A
∂r
⋅ ∂B
∂p
− ∂B

∂r
⋅ ∂A
∂p

. (3)

Here, A = A(r, p) and B = B(r, p) represent classical dynamical
variables, r = (r1, . . ., rN) are the 3N-dimensional coordinates, and
p = (p1, . . ., pN) are the corresponding momenta of an N-atom sys-
tem. Using this quantum–classical correspondence and noting that
{A, ρeq} = −βȦρeq with Ȧ = dA/dt,71 the 2D Raman response function
can then be expressed as35

R(5)(t1, t2) = ⟨{{Π(t1 + t2),Π(t1)},Π(0)}⟩
= β⟨Π̇(−t1){Π(0),Π(t2)}⟩, (4)

where ⟨⋅⟩ = ∫ drdpρeq represents a classical ensemble average with
Hamiltonian H, phase-space density ρeq = e−βH/Z, and classical
partition function Z = ∫ drdpe−βH .

We use three different approaches to evaluate the classical
response function in Eq. (4). The first approach is based on equi-
librium MD simulations and relies on the fact that the observables
depend only on positions r, i.e., Π̂ = Π̂(r). The Poisson bracket in
the classical 2D response function can be expressed as

{Π(0),Π(t2)} =
∂Π(r0)
∂r0

⋅ ∂Π(rt2)
∂rt2

⋅ Jrp(t2), (5)

and the classical 2D response is thus

R(5)(t1, t2) = β⟨Π̇(−t1)
∂Π(r0)
∂r0

⋅ ∂Π(rt2)
∂rt2

⋅ Jrp(t2)⟩. (6)

Here, Jrp(t) = ∂rt/∂p0 is the stability matrix (or Jacobian matrix)
satisfying the equations of motion J̈rp(t) = −(1/m)D(t) ⋅ Jrp(t)
with initial condition Jrp(0) = 0, mass m, and dynamical matrix (or
instantaneous Hessian) D(t) = ∇∇V(r)∣rt .

35 The stability matrix
describes the sensitivity of positions at time t, rt , if the initial
momenta, p0, are disturbed. In the equilibrium MD approach, the
stability matrix has to be converged along with the spectroscopic
observables in Eq. (6). In practice, the stability matrix is difficult
to evaluate due to the fact that the classical trajectories of many-
body systems are intrinsically chaotic.41 Fortunately, this calculation
is feasible for simple liquids and is considered as the exact classical
result for the proposal of this study.35

The second approach that we consider is the hybrid
equilibrium–nonequilibrium MD,48–50 where the Poisson bracket is
estimated by averaging pairs of positively and negatively perturbed
nonequilibrium MD trajectories, namely,

{Π(0),Π(t2)} =
1

E1E2Δt
[Π+Π(0)(t2) −Π−Π(0)(t2)]. (7)

Here, Π±Π(0) (t2) represents the many-body polarizability at time t2
calculated from nonequilibrium trajectories that are generated by an
ultrafast Raman perturbation Hint = ±(−E1 ⋅Π ⋅E2/2) at time t = 0,
with external electric fields E1/2 of time duration Δt.40,72 The extra
forces due to the Raman perturbation are given by ΔF = −∇rHint
= ±E1 ⋅∇rΠ ⋅E2/2. The 2D Raman response function in the hybrid
equilibrium–nonequilibrium is then given by

R(5)(t1, t2) =
β

E1E2Δt
⟨Π̇(−t1)[Π+Π(0)(t2) −Π−Π(0)(t2)]⟩, (8)
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where Π̇(−t1) is evaluated from an equilibrium trajectory. This
approach is computationally more efficient than the equilibrium
approach since it does not involve the convergence problem of the
stability matrix and provides virtually the same results (vide infra).

The third approach is based on the approximate methodology
developed by DeVane, Ridley, Space, and Keyes (DRSK) to com-
pute 2D Raman spectroscopy in the classical limit.51 Starting with
the exact quantum 2D response function given by Eq. (1) in Ref. 51,
it was shown that invoking a harmonic reference potential and using
the high temperature (classical) limit, the 2D response function can
be approximated as

R(5)DRSK(t1, t2) = β2[∂
2C(t1, t2)
∂t1t2

− 1
2
∂2C(t1, t2)

∂t2
1

], (9)

where C(t1, t2) represents the classical two-time correlation function
of the fluctuations of the many-body polarizability, namely,

C(t1, t2) = ⟨δΠ(0)δΠ(t1)δΠ(t1 + t2)⟩, (10)

with δΠ = Π− ⟨Π⟩. We remark that the response given by Eq. (1) or
(4) is invariant under the replacementΠ→ δΠ; however, Eq. (9) only
holds for polarizability fluctuations.51 The response in Eq. (9) repre-
sents an approximation of the Poisson bracket contribution by the
classical response function54 and with the advantage that no explicit
perturbations need to be simulated and only equilibrium trajecto-
ries (that do not involve the stability matrix) are necessary to con-
verge the TCF, providing a tractable theory of the classical nonlinear
response.51–54

