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1 Syllabus

Statistics, data science and quantum behavior are likely to be key themes that will dominate the way science
and engineering develop over the next few decades. This course highlights their impact on molecules and
materials. Only an approach combining theoretical and computational methods can be expected to succeed
in the face of problems of such difficulty -hence the hands on structure of the course. The goal is to introduce
the fundamental concepts and ideas of quantum statistical mechanics to elucidate gas phase and condensed
phase behavior, as well as to establish a microscopic derivation of statistical thermodynamics. Classical
results are obtained according to the classical limit of the quantum mechanical expressions. Topics include
ensembles, Fermi, Bose and Boltzmann statistics, density matrices, mean field theories, phase transitions,
chemical reaction dynamics, time-correlation functions, Monte Carlo simulations and Molecular Dynamics
simulations.
The official textbook for this class is:
R1: "Introduction to Modern Statistical Mechanics" by David Chandler (Oxford University Press). Ch. 3-8.
Additional textbooks are available at the Kline Science and Engineering library include:
R2: "Introduction to Statistical Thermodynamics" by T.L. Hill (Addison Wesley),
R3: "Statistical Mechanics" by D. McQuarrie (Harper & Row),
R4: "Fundamentals of Statistical and Thermal Physics" by F. Reif (McGraw Hill),
R5: "Statistical Mechanics" by R. Kubo (Noth-Holland Publishing Company),
R6: "A course in Statistical Mechanics" by H.L. Friedman (Prentice-Hall),
R7: "Statistical Mechanics: Theory and Molecular Simulation" by Mark E. Tuckerman (Oxford University
Press).
References to specific pages of the textbooks listed above are indicated in the notes as follows: R1(190)
indicates “for more information see Reference 1, Page 190”.
The lecture notes are online at http://ursula.chem.yale.edu/ batista/classes/vaa/index.html
Furthermore, a useful mathematical reference is R. Shankar, Basic Training in Mathematics. A Fitness
Program for Science Students, Plenum Press, New York 1995.
A useful search engine for mathematical and physical concepts can be found at
http://scienceworld.wolfram.com/physics/

Grading
The final exam for 472/572 will be a computational final project that will be presented on 10/17, 5pm.
Grading evaluation is the same for both undergraduate and graduate students. The intended population of
the course includes first year graduate students and senior undergraduates.
homework and assignments (30%),
one mid-terms (50%)
final project (20%)
Homework will be assigned during lectures and also through Yale canvas. Submission will be by email to
victor.batista@yale.edu, as a scanned pdf of your work (please, download CamScanner).
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Tentative Distribution of Topics
1. Sept 1 - Sept. 15: The Statistical Method and Ensembles (Chapter 3)
3. Sept. 16 - Oct. 6: Ideal Systems (Chapter 4, and refs)
4. Oct. 7 - Oct. 15: Theory of Phase Transitions (Chapter 5, and refs)

Contact Information
Office hours will be held by zoom or appointment at your convenience.
You can send me email to victor.batista@yale.edu if you have any question.

7



2 Introduction

Statistical Mechanics is a theory that establishes the connection between the observed properties of systems
with many degrees of freedom and the microscopic quantum mechanical properties of the elementary con-
stituents of the systems (e.g., electrons, atoms and molecules). Such a theory builds upon the description of
matter provided by quantum mechanics and provides the molecular foundation of Thermodynamics. Con-
trary to evaluating the precise N-particle dynamics of macroscopic systems, Statistical Mechanics describes
the properties of systems in terms of the statistics of possible microscopic states. The description of mea-
surements is, therefore, given in terms of the ensemble average of expectation values associated with the
quantum states that constitute such an ensemble.

Macroscopic systems consist of an enormously large number of degrees of freedom (e.g., ∼ 1023 elec-
trons, atoms or molecules), so many degrees of freedom that in practice it is impossible to prepare such
systems in a well defined microscopic quantum state (i.e., in a pure quantum state). Instead, they are usually
prepared in thermodynamic states (i.e., in a statistical mixtures of quantum states) characterized by a few
physical quantities (e.g., the temperature, the pressure, the volume and the number of particles).

To describe macroscopic systems in terms of quantum mechanics it is, therefore, necessary to incorpo-
rate into the formalism the incomplete information about the state of the system. The most natural approach
is provided by appealing to the concept of probability. This can be accomplished by introducing the density
operator, a very useful mathematical tool which facilitates the simultaneous application of the postulates of
quantum mechanics and the results of probability calculations.

Link to Dr. Uriel Morzan’s Introduction to Statistical Mechanics

3 Pure States

A pure state is defined as a state that can be described by a ket vector |ψ >.1 Such state evolves in time
according to the time dependent Schrödinger equation,

ih̄
∂|ψ >

∂t
= Ĥ|ψ >, (1)

where H is the Hamiltonian operator. Note that Eq. (1) is a deterministic equation of motion that allows
one to determine the state vector at any time, once the initial conditions are provided. The state vector |ψ >
provides the maximum possible information of the system. It can be expanded in the basis set of eigenstates
|φk > of an arbitrary Hermitian operator ô that represents an observable of the system,

|ψ >= ∑
k

ak|φk >, (2)

where |φk > are the eigenstates of ô, with eigenvalues ok,

ô|φk >= ok|φk > . (3)

The expansion coefficients ak, introduced by Eq. (2), are complex numbers that can be written in terms of
real amplitudes pk and phases θk as follows,

ak =
√

pkeiθk . (4)

1If you are starting to get the hang of the bra-ket notation, you can go through the notes recommended by Jonah Pearl.
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The coefficients pk determine the probability of observing the eigenvalue ok when the system is in state
|ψ >. The expectation value of ô is

< ψ|ô|ψ >= ∑
k

pkok, (5)

i.e., the average of expectation values associated with states |φk >.
The expectation value of any arbitrary operator Â, which does not share a common set of eigenstates

with ô, can be computed in the basis set of eigenstates of ô as follows,

< ψ|Â|ψ >= ∑
k

pk < φk|Â|φk > +∑
k

∑
j 6=k

√
pk pjei(θj−θk) < φk|Â|φj > . (6)

Note that such an expectation value is not only determined by the average of expectation values associated
with states k (i.e., the first term in the r.h.s of Eq. (6)), but also by the second term in that equation. Such
second term is responsible for interferences, or coherences, between states | φk > and | φj > as determined
by the phases θk and θj.
Consider a large number of N replicas of the system, all of them described by the same state vector |ψ >.
Note that such collection of N replica systems is also described by a pure state. Therefore, the ensemble
averages associated with the observables ô and Â of such a pure state will coincide with the expectation
values given by the equations Eq. (5) and Eq. (6), respectively.

4 Statistical Mixture of States

The collection of a large number N of independently prepared replicas of the system is called an ensemble.
An ensemble of N replicas of systems is in a statistical mixture of states |φk >, with probabilities pk, when
nk members of the ensemble are in state |φk >, with pk = nk/N. Note that each member of the ensemble
is in a specific state |φk >, not in a coherent superposition of states as described by Eq. (2). Therefore, the
ensemble averages associated with the observables ô and Â are

A = ∑
k

pk < φk|Â|φk >, (7)

and
o = ∑

k
pk < φk|ô|φk >= ∑

k
pkok, (8)

respectively. Note that the ensemble average o, introduced by Eq. (8), coincides with the ensemble average
of the pure state described by Eq.(5). However, the ensemble average A, introduced by Eq. (7), does not
coincide with the corresponding ensemble average of the pure state, introduced by Eq. (6). As a matter of
fact, it coincides only with the first term of Eq. (6) since the second term of the r.h.s. of Eq. (6) is missing in
Eq. (7). Therefore, in a statistical mixture there are no contributions to the ensemble average coming from
interferences between different states (e.g., interferences between states |ψk〉 and |ψj〉).

The statistical mixture introduced in this section, is also equivalent to an ensemble of N replicas of the
system in incoherent superposition of states represented as follows,

| ψ(ξ)〉 = ∑
k

√
pkeiθk(ξ)|φk >, (9)

where the phases θk(ξ) are distributed among the different members ξ of the ensemble according to a
uniform and random distribution.

In the remaining of this section we introduce the most important types of ensembles by considering
systems with only one species of molecules. Additional details for multicomponent systems are considered
later.
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In the canonical ensemble all of the replica systems are in thermal equilibrium with a heat reservoir
whose temperature is T. This ensemble is useful for comparisons of the ensemble averages with measure-
ments on systems with specified number of particles N, volume V and temperature T. It is central to Monte
Carlo simulations, an important approximation method of Statistical Mechanics.

In the microcanonical ensemble all of the replica systems have the same energy E and number of par-
ticles N. This ensemble is no very simply applicable to comparisons with systems we usually study in
the laboratory, since those are in thermal equilibrium with their surroundings. However, the microcanoni-
cal ensemble is centrally involved in Molecular Dynamics simulations which is one of the most important
approximation methods of Statistical Mechanics.

In the grand canonical ensemble all of the replica systems are in thermal equilibrium with a heat reser-
voir whose temperature is T and they are also in equilibrium with respect to exchange of particles with
a “particle” reservoir where the temperature is T and the chemical potential of the particles is µ. This
ensemble is useful for comparisons to measurements on systems with specified µ, T and V.
Exercise 1: Compute the ensemble average Ā associated with the incoherent superposition of states intro-
duced by Eq. (9) and verify that such an average coincides with Eq. (7).

5 Density Operator

In this section we show that ensemble averages for both pure and mixed states can be computed as follows,

A = Tr{ρ̂Â}, (10)

where ρ̂ is the density operator
ρ̂ = ∑

k
pk|φk >< φk|. (11)

Note that, in particular, the density operator of an ensemble where all of the replica systems are described
by the same state vector |ψ > (i.e., a pure state) is

ρ̂ = |ψ >< ψ|. (12)

Eq. (10) can be proved first for a pure state |ψ >= ∑k ak|φk >, where | φk〉 constitute a complete basis set
of orthonormal states (i.e., < φk′ |φk >= δkk′), by computing the Tr{ρ̂Â} in such representation as follows,

A = ∑
k′

< φk′ |ψ >< ψ|Â|φk′ > . (13)

Substituting the expansion of | ψ〉 into Eq. (13) we obtain,

A = ∑
k′

∑
j

∑
k
< φk′ |φk > aka∗j < φj|Â|φk′ >, (14)

and since < φk′ |φk >= δkk′ ,

A = ∑
k

pk < φk|Â|φk > +∑
k

∑
j 6=k

√
pk pjei(θk−θj) < φj|Â|φk >, (15)

where we have substituted the expansion coefficients aj in accord with Eq. (4). Equation (15) is identical to
Eq. (6) and, therefore, Eq. (10) is identical to Eq. (6) which defines an ensemble average for a pure state.
Eq. (10) can also be proved for an arbitrary mixed state defined by the density operator introduced by Eq.
(11), by computing the Tr{ρ̂Â} as follows,

A = ∑
k′

∑
k

pk < φk′ |φk >< φk|Â|φk′ >= ∑
k

pk < φk|Â|φk >, (16)
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which is identical to Eq. (7).
Exercise 2:

(A) Show that Tr{ρ̂}=1 for both mixed and pure states.
(B) Show that Tr{ρ̂2}=1 for pure states.
(C) Show that Tr{ρ̂2} ≤ 1 for mixed states.

Note that the Tr{ρ̂2} is, therefore, a measurement of decoherence (i.e., lost of interference between the var-
ious different states in the ensemble). When the system is in a coherent superposition state, such as the one
described by Eq. (2), Tr{ρ̂2}=1. However, Tr{ρ̂2} ≤1 when the system is in an incoherent superposition of
states such as the one described by Eq. (9).

6 Time-Evolution of Ensembles

The evolution of systems in both pure and mixed states can be described according to the following equation:

∂ρ̂

∂t
= − [ρ̂, Ĥ]

ih̄
. (17)

Exercise 3: Using the equation of motion for a state vector |ψ > (i.e., Eq. (1)), show that Eq. (17) describes
the time evolution of ρ̂ for a pure state.
Exercise 4: Using the linearity of Eq. (1), show that Eq. (17) also describes the time evolution of ρ̂ for a
mixed state.

7 Classical Analogue

Microscopic states: Quantum statistical mechanics defines a microscopic state of a system in Hilbert space
according to a well defined set of quantum numbers. Classical statistical mechanics, however, describes
the microscopic state in phase space according to a well defined set of coordinates (x1, ...x f ) and momenta
(p1, ..., p f ).
Ensembles: Quantum statistical mechanics describes an ensemble according to the density operator ρ̂,
introduced by Eq. (11). Classical statistical mechanics, however, describes an ensemble according to the
density of states ρ = ρ(x1, ...x f , p1, ..., p f ).
Time-Evolution of Ensembles: Quantum statistical mechanics describes the time-evolution of ensembles
according to Eq. (17), which can be regarded as the quantum mechanical analogue of the Liouville’s theorem
of classical statistical mechanics,

∂ρ

∂t
= − (ρ, H) , (18)

Eq. (18) is the equation of motion for the classical density of states ρ = ρ(x1, ...x f , p1, ..., p f ). Thus the
name density operator for ρ appearing in Eq. (17).
Note that the classical analog of the commutator [G,F]

ih̄ is the Poisson bracket of G and F,

(G, F) ≡
f

∑
j=1

∂G
∂xj

∂F
∂pj
− ∂G

∂pj

∂F
∂xj

. (19)

Exercise 5: Prove Eq. (18) by using the fact that the state of a classical system is defined by the coordinates
(x1, ...x f ) and momenta (p1, ..., p f ) which evolve in time according to Hamilton’s equations, i.e.,

dpj

dt
= −∂H

∂xj
,

dxj

dt
=

∂H
∂pj

, (20)
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where H = ∑
f
j=1 p2

j /(2mj) + V(x1, ...x f ) is the classical Hamiltonian.
Ensemble Averages: Quantum statistical mechanics describes ensemble averages according to Eq. (10).
Classical statistical mechanics, however, describes ensemble averages according to the classical analog of
Eq. (10),

Ā =

∫
dx
∫

dpρ(x1, ..., x f , p1, ..., p f )A∫
dx
∫

dpρ(x1, ..., x f , p1, ..., p f )
, (21)

where dxdp stands for a volume element in phase space.