B. 2D Raman spectroscopy: Ring-polymer molecular
dynamics approach

A quantum-mechanically exact expression for the 2D response
function [Eq. (1)] can be derived in terms of the Double Kubo Trans-
form (DKT) time correlation function. In Ref. 69, it was shown that
the 2D response can be recast in the Fourier domain as

R̃(5)(ω1,ω2) = Q+(ω1,ω2)K̃sym(ω1,ω2) + Q−(ω1,ω2)K̃asym(ω1,ω2),
(11)

where the Q factors are defined as

Q±(ω1,ω2) =
1
2
[Q1(ω1,ω2) ±Q1(−ω1,−ω2)], (12)

with

Q1(ω1,ω2) = β2 (e
−β̵hω1 − 1)ω1ω2(ω1 − ω2)

e−β̵hω1ω2 − e−β̵hω2ω1 + ω1 − ω2
(13)

and K̃sym(ω1,ω2) and K̃asym(ω1,ω2) are the double Fourier trans-
forms of the symmetric (real) and asymmetric (imaginary) DKT
correlation functions, namely,

Ksym(t1, t2) = 2 Re[⟨Π;Π(t1);Π(t1 + t2)⟩], (14)

Kasym(t1, t2) = 2i Im[⟨Π;Π(t1);Π(t1 + t2)⟩]. (15)

Here, the DKT correlation function is defined as69,73

⟨Π;Π(t1);Π(t1 + t2)⟩ =
1

Zβ2 ∫
β

0
dλ∫

λ

0
dλ′Tr[e−βĤΠ̂(−ih̵λ)

× Π̂(t1 − ih̵λ′)Π̂(t1 + t2)]. (16)

It is noted that in Ref. 69, we used a different choice of time vari-
ables t1, t2 in the response function. However, with a change of
variables (t1, t2) → (t1, t1 + t2) and (ω1, ω2) → (ω1 − ω2, ω2), the
expressions derived in Ref. 69 can be adapted to the current time
definition. Detailed derivations using the relative times are provided
in the supplementary material.

Equation (11) is quantum-mechanically exact. However,
approximations need to be made for practical applications to real-
istic condensed-phase systems. Reference 69 demonstrated that the
main contribution to the response is given by the symmetric part of
the DKT, at least for systems with harmonic or mildly anharmonic
potentials. We therefore neglect the asymmetric term in Eq. (11)
and approximate the 2D Raman response, in what we call the DKT
approach, as69

R̃(5)DKT(ω1,ω2) ≈ Q+(ω1,ω2)K̃sym(ω1,ω2). (17)

Moreover, semiclassical methodologies including multi-time Mat-
subara dynamics74,75 and multi-time RPMD62,69 were developed to
evaluate the symmetric DKT correlation function Ksym(t1, t2).69,75

In this study, we use RPMD to approximate the symmetric DKT in
terms of polarizability fluctuations as

Ksym(t1, t2) = lim
P→∞
⟨δΠ(0)δΠ(t1)δΠ(t1 + t2)⟩P, (18)

where

⟨δΠ(0)δΠ(t)δΠ(t′)⟩
P
= 1
ZP(2πh̵)f ∫

dR0dP0e−βPHP(R0 ,P0)

× δΠP(R0)δΠP(Rt)δΠP(Rt′). (19)

Here, f = 3NP is the total number of degrees of freedom with N
as the number of particles and P as the number of replicas used to
discretize the Boltzmann distribution, βP = β/P, and R = ({r(α)j })
(j = 1, . . . ,N;α = 1, . . . ,P) are the ring-polymer coordinates (with
a similar definition for the conjugate momenta P). ZP is the P-bead
path-integral representation of the partition function,

ZP =
1

(2πh̵)f ∫ dRdPe−βPHP(R,P). (20)

AP is the ring-polymer representation of any observable A,

AP(R) =
1
P

P

∑
α=1

A(r(α)1 , . . . , r(α)N ). (21)

HP is the ring-polymer Hamiltonian,

HP(R,P) = H0
P(R,P) +

P

∑
α=1

V(r(α)), (22)

where V(r) is the external potential energy, while the free ring-
polymer Hamiltonian is

H0
P(R,P) =

N

∑
j=1

P

∑
α=1

⎡⎢⎢⎢⎢⎣

(p(α)j )
2

2mj
+

1
2
mjω2

P(r(α)j − r(α−1)
j )

2
⎤⎥⎥⎥⎥⎦

, (23)

with ωP = 1/(βPh̵) and r(0)j ≡ r(P)j . In Eq. (19), Rt denotes the ring-
polymer coordinates at time t evolved from R0 at time t = 0 using
the Hamiltonian HP.
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The RPMD approximation [Eq. (18)] can be shown to be an
exact path-integral discretization of the symmetric DKT in the limit
t1, t2 → 0 and to be exact for all times for linear operators in a
harmonic potential. Moreover, it can be derived from the more gen-
eral multi-time Matsubara dynamics.76 The advantage of the DKT
formulation with respect to the classical formulations presented in
Sec. II A is that the TCF in Eq. (19) is sampled from the correct quan-
tum Boltzmann distribution, hence providing a tractable theory that
includes NQE in the calculation of 2D response functions.69

III. COMPUTATIONAL DETAILS
A. Lennard-Jones model

The atomic liquid systems are described by the pairwise
Lennard-Jones (LJ) potential, 77

V(r) =
N

∑
i<j

u(rij) =
N

∑
i<j

4ε
⎡⎢⎢⎢⎢⎣
( σ
rij
)

12

− ( σ
rij
)

6⎤⎥⎥⎥⎥⎦
, (24)

where rij = |rij| = |ri − rj| is the interatomic distance between
atom i and atom j, ε is the energy depth parameter, and σ is the
length parameter of the LJ interaction. We study two model sys-
tems, including (i) a LJ fluid representing xenon with parameters
ε/kB = 222 K, σ = 4.099 Å, and mass m = 131.293 amu (with reduced
time unit τLJ =

√
mσ2/ε = 3.47 ps) at the phase point T∗ ≡ TkB/ε

= 1.00, ρ∗ ≡ ρσ3 = 0.80 and (ii) a LJ fluid representing neon with
parameters ε/kB = 35.6 K, σ = 2.749 Å, and m = 20.1797 amu
(τLJ = 2.27 ps) at the phase point T∗ = 0.84, ρ∗ = 0.78. Both phase
points correspond to the liquid phase and are chosen to represent
a liquid at high and low temperatures, respectively. It should be
pointed out that for classical LJ systems at a given phase point, all
equilibrium and dynamical properties are independent of the atomic
species, provided that reduced units are used. However, when
nuclear quantum effects are included, the results depend on Planck’s
constant (in reduced units, h̵* ≡ h̵/

√
mϵσ2) that is dependent on the

mass of the particle (h̵∗ ≈ 0.009 95 for Xe and h̵∗ ≈ 0.094 53 for Ne).78

B. Molecular dynamics simulation details
Our MD simulations of liquid Xe included N = 108 atoms at

temperature T∗ = 1.00 and density ρ∗ = 0.80. RPMD simulations of
liquid Xe including N = 108 atoms under the same conditions rep-
resented each atom by P = 16 beads. The simulations are performed
within a cubic periodic box of length 5.130σ using the velocity Verlet
integrator79 with a time step of δt = 0.0005τLJ = 1.73 fs. Equilibration
is achieved in a 1.73 ns NVE simulation, as checked with standard
protocols.80 Liquid configurations are typically sampled every five
time steps. In the equilibrium classical MD simulation, 1 × 108 liq-
uid configurations from 500 independent trajectories of 1.73 ns were
averaged. In the hybrid equilibrium–nonequilibrium MD simula-
tion, 1 × 108 liquid configurations generated from equilibrium MD
were sampled to generate 1 × 108 pairs of positively and negatively
perturbed nonequilibrium trajectories by applying extra forces with
external electric fields E1 = E2 = 5.0 V/Å. In the DRSK TCF calcu-
lation, 1 × 108 liquid configurations from 500 independent trajecto-
ries of 1.73 ns were averaged to obtain ⟨δΠ(0)δΠ(t1)δΠ(t1 + t2)⟩.
RPMD simulations were implemented in the framework of ther-
mostated RPMD (TRPMD),65 where a Langevin thermostat with

TABLE I. The simulation parameters of liquid Xe (at T∗ = 1.00, ρ∗ = 0.80) and liquid
Ne (at T∗ = 0.84, ρ∗ = 0.78) including the system size (N), number of beads per
atom (P), time step (δt), number of trajectories and configurations averaged, and
kinetic energy per particle per kBT.

N P δt/τLJ Traj. Config. β⟨KE⟩/N

Xe (RPMD) 108 16 0.0005 200 4 × 108 1.50 ± 0.03
Xe (MD) 108 1 0.0005 500 1 × 108 1.50 ± 0.07
Ne (RPMD) 64 64 0.001 500 1 × 108 1.85 ± 0.04
Ne (MD) 108 1 0.001 500 1 × 108 1.50 ± 0.08

parameter γ(k) = 2ωk was applied to the normal modes with posi-
tive ring-polymer frequencies {ωk > 0} (i.e., no thermostat applied
to the centroid with zero ring-polymer frequency to preserve the
Hamiltonian dynamics), and 4 × 108 ring-polymer configurations
from 200 independent trajectories of 17.3 ns were averaged to
compute the TCF. In all cases, the TCF was computed for |t1,2|
< 1.73 ps (while we only plotted the time range of −1.0 ps to 1.0 ps in
Sec. IV).