8 Entropy

The entropy S̄ of an ensemble can be defined in terms of the density operator ρ̂ as follows,

S ≡ −kTr{ρ̂ lnρ̂}, (22)

where k is the Botzmann constant. Equation (22) is the Von Neumann definition of entropy. This is the most
fundamental definition of S because it is given in terms of the density operator ρ̂, which provides the most
complete description of an ensemble. In particular, the Gibbs entropy formula,

S = −k ∑
k

pklnpk, (23)

can be obtained from Eq. (22) by substituting ρ̂ in accord with Eq. (11).
From Eq. (23) one can see that the entropy of a pure state is zero, while the entropy of a statistical

mixture is always positive. Therefore,
S ≥ 0, (24)

which is the fourth law of Thermodynamics.

8.1 Exercise: Entropy Extensivity

Show that the definition of entropy, introduced by Eq. (23), fulfills the requirement of extensivity (i.e., when
dividing the system into fragments A and B, the entropy of the system including both fragments SAB equals
the sum of the entropies of the fragments SA and SB).
Solution: We consider that the fragments are independent so the joint probability pjA,jB of configurations
jA and jB of fragments A and B is equal to the product of the probabilities pjA and pjB of the configurations
of each fragment. Therefore, SAB = ∑jA ∑jB pjA,jB ln(pjA,jB) = ∑jA ∑jB pjA pjB ln(pjA pjB), with SA =

∑jA
pjA ln(pjA) and SB = ∑jB pjB ln(pjB). So, SAB = SA + SB, since ln(pjA pjB) = ln(pjA) + ln(pjB).
We can show that there is no other function but the logarithm that fulfills that condition, as follows.

Consider a function that fulfills the following condition: f (pjA pjB) = f (pjA) + f (pjB) and compute the
partial derivative with respect to pjA , as follows:

∂ f (pjA pjB)

∂(pjA pjB)
pjB =

∂ f (pjA)

∂pjA

. (25)

Analogously, wecompute the partial derivatives with respect to pjB , as follows:

∂ f (pjA pjB)

∂(pjA pjB)
pjA =

∂ f (pjB)

∂pjB
. (26)
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Therefore,

pjA

∂ f (pjA)

∂pjA

= pjB
∂ f (pjB)

∂pjB
= c, (27)

where c is a constant.
Therefore,

∂ f (pjA )

∂pjA
= c

pjA
and

∫
dpjA

∂ f (pjA )

∂pjA
= c

∫
dpjA

1
pjA

, giving f (pjA) = c ln(pjA).

9 Maximum-Entropy Density Operator

The goal of this section is to obtain the density operator ρ̂, with Tr{ρ̂} = 1, that maximizes the entropy
S = −kTr{ρ̂lnρ̂} of a system characterized by an ensemble average internal energy

E = Tr{ρ̂Ĥ}, (28)

and fix extensive properties X such as X = (V, N) (i.e., canonical and microcanonical ensembles).
This is accomplished by implementing the method of Lagrange Multipliers to maximize the function

f (ρ̂) ≡ −kTr{ρ̂lnρ̂}+ γ(E− Tr{ρ̂Ĥ}) + γ′(1− Tr{ρ̂}), (29)

where γ and γ′ are Lagrange Multipliers. We, therefore, solve for ρ̂ from the following equation

∂ f
∂ρ̂

)
X

= 0, (30)

and we obtain that the density operator that satisfies Eq. (30) must satisfy the following equation:

Tr{−klnρ̂− k− γĤ − γ′} = 0. (31)

Therefore,

− lnρ̂ = 1 +
γ

k
Ĥ +

γ′

k
. (32)

Exponentiating both sides of Eq. (32) we obtain

ρ̂ = exp(−(1 + γ′

k
))exp(−γ

k
Ĥ), (33)

and, since Tr{ρ̂}=1,

exp(−(1 + γ′

k
)) =

1
Z

, (34)

where Z is the partition function
Z ≡ Tr{exp(−βĤ)}, (35)

with β ≡ γ/k.
Substituting Eqs. (35) and (34) into Eq. (33), we obtain that the density operator that maximizes the

entropy of the ensemble, subject to the contraint of average ensemble energy Ē, is

ρ̂ = Z−1exp(−βĤ). (36)

Note that
∂ρ̂

∂t
= 0, (37)

when ρ̂ is defined according to Eq. (36) and, therefore, the system is at equilibrium.
Exercise 6: Use Eqs. (17) and (36) to prove Eq. (37).
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10 Internal Energy and Helmholtz Free Energy

Substituting Eqs. (35) and (34) into Eq. (28) we obtain that the internal energy E can be computed from the
partition function Z as follows,

E = −∂lnZ
∂β

)
X

. (38)

Furthermore, substituting Eqs. (35) and (34) into Eq. (22) we obtain

S = −kTr{ρ̂(−βĤ − lnZ)} = kβE + klnZ. (39)

In the next section we prove that the parameter T ≡ (kβ)−1 can be identified with the temperature of the
ensemble. Therefore,

A = E− TS = −kTlnZ, (40)

is the Helmholtz free energy, that according to Eq. (38) satisfies the following thermodynamic equation,

E =
∂(βA)

∂β

)
X

. (41)

11 Temperature

The parameter T ≡ 1/kβ = 1
γ has been defined so far as nothing but the inverse of the Lagrange Multiplier

γ. Note that according to Eq. (39), however, T can be defined as follows:

1
T

=
∂S
∂E

)
N

. (42)

The goal of this section is to show that T can be identified with the temperature of the system because it is
the same through out the system whenever the system is at thermal equilibrium.
Consider a system at equilibrium, with ensemble average internal energy E, in the state of maximum entropy
at fixed N. Consider a distribution of S, T, and E in compartments (1) and (2) as specified by the following
diagram:

(1) (2)

S(1) T(1) E(1)

N1

S(2) T(2) E(2)

N2

6

Thermal (Heat) Conductor

Consider a small displacement of heat δE from compartment (1) to compartment (2):

δE(1) = −δE, and δE(2) = δE. (43)

Since the system was originally at the state of maximum entropy, such a displacement would produce a
change of entropy

δS)E,N ≤ 0, (44)

14



where

δS = δS(1) + δS(2) =
∂S(1)

∂E(1)

)
N

δE(1) +
∂S(2)

∂E(2)

)
N

δE(2) =

(
1
T1
− 1

T2

)
δE ≤ 0. (45)

Since the inequality introduced by Eq. (45) has to be valid for any positve or negative δE, then T1 = T2 .

12 Minimum Energy Principle

The minimum energy principle is a consequence of the maximum entropy principle. This can be shown by
considering the system at thermal equilibrium described by the following diagram:

(1) (2)

S(E(1), X)

N1

S(E(2), X)

N2

6

Thermal (Heat) Conductor

Consider a small displacement of heat δE from compartment (2) to compartment (1). Since the system
was originally at equilibrium, such a contraint in the distribution of thermal energy produces a constrained
system whose entropy is smaller than the entropy of the system at equilibrium. Mathematically,

S(E(1) + δE, X) + S(E(2) − δE, X) < S(E(1), X) + S(E(2), X). (46)

Now consider the system at equilibrium (i.e., without any constraints) with entropy S(E, X) such that

S(E, X) = S(E(1) + δE, X) + S(E(2) − δE, X). (47)

Since, according to Eqs. (47) and (46),

S(E, X) < S(E(1), X) + S(E(2), X), (48)

and according to Eq. (42),
∂S
∂E

)
V,N

=
1
T

> 0, (49)

then
E < E(1) + E(2). (50)

Eq. (47) thus establishes that by imposing internal constraints at constant entropy the system that was
initially at equilibrium with entropy S(E, X) moves away from such equilibrium and its internal energy
increases from E to E(1) + E(2). Mathematically,

dE

)
S,V

≥ 0, (51)

which is the minimum energy principle.
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As an example, consider 2 balloons filled with nitrogen at room temperature. The balloons are in contact
and at thermal equilibrium. At a lower temperature, the kinetic energy of molecules would be smaller,
so the total energy of the system would be smaller. Therefore, the entropy would also be smaller since
1/T = dS/dE > 0. Thus, reducing the energy of the system would be one way of reducing the entropy.

Another way would be as follows. Take the 10 slower molecules of one balloon and exchange them
by the 10 faster of the other. Then, separate the balloons so they are no longer touching each other. One
of the balloons would now be warmer and the other colder because effectively a little bit of heat has been
transferred from one to the other. Since the balloons were originally at equilibrium, that transformation
also reduced the total entropy of the system of 2 balloons, although the total internal energy remained the
same. Now, if we bring them to equilibrium with each other keeping the entropy to remain the same, we see
that the internal energy would have to be reduced. Therefore, the equilibrium could be reached by energy
minimization. Another way of reaching the equilibrium would be to keep the energy the same and increase
the entropy.

13 Canonical and Microcanonical Ensembles

Exercise 7: (A) Use Eqs. (39) and (11) to show that in a canonical ensemble the probability pj of observing
the system in quantum state |j >, where

H|j >= Ej|j >, (52)

is the Boltzmann probability distribution

pj = Z−1exp(−βEj) = exp(−β(Ej − A)), (53)

where β = (kT)−1, with T the temperature of the ensemble and k the Boltzmann constant.
(B) Show that for a microcanonical ensemble, where all of the states |j > have the same energy Ej = E, the
probability of observing the system in state |j > is

pj =
1
Ω

, (54)

where Ω is the total number of states. Note that pj is, therefore, independent of the particular state |j > in a
microcanonical ensemble.
Note that according to Eqs. (23) and (54), the entropy of a microcanonical ensemble corresponds to the
Boltzmann definition of entropy,

S = klnΩ. (55)

14 Equivalency of Ensembles

A very important aspect of the description of systems in terms of ensemble averages is that the properties of
the systems should be the same as described by one or another type of ensemble. The equivalence between
the description provided by the microcanonical and canonical ensembles can be demonstrated most elegantly
as follows. Consider the partition function of the canonical ensemble

Z = ∑
k

e−βEk = e−βA, (56)

and partition the sum over states k into groups of states such that they sum up to the same energy El .
Rewriting Eq. (56) according to states of equal energy El we obtain

Z = ∑
l

Ω(El)e−βEl . (57)
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where Ω(El) is the number of states with energy El .
Taking the continuous limit of Eq. (57) we obtain,

Z =
∫ ∞

0
dE Ω(E) e−βE, (58)

i.e., the partition function Z(β) is the Laplace transform of the total number of states Ω(E) of energy E.
Since Laplace transforms are unique, there is a one to one correspondence between Z(β) and Ω(E) —i.e.,
both functions have the same information.

14.1 Example

As an example of the equivalence between the microcanonical and canonical ensembles, consider the cal-
culation of the internal energy E in a system of N two-level particles. The goal of this pedagogical example
is to show that the ensemble average internal energy is the same when computed according to the canonical
or microcanonical ensembles.
Microcanonical ensemble:
In a system of N two-level particles (e.g., N spins that can be up or down) each particles can be assumed
to be either in the ground state with energy equal to zero, or in the excited state with energy ε. The total
internal energy is

E = mε =
N

∑
j=1

njε, (59)

where nj = 0, 1 and m is the number of particels with energy ε.
The number of possible states Ω(E) with energy E = mε,

Ω(E) = (N
m) =

N!
m!(N −m)!

, (60)

determines the entropy of the system according to Eq. (55),

S = klnΩ(E), (61)

and, therefore, the average temperature T of the system according to Eq. (42),

1
T

=
∂S
∂E

)
N

=
∂S
∂m

∂m
∂E

)
N

=
k
ε

∂

∂m
(lnN!− lnm!− ln(N −m)!), (62)

since according to the Stirling formula,

lnN! ≈ NlnN − N, (63)

lnm! ≈ mlnm−m, etc. Therefore,

1
T

=
k
ε
(0− lnm− 1 + 1 + ln(N −m) +

(N −m)

(N −m)
− 1), (64)

or
1
T

=
k
ε

ln

(
N −m

m

)
=

k
ε

ln

(
N
m
− 1

)
. (65)
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Thus,

βε = ln

(
N
m
− 1

)
⇒ exp(βε) + 1 =

N
m

, (66)

and, therefore, the internal energy E is obtained as follows,

m
N

=
1

1 + exp(βε)
⇒ E =

Nε

1 + exp(βε)
(67)

Canonical Ensemble:
The partition function of the canonical ensemble is

Z =
N

∏
j=1

1

∑
nj=0

e−βεnj = (1 + e−βε)N , (68)

Therefore,
lnZ = Nln(1 + e−βε), (69)

and

E = −∂lnZ
∂β

)
N,V

=
Nε

1 + eβε
, (70)

which coincides with Eq. (67).