Simulations of liquid Ne were performed analogously with
N = 108, T∗ = 0.84, ρ∗ = 0.78 for classical MD simulations and N
= 64 represented by P = 64 beads for RPMD, in a cubic periodic box
of length 5.173σ, integrated using the velocity Verlet algorithm with
a time step of δt = 0.001τLJ = 2.27 fs. Equilibration was achieved in a
2.27 ns NVE simulation. A total of 1 × 108 ring-polymer configura-
tions from 500 independent trajectories (2.27 ns each) were averaged
to obtain ⟨δΠ(0)δΠ(t1)δΠ(t1 + t2)⟩P. The TCF was computed with
a maximum t1 and t2 of 2.04 ps. Table I summarizes the simulation
parameters.

C. Spectroscopic observable: Many-body polarizability
The many-body polarizability Π needed for the calculation of

the fifth-order full-polarized 2D Raman response R(5) (t1, t2) was
computed using the dipole-induced-dipole (DID) model,81 where
the total system polarizability Π is expressed as the sum of effective
site polarizabilities πj (j = 1, . . ., N),

Π =
N

∑
j=1

πj. (25)

The effective site polarizability is expressed in terms of N gas-phase
(or isolated) atomic polarizabilities αj (j = 1, . . ., N) and interaction-
induced terms involving the dipole–dipole interaction tensor T,

πj = αj ⋅
⎡⎢⎢⎢⎢⎣
1 +

N

∑
k≠j

T(rjk) ⋅ πk

⎤⎥⎥⎥⎥⎦
(26)

with

T(r′) = ∇∇( 1
r′
) = 3r̂′r̂′ − 1

r′3
, (27)

where r̂′ = r′/r′, r′ = ∣r′∣, and (rjk = rk − rj).
In the case of LJ atomic liquids, each atomic polarizability ten-

sor αj = αj1 is a constant diagonal 3 × 3 matrix. The atomic polar-
izability of Xe αXe = 4.11 Å3 and Ne αNe = 0.396 Å3 was taken
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from Ref. 82. Note that the interaction-induced terms involve the
dipole–dipole tensor T(r′), which is a nonlinear function of the
interatomic distances, thus providing a sensitive probe of liquid
structure rearrangements.83

The effective site polarizability [Eq. (26)] can be computed
through self-consistent iterations starting with the initial guess
πj = αj or by the more computational costly matrix inversion.
To reduce the computational overhead, we limit ourselves to the
first-order DID approximation

πj = αj + αj ⋅
N

∑
k≠j

T(rjk) ⋅ αk. (28)

Previous work showed that the first-order DID approximation can
capture the polarizability dynamics of this atomic liquid model,
although it underestimates the absolute magnitudes of the response
functions.84,85

To further reduce the computational costs of converging multi-
time correlation functions, we took advantage of the fact that in
isotropic systems, such as liquids, averages of products of tensors
can be expressed in terms of rotational invariants, namely,86

AzzBzzCzz =
1

105
Tr(A)Tr(B)Tr(C) +

8
105

TP(A,B,C)

+
2

105
[Tr(A)PP(B,C) + Tr(B)PP(A,C)

+ Tr(C)PP(A,B)], (29)

where the trace, pair product, and triple product are, respectively,
defined as

Tr(A) =∑
i
Aii, (30)

PP(A,B) =∑
i,j
AijBij, (31)

TP(A,B,C) =∑
i,j,k

AijBikCjk. (32)

In our case, Azz , Bzz , and Czz correspond to polarizability fluctua-
tions evaluated at different times [see Eqs. (10) and (18)]. It should
be mentioned that in the hybrid equilibrium–nonequilibrium
approach, the isotropic symmetry of the liquid is broken due to the
explicit perturbation from the external electric fields applied along
the z direction; thus, rotational averages cannot be applied for this
method.40

It is worth noting that varying polarization conditions that cor-
respond to different tensor elements in the 2D Raman response
could be used to identify different coupling mechanisms by select-
ing out specific molecular degrees of freedom,45,46,87 and the corre-
sponding rotational average expressions do not depend on whether
the dynamics is treated classically or quantum-mechanically.86 How-
ever, polarization selectivity is out of the scope of this work.

IV. RESULTS
A. Nuclear quantum effects in Lennard-Jones liquids

We begin by assessing the significance of nuclear quantum
effects in LJ liquids. To this end, in Table I, we present the average

kinetic energy per particle for liquid Xe and liquid Ne at the corre-
sponding state points. The average kinetic energy is computed using
the PIMD virial estimator given by88

⟨KE⟩P =
3N
2β

+
1

2P

N

∑
j=1

P

∑
α=1
⟨(r(α)j − rj) ⋅

∂V(r(α)1 , . . . , r(α)N )