15 Thermal Fluctuations

In the previous section we have demonstrated that the ensemble average internal energy of a system of N
two-level particles is the same when computed according to the canonical or microcanonical ensembles, as
long as N is sufficiently large. Nevertheless, the internal energy fluctuates among different replicas in the
canonical ensemble while remains fixed among different members of the microcanonical ensemble. The
goal of this section is to demonstrate that such inherent difference between the two representations does
not contradict the equivalency of ensembles. The reason for this is that the relative size of the fluctuations
becomes vanishingly small in the limit when N is sufficiently large.
Consider the average squared fluctuation (δE)2 of the internal energy E in the canonical ensemble,

(δE)2 = Tr{ρ̂(Ĥ − E)2} = Tr{ρ̂(Ĥ2 − 2ĤĒ + Ē2)}. (71)

Eq. (71) can be simplified according to

(δE)2 = Tr{ρ̂Ĥ2} − Ē2. (72)

Substituting Eq. (11) into Eq. (72) we obtain

(δE)2 = ∑
k

pkE2
k − (∑

k
pkEk)

2, (73)

and since Z = Tr{e−βĤ} and ρ̂ = Z−1e−βĤ,

(δE)2 =
Tr{Ĥ2e−βĤ}

Tr{e−βĤ}
− (Tr{Ĥe−βĤ})2

(Tr{e−βĤ})2
. (74)
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Therefore,

(δE)2 =
1

Tr{e−βĤ}
∂2Tr{e−βĤ}

∂β2

)
N,V

−
(
− 1

Tr{e−βĤ}
∂Tr{e−βĤ}

∂β

)
N,V

)2

, (75)

and

(δE)2 =
1
Z

∂2Z
∂β2

)
N,V

− 1
Z2

(
∂Z
∂β

)2

N,V

=
∂2lnZ
∂β2

)
N,V

= −∂E
∂β

)
N,V

. (76)

Note that these energy fluctuations are vanishingly small, in comparison to the total internal energy E of the
system, √

(δE)2

E
=

√
− ∂E

∂β

E
∝

1√
N

, (77)

whenever N is sufficiently large. For instance, when N ∼ 1023 the energy fluctuations are extremely small
in comparison to E.
Note: As a by-product of this calculation we can obtain a remarkable result. Namely, that the rate at which
energy changes due to changes in the temperature is determined by the size of the energy fluctuations (δE)2.
To obain this result, consider that according to Eq. (76)

(δE)2 = −∂E
∂T

)
NV

∂T
∂β

=
∂E
∂T

)
N,V

kT2. (78)

Therefore,
(δE)2 = CvkT2, (79)

where

Cv ≡
∂E
∂T

)
N,V

, (80)

is the heat capacity of the system, i.e., the property of the system that determines the rate of energy change
due to changes in the temperature.

15.1 Exercise: Probability of a Small Fluctuation

Considering that the probability of observing a closed thermally equilibrated system with energy E is
P(E) ∼ Ω(E)e−βE, estimate the probability of an energy fluctuation E = Ē + δE with δE = (E− Ē) =
10−6Ē, as estimated by the probability ratio P(E)/P(Ē). Consider a system of 10−3 moles of an ideal gas
with Ē = 3

2 NkBT and CV = 3
2 NkB.

Solution: Expanding lnP(E) around Ē, we obtain:

lnP(E) = lnP(Ē) +
∂lnP(E)

∂E

∣∣∣∣
E=Ē

(E− Ē) +
1
2

∂2lnP(E)
∂E2

∣∣∣∣
E=Ē

(E− Ē)2 + · · · , (81)

where

∂lnP(E)
∂E

∣∣∣∣
E=Ē

=
∂lnΩ
∂E

∣∣∣∣
E=Ē
− β

=
1

kBT
− β = 0

(82)

19



and

∂2lnP(E)
∂E2

∣∣∣∣
E=Ē

=
∂

∂E
∂lnΩ
∂E

∣∣∣∣
E=Ē

,

= − 1
kBT2

∂T
∂E

∣∣∣∣
E=Ē

,

= − 1
kBT2CV

.

(83)

Therefore,

lnP(E) = lnP(Ē)− 1
2

1
kBT2CV

(δE)2,

= lnP(Ē)− 1
2

1
kBTĒ

(Ē10−6)2,

= lnP(Ē)− 3
4

N(10−6)2,

= lnP(Ē)− 3
4
× 0.001× 6.023× 1023(10−6)2,

= lnP(Ē)− 3
4
× 6.023× 108

(84)

giving
P(E)
P(Ē)

= e−4.5108 ≈ 0. (85)

16 Grand Canonical Ensemble

The goal of this section is to obtain the density operator

ρ̂ = ∑
j

pj|φj >< φj|, (86)

with
1 = ∑

j
pj, (87)

that maximizes the entropy
S = −k ∑

j
pjlnpj, (88)

subject to the constraints of fixed volume V, average internal energy

E = ∑
j

pjEj, (89)

and average number of particles
N̄ = ∑

j
pjNj. (90)

Such density operator describes the maximum entropy ensemble distribution for a grand canonical ensemble
—i.e., a collection of replica systems in thermal equilibrium with a heat reservoir whose temperature is T as
well as in equilibrium with respect to exchange of particles with a “particle” reservoir where the temperature
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is T and the chemical potential of the particles is µ. This problem is solved in terms of the Method of
Lagrange Multipliers by maximizing the function

f (p1, p2, ...) ≡ −k ∑
j

pjlnpj + γ(E−∑
j

pjEj) + γ′(N −∑
j

pjNj) + γ′′(1−∑
j

pj), (91)

where γ, γ′ and γ′′ are Lagrange Multipliers. Solving for pj from the following equation

∂ f
∂pj

)
V

= −k(lnpj + 1)− γEj − γ′Nj − γ′′, (92)

we obtain

pj = exp(1− γ′′)exp(−γ

k
Ej −

γ′

k
Nj). (93)

Introducing the quantities β ≡ γ/k and βµ ≡ −γ′/k we obtain the generalized Boltzmann distribution

pj =
e−βEj+βµNj

∑j e−βEj+βµNj
= Ξ−1e−βEj+βµNj , (94)

where
Ξ ≡∑

j
exp(−βEj + βµNj), (95)

is the grand canonical partition function.
The goal of the remaining of this section is to find the relation between the canonical and the grand canonical
partition functions, Z and Ξ, respectively.
Substituting Eq. (94) into Eq. (88) we obtain

S = −k ∑
j

pj(−βEj + βµNj − lnΞ), (96)

and solving for lnΞ from Eq. (96) we obtain

lnΞ = β(−E + ST + µN̄). (97)

Therefore,
lnΞ = β(−A + µN̄), (98)

and
lnΞ = lnZ + βµN̄ . (99)

17 Density Fluctuations

The goal of this section is to show that the fluctuations in the number of particles in the system at constant
V and T can be computed from the grand canonical partition function and that the size of the fluctuations in

the number of particles
√
(δN)2 decays as 1/

√
N.

The ensemble average squared fluctuation in the number of particles

(δN)2 = (N − N)2 = N2 − N2, (100)
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(where the overline indicates an ensemble average), can be computed as follows

(δN)2 = ∑
j

pjN2
j − (∑

j
pjNj)

2. (101)

Substituting Eq. (94) into Eq. (101) we obtain

(δN)2 = Ξ−1 ∑
j

N2
j e−βEj+βµNj −

(
Ξ−1 ∑ Nje−βEj+βµNj

)2
. (102)

Therefore,

(δN)2 =
∂2lnΞ

∂(βµ)2

)
V

=
∂N

∂(βµ)

)
V

. (103)

17.1 Example

Consider a system of uncorrelated particles distributed among m boxes. Assume that the average number of
particles per box nj << 1, so that there is either one or none particle per box —i.e., nj = 1, 0 with nj the
number of particles associated with box j. The goal of this section is to compute the size of the fluctuations
in the total number of particles in the system and to show that the size of such fluctuations is much smaller
than the average number of particles N, when N is sufficiently large.
The ensemble average squared fluctuation in the number of particles

(δN)2 = (N − N)2 = N2 − N2, (104)

can be computed as follows

(δN)2 =
m

∑
j=1

m

∑
k=1

< njnk > −(
m

∑
j=1

< nj >)2. (105)

Factorizing the sums we obtain,

(δN)2 = ∑
j
< n2

j > +
m

∑
j=1

m

∑
k 6=j

< njnk > −
m

∑
j=1

< nj >
2 −

m

∑
j=1

m

∑
k 6=j

< nj >< nk > . (106)

Note that since nj = 0, 1, < n2
j >=< nj >. Furthermore, < njni >=< nj >< ni > when j 6= i simply

because the particles are uncorrelated. Therefore,

(δN)2 =
m

∑
j=1

< nj > −
m

∑
j=1

< nj >
2=

m

∑
j=1

< nj > (1− < nj >). (107)

Considering that < nj ><< 1,
(δN)2 = m < n1 >= N. (108)

Therefore, √
(δN)2

N
=

1√
N

, (109)

i.e., the size of the fluctuations in the number of particles in the system becomes negligible small when
N ∼ 1023.
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As a by-product of this derivation we can obtain the thermodynamic equation that establishes the relationship
between the number of particles, the temperature and the chemical potential. Substituting Eq. (103) into Eq.
(108) we obtain,

N =
∂2lnΞ

∂(βµ)2

)
V

=
∂N

∂(βµ)
. (110)

Therefore,
∂lnN
∂(βµ)

)
V

= 1, (111)

or dividing both sides of Eq. (110) by V,

ln
(

N
V

)
= βµ + c, (112)

where c is a constant.

18 Quiz 1

(10 pts) (A) What is a statistical ensemble and why is it necessary to to describe macroscopic systems in
terms of ensembles ?
(20 pts) (B) How do you describe an ensemble and its time evolution ?

(B.1) In classical statistical mechanics (CSM).
(B.2) In quantum statistical mechanics (QSM).

(10 pts) (C) How do you describe a microscopic state ?
(C.1) In classical statistical mechanics (CSM).
(C.2) In quantum statistical mechanics (QSM).

(20 pts) (D) How do you compute an ensemble average ?
(D.1) In classical statistical mechanics (CSM).
(D.2) In quantum statistical mechanics (QSM).

(20 pts) (E) How do you describe the maximum entropy ensemble of a system with a fixed number of
particles and fixed volume ?
(20 pts) (F) Prove that

E =
∂(βA)

∂β

)
V,N

, (113)

when A = E− TS.
Solution
(A) The collection of a large number of independently prepared replicas of the system is called an ensemble.
An ensemble of N replicas of systems is in a statistical mixture of states |φk >, with probabilities pk, when
nk members of the ensemble are in state |φk >, with pk = nk/N. (See page 6 of the lecture notes)
Measurements on macroscopic systems must be described in terms of ensemble averages simply because, in
practice, macroscopic systems can only be prepared in thermodynamic states (i.e., in a statistical mixtures of
quantum states) characterized by a few physical quantities (e.g., the temperature, the pressure, the volume
and the number of particles). (See pages 3 and 4 of the lecture notes)
(B.1) An ensemble is described in classical statistical mechanics by the density of states ρ = ρ(x1, ...x f , p1, ..., p f ),
where (x1, ...x f ) and (p1, ..., p f ) are the coordinates and momenta. The density of states evolves in time
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according to the following equation of motion:

∂ρ

∂t
= − (ρ, H) , (114)

where H = ∑
f
j=1 p2

j /(2mj) + V(x1, ...x f ) is the classical Hamiltonian and (ρ, H) represents the Poisson
bracket of ρ and H. (See page 10 of the lecture notes)
(B.2) An ensemble is described in quantum statistical mechanics by the density operator

ρ̂ = ∑
k

pk|φk >< φk|, (115)

where |φk > are the possible quantum states that the system can populate and pk is the probability of
populating state |φk >. (See page 10 of the lecture notes) The density operator evolves in time according to
the following equation:

∂ρ̂

∂t
= − [ρ̂, Ĥ]

ih̄
, (116)

where [ρ̂, Ĥ] is the commutator of ρ̂ and Ĥ.(See page 9 of the lecture notes)
(C.1) A microscopic state is described in classical statistical mechanics by a point in phase-space defined by
a set of coordinates (x1, ...x f ) and momenta (p1, ..., p f ). (See page 9 of the lecture notes)
(C.2) A microscopic state is described in quantum statistical mechanics by a quantum state in Hilbert space,
defined in terms of a set quantum numbers associated with a ket-vector. (See page 9 of the lecture notes)
(D.1) An ensemble average is computed in classical statistical mechanics according to the following equa-
tion:

Ā =

∫
dx
∫

dpρ(x1, ..., x f , p1, ..., p f )A∫
dx
∫

dpρ(x1, ..., x f , p1, ..., p f )
, (117)

where dxdp stands for a volume element in phase space and A is the quantity of interest. (See page 10 of
the lecture notes)
(D.2) An ensemble average is computed in quantum statistical mechanics according to the following equa-
tion:

A = Tr{ρ̂Â}, (118)

where ρ̂ is the density operator and A is the quantity of interest. (See page 7 of the lecture notes)
(E) The maximum entropy ensemble of a system with a fixed number of particles and fixed volume is
described by the density operator

ρ̂ = Z−1exp(−βĤ), (119)

where Z is the partition function
Z ≡ Tr{exp(−βĤ)}, (120)

and β = (kT)−1. (See page 12 of the lecture notes)
(F)

E ≡ Tr{ρ̂Ĥ} = −∂lnZ
∂β

)
X

. (121)