∂r(α)j

⟩
P

, (33)

where rj = 1
P ∑

P
α=1 r

(α)
j is the centroid position of atom j. The first

term in Eq. (33) represents the kinetic energy associated with the
motion of the ring-polymer centroids rj, whereas the second term
accounts for delocalization and quantum fluctuations of the ring-
polymer beads with respect to their centroids and could be sub-
stantial in systems with significant NQEs. Note that in the classical
P = 1 case, the kinetic energy estimator reduces to the classical
kinetic energy, namely, ⟨KE⟩1 = 3N/(2β). Thus, values of β⟨KE⟩P/N
that deviate from 1.5 can be used to assess the importance of NQE.
As can be seen from Table I, for the case of liquid Xe at ρ∗ = 0.80
and T∗ = 1.0, there is no difference between the quantum kinetic
energy and the classical result, indicating that Xe behaves as a classi-
cal liquid. On the other hand, the quantum average kinetic energy
for liquid Ne at ρ∗ = 0.84 and T∗ = 0.78 presents an increase of
∼25% with respect to the classical result, indicating significant NQE
for liquid Ne at low temperatures.

The influence of NQE on the structural properties of liquids can
be inferred from the radial distribution function (RDF). In Figs. 2(a)
and 2(b), we present g(r) computed from PIMD and classical MD
simulations for both Ne and Xe liquids. As can be observed, the
RDF for liquid xenon is almost identical, showing no influence of
NQE in the structure of the liquid. On the other hand, noticeable
differences can be seen in the peak height and position of the first
solvation shell in liquid Ne, indicating a moderate influence of NQE
on the coordination environment around Ne atoms.

As a final descriptor of NQE on LJ liquids, we performed
RPMD simulations to compute the velocity autocorrelation function
defined as64,89

Cvv(t) =
1
N

N

∑
j=1
⟨vj(0) ⋅ vj(t)⟩, (34)

which represents an approximation to the Kubo transformed
velocity autocorrelation function. In the previous equation, vj
= 1

P ∑
P
α=1 v

(α)
j corresponds to the centroid velocity of atom j. By

comparing the RPMD velocity autocorrelation function with its clas-
sical P = 1 counterpart, it is possible to assess the influence of NQE
in the dynamics of LJ liquids. In Figs. 2(c) and 2(d), we present the
results for Cvv(t) computed with RPMD and MD simulations for
both Ne and Xe. For the case of Xe, both correlation functions are
almost identical, showing no noticeable NQE. On the contrary, for
liquid Ne, the quantum TCF decays ∼0.05τLJ = 0.1 ps slower than
the classical one, indicating that NQEs have a moderate influence on
the dynamics of the liquid.

The overall conclusion of the previous analysis is that liquid
Xe at ρ∗ = 0.80 and T∗ = 1.0 does not present any noticeable NQE
and can be described as a classical liquid. This fluid thus provides a
benchmark system for which classical dynamics should be accurate
and serves as a test of the performance of the quantum dynami-
cal method in the classical limit. On the other hand, liquid Ne at
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FIG. 2. Radial distribution functions
obtained from ring-polymer molecular
dynamics (RPMD, red solid curve) and
molecular dynamics (MD, black dashed
curve) for (a) liquid Xe (at T∗ = 1.00,
ρ∗ = 0.80) and (b) liquid Ne (at T∗

= 0.84, ρ∗ = 0.78). The velocity–velocity
time correlation functions obtained from
RPMD (red solid curve) and MD (black
dashed curve) for (c) liquid Xe and (d)
liquid Ne. The number of atoms, N, and
number of beads per atom, P, are indi-
cated. Lennard-Jones reduced units (σ
and τLJ ) are used. Results are obtained
by averaging over 107 configurations for
RPMD of Ne, and 108 configurations for
the other cases.

ρ∗ = 0.84 and T∗ = 0.78 exhibits moderate NQE on the liquid struc-
ture and the dynamics and hence serves as a test model for assessing
NQE in nonlinear spectroscopies. It is important to remark that
despite some influence of NQE being seen in liquid Ne, they are still
not significant enough to induce exchange effects of nuclei like in
superfluid 4He droplets below 1 K.57

B. 2D Raman spectroscopy of liquid Xe

Having established the influence of NQE on LJ liquids, we
now analyze the performance of the DKT approach to simulate 2D
Raman spectroscopy. As an initial test, we considered the fully polar-
ized 2D Raman response of (classic-like) liquid Xe at T∗ = 1.0 and

FIG. 3. Time correlation functions of
many-body polarizability fluctuation
⟨δΠ(0)δΠ(t1)δΠ(t1 + t2)⟩ for liquid
Xe obtained with (a) RPMD and (b) MD
as well as for liquid Ne obtained with (c)
RPMD and (d) MD. TCF are normalized.
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ρ∗ = 0.80. Since the DKT approach is based on the TCF of fluc-
tuations of the polarizability, in Fig. 3, we present contour plots
of ⟨δΠ(0)δΠ(t1)δΠ(t1 + t2)⟩P computed with RPMD and classical
(P = 1) MD simulations. The TCF smoothly decays to zero in a
timescale of ∼1 ps from its initial value, showing little structure after
∼0.6 ps. Note that the central symmetry of the TCF [i.e., f (t1, t2)
= f (−t1, −t2)] 69 is evident, which can be traced back to the time
reversal symmetry. The comparison of the TCF obtained with
RPMD and MD shows no discernible difference, which is consistent
with the results obtained from the velocity autocorrelation function
(Fig. 2).

In the left panels of Fig. 4, we present the time-domain
2D Raman response functions for liquid Xe computed using the

FIG. 4. Fifth-order 2D Raman response functions for liquid Xe (left panels)
and liquid Ne (right panels) computed via the DKT approach with RPMD [(a)
and (e)], classical DRSK TCF approximation with MD [(b) and (f)], equilib-
rium classical MD approach involving stability matrix [(c) and (g)], and hybrid
equilibrium–nonequilibrium MD [(d) and (h)]. Response functions are normalized.

DKT approach [panel (a)]. We also include results of the classical
response computed with the DRSK approximation [panel (b)], the
stability matrix approach [panel (c)], and the hybrid equilibrium–
nonequilibrium approach [panel (d)]. A comparison between the
bottom two panels in Fig. 4 shows that the stability matrix and the
hybrid equilibrium–nonequilibrium 2D spectra are identical, pro-
viding a confirmation that Poisson brackets evaluated by nonequi-
librium MD are also numerically exact on the classical level.40 The
classical time-domain 2D Raman response is predominantly char-
acterized by a negative signal center at t1 ∼ 50 fs, t2 ∼ 340 fs, in
consistency with previous results.35,36 Note also the lack of an echo
signal along the diagonal t1 = t2

35,36,45,46 and thatR(5) (t1, t2) = 0 along
the t2 = 0 axis.

The comparison of the DKT and the DRSK response with
the classical result shows that the characteristic features of the
2D Raman response are fairly well reproduced by these approxi-
mated approaches.52 In particular, the overall lineshape and decay
timescales of the spectra are in good agreement, with a negative

FIG. 5. Fifth-order 2D Raman response functions for liquid Xe calculated via the (a)
DKT approach with RPMD and (b) equilibrium MD approach. Response functions
are normalized.
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signal centered at t1 ∼ 80 fs, t2 ∼ 340 fs, and a response that
vanishes (within numerical error) along the t2 = 0 axis. However,
both DKT and DRSK responses show a faster decay along the t2
axis for t2 < 0.4 ps, and a different spectral decay in the region
t1 < 0.5 ps, t2 < 0.2 ps, somehow overestimating the intensity of the
signal in this region (for better visualization of this effect, in Fig. 5,
we present a 3-dimensional plot with 2D contour projection of the
DKT and classical MD 2D Raman spectra of liquid Xe). This lat-
ter result is akin to the one found in one-dimensional systems and
can be attributed to the neglect of the asymmetric part in the DKT
approximation.69

To better quantify the differences in liquid Xe 2D Raman spec-
tra obtained by different approaches, in Fig. 6, we present time slices
of the time-domain 2D Raman responses calculated via DKT with
RPMD, DRSK with MD, and equilibrium MD. The time slice at
t2 = 0.34 ps with error bars of the DKT response and DRSK response
[Fig. 6(g)] is shown in Fig. 9(a). Both approximate approaches show
a small time shift in the position of the peak of the negative feature

FIG. 6. Time slices along t2 with t1 fixed [(a)–(d)], along t1 with t2 fixed [(e)–(g)],
and the diagonal one with t1 = t2 (h) of the fifth-order 2D Raman response func-
tions for liquid Xe calculated via the equilibrium MD approach (black), DRSK TCF
approximation (cyan), and DKT with RPMD (red). The sampling rate is Δt = 5δt
= 8.65 fs.

with respect to the converged classical response,52 an effect that is
more evident for time slices at short-time [Figs. 6(a) and 6(b)]. The
overestimation of the initial positive peak is also evident for times
t2 < 0.2 ps. At longer times, the decay of the 2D response is accu-
rately reproduced by both DKT and DRSK approaches. Given the
overall performance, the results presented here confirm that both
DKT and DRSK approaches provide computationally tractable theo-
ries for the calculation of 2D response functions in condensed-phase
systems.