S ≡ −kTr{ρ̂ lnρ̂} = kβE + klnZ. (122)

Therefore,
A ≡ E− TS = −kTlnZ, (123)

and

E =
∂(βA)

∂β

)
X

. (124)
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19 Postulates of Statistical Mechanics

Once again we remark that in statistical mechanics we build on the description of matter provided by quan-
tum mechanics in terms of the eigenstates, or the Hamiltonian. The theory of ensembles enables us to
express measurable quantitites of macroscopic systems in terms of the underlying quantum mechanical
principles inspite of having incomplete information about the preparation of the system and the interactions
with its surroundings. If we look carefully we can see that the ensemble-average technique depends on two
postulates and then builds an enormous structure on them to do the characteristic work of the theory.
First Postulate : The experimental result of a measurement of an observable in a macroscopic system is

the ensemble average of such observable.
Second Postulate : Any macroscopic system at equilibirum is described by the maximum entropy en-

semble, subject to contraints that define the macroscopic system.
The first postulate is needed to equate the ensemble average to a more elementary description of what is

begin observed. To analyze this aspect, consider a variable that depends on the quantum state (or eitherwise
classically, on the locations and velocities of the particles that consititute the system). With a sufficiently
delicate measuring device one could measure a fluctuating observable O(t), but the measured value of the
observable O is usually taken to be a time average

O = lim
τ→∞

1
τ

∫ τ

0
O(t)dt, (125)

due to the slow response of the measuring system when compared to the rapid changes in quantum states,
or locations and velocities of the particles that make up the system.

According to the dynamical picture described above, the time dependence of O(t) is due to the fact that
the system changes its microscopic state in time. To compute the time average, introduced by Eq. (125),
it is necessary to know the sequence of quantum states through which the system passes in time and this is
determined by the initial conditions as well as by the interactions between the system and its surroundings.
Due to the large number of degrees of freedom in a macroscopic systems, it is therefore impossible to
know the sequence of quantum states since neither the initial conditions nor the detailed description of the
interactions are ready available. The first postulate thus introduces an alternative way of computing the
average over microscopic states. The alternative approach thus involves constructing a large number of
replicas of the system of interest, compute O for each replica and average the results

O = ∑
j

pjO(j), (126)

where pj is the probability of state j. Note that by implementing this alternative approach there is no need to
follow the sequence of quantum states as described above as long as there is an alternative way to find how
many of the replica systems of the ensemble are in each quantum state j.

The second postulate is needed to connect the attributes of a quantum state to its probability (i.e., to the
fraction of the replica systems in an ensemble that will be found in that state). We found that the maximum
entropy postulate established the connection between pj and the attributes of j such as its energy Ej and the
number of particles Nj. For a canonical ensemble pj is determined by the Boltzmann distribution, introduced
by Eq. (53); for a microcanonical ensemble pj is independent of j and is determined by inverse of the total
number of states (see Eq. (54)); and for the grand canonical ensemble pj is determined by the generalized
Boltzmann distribution, introduced by Eq. (94). Therefore, the second postulate established through Eqs.
(53), (54) and (94) that all quantum states with the same energy and the same number of particles are equally
probable.

Going back to the dynamical picture, one can analyze the implications of the second postulate with
regards to how much time the system lives in each microscopic state during the measurement of O. In the
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dynamical picture the second postulate establishes that the system is observed for the same fraction time
in all microscopic states with the same energy and the same number of particles. Therefore, the ensemble
average, introduced by Eq. (126), is equal to the average over time, introduced by Eq. (125). When
formulated in such terms, the second postulate is known as the ergodic hypothesis of statistical mechanics
and a system that satisfies such hypothesis is called ergodic.

19.1 Example: Ensemble Averages

Consider a system with two spins with magnetic moments µ1 and µ2, respectively, at thermal equilibrium
with a bath at temperature T. There is an external magnetic field B that interacts with each spin according to
E(i,±) = ±µiB. Assuming that the spins do not interact with each other, compute:
(A) The average value of the total internal energy of the system.
(B) The mean squared fluctuation of the total energy of the system.
(C) The entropy of the system.
(D) The Helmholtz free energy.
(E) Assuming that the contributions to the total magnetization M are mi(±) = ±µi, compute the average
value of the magnetization of the system at temperature T.
Note: The spins can only be "up"(+) or "down" (-) relative to the magnetic field. When a spin is "up"
its interation with the external field is E(i,+) = µiB and when the spin is "down" its interation with the
external field is E(i,−) = −µi H.

Solution
(A) To compute the internal energy as an ensemble average we first compute the partition function

Z = e−βB(−µ1−µ2) + e−βB(−µ1+µ2) + e−βB(µ1−µ2) + e−βB(µ1+µ2), (127)

which is
Z = 4cosh(βBµ2)cosh(βBµ1). (128)

According to Eq. (38),

E = −∂lnZ
∂β

= − 1
Z

∂Z
∂β

= −4B
Z
(µ2sinh(βBµ2)cosh(βBµ1) + µ1cosh(βBµ2)sinh(βBµ1)), (129)

which gives
E = −Bµ2tanh(βBµ2)− Bµ1tanh(βBµ1). (130)

(B) According to Eq. (76),

(δE)2 = −∂Ē
∂β

=
(Bµ2)2

cosh2(βBµ2)
+

(Bµ1)
2

cosh2(βBµ1)
. (131)

(C) According to Eq. (40),
S = kβĒ + klnZ. (132)

Therefore,

S = −kβBµ2tanh(βBµ2)− kβBµ1tanh(βBµ1) + kln(4cosh(βBµ2)cosh(βBµ1)). (133)
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(D) According to Eq. (40),

A = −kTlnZ = −kTln(4cosh(βBµ2)cosh(βBµ1)), (134)

(D) The ensemble average magnetization is

M = ∑
j

pjmj, (135)

where, according to Eq. (53),

pj = Z−1exp(−βEj) = exp(−β(Ej − A)). (136)

Therefore,

M =

(
(−µ1 − µ2)e−βB(−µ1−µ2) + (−µ1 + µ2)e−βB(−µ1+µ2)

+(µ1 − µ2)e−βB(µ1−µ2) + (µ1 + µ2)e−βB(µ1+µ2)

)
/(4cosh(βBµ2)cosh(βBµ1)).