It is interesting to note that the response obtained using the
DKT approach and the classical DRSK approximation for liquid
Xe is quite similar, even though both methods do not appear to
be equivalent. To rationalize the connection between these two
methodologies, it is instructive to note that the state point consid-
ered for liquid Xe corresponds to a high temperature (β→ 0). In the
high temperature limit, the intra-polymer harmonic spring forces
in the RPMD Hamiltonian [Eq. (23)] become so large that the ring
polymer collapses to a single point and the multi-time RPMD TCF
effectively reduces to a multi-time classical correlation function,
namely, Ksym(t1, t2)→ C(t1, t2).69 Moreover, it is straightforward to
show that in this high temperature limit (see the Appendix),

lim
β→0

Q+(ω1,ω2) =
β2

3
ω1(ω1 − 2ω2). (35)

Therefore, in the high temperature limit, the symmetrized DKT
approximation to the response is given by

lim
β→0

R̃DKT(ω1,ω2) =
2β2

3
(1

2
ω2

1 − ω1ω2)C̃(ω1,ω2), (36)

which can be analytically Fourier transformed into the time domain
to obtain

lim
β→0

R(5)DKT(t1, t2) =
2β2

3
[∂

2C(t1, t2)
∂t1∂t2

− 1
2
∂2C(t1, t2)

∂t2
1

]. (37)

Note that other than a constant multiplicative factor (which is imma-
terial in the normalized response shown in Fig. 6), Eq. (37) is equiva-
lent to the DRSK approximation introduced by Eq. (9), demonstrat-
ing that both approaches are equivalent (to a scaling factor) in the
high temperature limit. Note that the novel relation established in
Eq. (37) is general for any two-time TCF and does not depend on
the system under consideration, providing one of the main find-
ings of this paper. Moreover, since the DKT approach stems from
a rigorous quantum-mechanical expression valid at any tempera-
ture, unlike the DRSK approach, which is derived in the classical
(high temperature) limit with harmonic potential assumptions, the
DKT approach provides a clear advantage over the DRSK method,
allowing one to include NQE in the computation of 2D response
functions.

C. 2D Raman spectroscopy of liquid Ne
As a final test of the performance of the DKT approach, we ana-

lyzed the 2D Raman response of liquid Ne at T∗ = 0.84 and ρ∗ = 0.78,
which presents moderate NQE. RPMD and classical results for the
two-time correlation function of the fluctuations of the polarizabil-
ity ⟨δΠ(0)δΠ(t1)δΠ(t1 + t2)⟩ are presented in the right panels of
Fig. 3. The TCFs present similar characteristics to the ones obtained
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for liquid Xe, albeit a faster decay, which can be correlated with
the shorter characteristic timescale τLJ for Ne as compared with Xe.
The comparison between RPMD and MD TCFs shows a small dif-
ference in the lineshape of the correlation, with a slower decay for
the former correlations, akin to the NQE observed in the velocity
autocorrelation function (Fig. 2).

Figure 4 (right panels) shows contour plots of the time-domain
2D Raman response functions for liquid Ne obtained using different
methodologies. Similar to liquid Xe, the response is characterized by
a main negative peak at around t1 = 50 fs, t2 = 230 fs. However, the
decay of the signals is faster in Ne than in Xe, in accordance with
τLJ(Ne) < τLJ(Xe). In terms of the approximate approaches, both
DKT and DRSK methods capture the overall lineshape and decay
timescale of the response, although the decay along t2 is faster and
the intensity of the short-time positive signal is again overestimated
(see Fig. 7 for a 3-dimensional plot of the DKT and classical MD 2D
Raman spectra of liquid Xe).

FIG. 7. Fifth-order 2D Raman response functions for liquid Ne calculated via the (a)
DKT approach with RPMD and (b) equilibrium MD approach. Response functions
are normalized.

FIG. 8. Time slices along t2 with t1 fixed [(a)–(d)], along t1 with t2 fixed [(e)–(g)],
and the diagonal one with t1 = t2 (h) of the fifth-order 2D Raman response functions
for liquid Ne [Figs. 4(e)–4(g)] calculated via equilibrium the MD approach (black),
DRSK TCF approximation (cyan), and DKT with RPMD (red). Here, the sampling
rate is Δt = 5δt = 11.35 fs.

Time slices of the 2D response of liquid Ne are presented in
Fig. 8. Similar features as in the case of liquid Xe can be observed
for the approximate methodologies in comparison with the classi-
cal result, namely, a small shift in the position of the negative peak
and an overestimation of the intensity of the positive peak at shorter
times. However, note that in this case, the response obtained with
DKT and DRSK methods is not equivalent as evident by a slightly
faster decay of the quantum response [Figs. 8(d) and 8(f)–8(h)]. Fig-
ure 9(b) shows the time slice at t2 = 0.23 ps with error bars of the
DKT response and DRSK response [Fig. 8(g)], revealing that the
difference between them is statistically distinguishable. Given the
connection between both approaches in the high temperature limit
(see Sec. IV B), the subtle difference between the DKT and DRSK
response can be correlated with the different information encoded in
the two-time RPMD TCF in contrast to the classical TCF (see Fig. 3).
Since RPMD can encode NQE in multi-time correlation functions,
as shown in Ref. 69, for simple model systems for which exact
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FIG. 9. Time slices with error bars of the fifth-order 2D Raman response functions
calculated via the DRSK TCF approximation (cyan) and DKT with RPMD (red) in
liquid Xe (a) and Ne (b), corresponding to Figs. 6(g) and 8(g).

quantum calculations can be done, we therefore ascribed the faster
decay in the DKT response function to NQE. Given the difficulty
of performing exact quantum calculations for condensed-phase sys-
tems, our results show the DKT approach as an effective methodol-
ogy to incorporate NQE in 2D spectroscopy.

V. CONCLUDING REMARKS
In the present work, we have shown that the recently developed

double Kubo transform (DKT) approach69 in combination with
multi-time ring-polymer molecular dynamics (RPMD) provides a
practical numerical method for the incorporation of nuclear quan-
tum effects in the simulation of fifth-order 2D Raman spectroscopy
of atomic liquids. Two different systems were studied. For liquid Xe
at T∗ = 1.00, ρ∗ = 0.80, where NQEs are not important and the sys-
tem behaves classically, the DKT 2D Raman response is comparable
with the response obtained with classical methodologies. Moreover,
in this high temperature regime, the DKT approach reduces (besides
a constant multiplicative factor) to the classical method developed by
DeVane et al.51 for the simulation of 2D Raman spectroscopy, pro-
viding a general result that is independent of the system and is one
of the main findings of this paper. On the other hand, the results
for liquid Ne at low temperatures (T∗ = 0.84, ρ∗ = 0.78) calculated
using the DKT approach reveal moderate but discernible nuclear

quantum effects in the 2D Raman response when compared with
classical simulations. Given the fact that the 2D Raman spectroscopy
depends on the many-body polarizability, which is a nonlinear oper-
ator of the nuclear coordinates, our results demonstrate the feasi-
bility of the DKT approach to incorporate nuclear quantum effects
in the simulation of nonlinear spectroscopy for condensed-phase
systems.

Our study was focused on the 2D Raman response function of
LJ atomic liquids. Although NQEs are observed in the 2D response
for liquid Ne at low temperatures, the effects are rather small. It
would be interesting to compare the calculated 2D Raman spectra
with experimental measurements, which is currently unavailable. It
would also be interesting to analyze how NQEs influence the spec-
troscopic response in systems that might show more pronounced
quantum effects, such as para-H2,89 glassy systems,90,91 water,92

molecular liquids,93 or organic photovoltaic systems.94 Moreover,
the DKT approach can be readily applied to other types of vibra-
tional spectroscopy whose response can be expressed as a multi-time
correlation involving three operators, such as 2D Raman-THz,49,95,96

where NQE can be more pronounced.97 Future work will explore the
performance of the DKT formalism for these systems.

Finally, we would like to remark possible improvements to
the current DKT formalism, which involves two approximations:
(1) the neglect of the asymmetric part in the exact DKT expan-
sion of the 2D response function and (2) the use of RPMD to
estimate the symmetrized DKT correlation function. The devel-
opment of practical methods to incorporate the asymmetric DKT
will extend the usage of the theory for the simulation of systems
with significant anharmonicity. On the other hand, the dynamics
generated by RPMD could be replaced by more accurate quantum
dynamical methods. We have recently shown that the symmetrized
DKT could be approximated by a multi-time version of Matsub-
ara dynamics.75 Although not a practical method for condensed-
phase systems, Matsubara dynamics provides a benchmark starting
point for the future development of Boltzmann preserving semi-
classical approximations to multi-time correlation functions. Addi-
tionally, extensions of other accurate quantum dynamical methods
such as linearized path-integral methods98–100 could be used to give
rise to better estimation of multi-time correlation functions. Finally,
extension of the DKT framework for the simulation of electronic
spectroscopies, such as 2D solute-pump/solvent-probe,40,84,85,93 or
other vibrational spectroscopies, such as 2D THz101 or 2D IR spec-
troscopy,6,9,13,14 are in principle possible. Work in these directions is
underway and will be reported in future publications.

SUPPLEMENTARY MATERIAL

See the supplementary material for the derivation of the DKT
formalism using the relative times.
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APPENDIX: HIGH TEMPERATURE LIMIT OF Q±
The high temperature limit of the Q± factors presented in

Eq. (12) can be obtained by performing a Taylor expansion in β of
the exponentials in Q1 [Eq. (13)],

Q1(ω1,ω2) = −
2
h̵2

βh̵ω1 − (βh̵ω1)2/2 + O[(βh̵)3]
1 − βh̵(ω1 + ω2)/3 + O[(βh̵)2]

= − 2
h̵2 [βh̵ω1 −

1
2
(βh̵ω1)2 + O[(βh̵)3]]

× [1 +
1
3
βh̵(ω1 + ω2) + O[(βh̵)2]]

= − 2
h̵2 [βh̵ω1 −

1
6
(βh̵)2ω1(ω1 − 2ω2) + O[(βh̵)3]].

(A1)

Noting the definition of Q± [Eq. (12)], the high temperature
limit of the Q factors is given by

lim
β→0

Q+(ω1,ω2) ≈
β2

3
ω1(ω1 − 2ω2), (A2)

lim
β→0

Q−(ω1,ω2) ≈ −
2β
h̵
ω1. (A3)
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