(137)
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20 Exam 1

Exam 1 CHEM 430b/530b
Statistical Methods and Thermodynamics

Exercise 1
(20 points) Item (1.1): Explain the fundamental postulates of Statistical Mechanics.
(20 points) Item (1.2): Show that the definitions of entropy given by Gibbs and Boltzmann can be obtained
from the Von Neumann definition of entropy.
(20 points) Item (1.3): Prove that

S = −kβ
∂lnZ
∂β

)
V,N

+ klnZ. (138)

Exercise 2
Consider a system of N non-interacting spins in a magnetic field B, in thermal equilibrium with a bath at
temperature T = 1/(kβ). Each spin has a magnetic moment of size µ and can point either parallel or
anti-parallel to the field.
(10 points) Item (2.1): Determine the internal energy of the system as a function of β, B and N.
(10 points) Item (2.2): Determine the entropy of the system as a function of β, B and N.
(10 points) Item (2.3): Determine the average total magnetization of the system as a function of β, B and N.
(10 points) Item (2.4): Determine the average squared fluctuation of the total magnetization of the system
(δM)2 as a function of β, B and N.

Solution:
Item (1.1):
First Postulate: The experimental result of a measurement of an observable in a macroscopic system is the
ensemble average of such observable.
Second Postulate: Any macroscopic system at equilibrium is described by the maximum entropy ensemble,
subject to constraints that define the macroscopic system.

The first postulate is needed to equate the ensemble average to a more elementary description of what is
begin observed. The second postulate is needed to connect the attributes of a quantum state to its probability.
We found that the maximum entropy postulate established the connection between pj and the attributes of j
as follows. For a canonical ensemble pj is determined by the Boltzmann distribution; for a microcanonical
ensemble pj is independent of j and is determined by inverse of the total number of states and for the grand
canonical ensemble pj is determined by the generalized Boltzmann distribution. Therefore, the second
postulate established that all quantum states with the same energy and the same number of particles are
equally probable.
Item (1.2): According to Eq. (22), the Von Neumann definition of entropy is:

S ≡ −kTr{ρ̂ lnρ̂}, (139)

which according to the definition ρ̂ = ∑k pk|φk >< φk| becomes,

S ≡ −k ∑
j
< φj|∑

k
pk|φk >< φk|ln(∑

k
pk|φk >< φk|)|φj > . (140)
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Expanding lnρ̂ = 0 + (ρ̂− 1)− (ρ̂− 1)2/2! + ... we obtain

S ≡ −k ∑
j

pjlnpj, (141)

which is the Gibbs definition of entropy.
According to Eq. (54), pj = 1/Ω for a microcanonical ensemble. Therefore,

S = klnΩ, (142)

which is the Boltzmann definition of entropy.
Item (1.3): According to Eq. (53), the probability pj of observing a system in quantum state |j > is

pj = Z−1exp(−βEj) = exp(−β(Ej − A)), (143)

where Z = ∑j exp(−βEj). Substituting this expression in the Gibbs definition of entropy, introduced in
Item (1.2), we obtain

S = kβZ−1 ∑
j

Ejexp(−βEj) + klnZ = −kβ
∂lnZ
∂β

)
V,N

+ klnZ. (144)

Item (2.1):
According to Eq. (68), the canonical partition function for a system of N two-level particles j with

energies Ej = ±µB is

Z =
N

∏
j=1

(e−βµB + eβµB) = (2cosh(βµB))N . (145)

Therefore,

E = −∂lnZ
∂β

)
N,V

= −µBNtanh(βµB). (146)

Item (2.2): According to Eq. (53),

S = klnZ +
E
T

= kNln(2cosh(βµB))− βkµBNtanh(βµB). (147)

Item (2.3): According to Eq. (135), the ensemble average magnetization is

M = ∑
j

pjmj, (148)

where mj = ±µ and
pj = Z−1exp(−βBmj) = exp(−β(Bmj − A)). (149)

Therefore,

M = − ∂lnZ
∂(Bβ)

)
N,V

= Nµtanh(βBµ). (150)

Item (2.4):

(δM)2 =
∂2lnZ

∂(Bβ)2 = Nµ2sech2(βBµ). (151)
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21 Notes for the Inquisitive Mind: Measures of Information

21.1 Shannon Entropy

The goal of this section is to show that the Shannon entropy,

S = −∑
j

Pj log2Pj, (152)

is a measure of an amount of information (i.e., information = data). In fact, in this section, we show that if
we consider a message composed of symbols xj with probabilty Pj (as obtained when transmitted through a
noisy communication channel), then S gives the average number of bits necessary to store each one of the
symbols of that message. Such fundamental observation has given birth to the field of information theory
and is known as the Shannon’s source coding theorem, as follows: It is impossible to compress the data of
a long stream of a random variable such that the average number of bits per symbol is less than the Shannon
entropy of the source without loosing information.

As an example, consider that the ’message’ is a set of n snapshots reporting the position of a fluctuating
particle. Storing each symbol xj requires specifying K bits (e.g., an array of K elements that can be either 1 or
0, indicating for example which position is occupied by the particle when the coordinate range is discretized
into 2K boxes). The more snapshots (i.e., ’symbols’), the more information the message has with regards
to the particle whereabouts. Therefore, the amount of information S scales with the number n of symbols:
S = Kn.

The number of bits required to store a symbol (i.e., K) can be given in terms of the total number of
possible symbols Ω = 2K, as follows: K = −log2(1/Ω), where 1/Ω is the probability of a symbol when
randomly picked out of Ω equally probable choices. More generally, when considering two messages, one
with n1 symbols from a library of Ω1 = 2K1 possibilities, and the other one with n2 symbols chosen from
Ω2 = 2K2 possibilities, the amount of information in the two messages is the same when the number of
possibilities for the two messages is equal, so Ωn1

1 = Ωn2
2 , since then n1log2Ω1 = n2log2Ω2 as pointed

out by Hartley in the [The Bell System Technical Journal, July 1928, p. 535] so the total number of bits
required to store the two messages is the same: K1n1 = K2n2 and K1/log2Ω1 = K2/log2Ω2. This relation
holds for all values of Ω only when K = K0logΩ, where the arbitrary constant K0 can be omitted since the
logarithmic base is also arbitrary. The particular base of the log fixes the size of the unit of information.
With the base 2, the resulting units are called binary digits, or more briefly bits as suggested by [J.W. Tukey].
If the base 10 is used, the units may be called decimal digits, with log2Ω = log10Ω/log102.

The amount of information (i.e, the number of bits) of each symbol is therefore equal to the logarithm
of the number of possible symbols. The amount of information of a message is the number of possible
messages (which is the number of symbols times the number of possible symbols: S = nlog2Ω). It is,
therefore, clear that for a message composed of symbols with probability Pj, the average number of bits
necessary to store one of its symbols is given by Eq. (152), as discussed by Claude E. Shannon in his
seminal work on communication theory published in [The Bell System Technical Journal 27: 379-423,
1948], with symbols drawn with probability Pj as randomly picked from Ωj = 1/Pj equally probable
choices.

21.2 Majorization

When comparing the entropies of two sources with probabilities p = (p1, p2, ..., pn) with pj+1 < pj and
q = (q1, q2, ..., qn) with qj+1 < qj, it is possible to show that S(p) < S(q) when p majorizes q, as follows:

j

∑
i=1

pi >
j

∑
i=1

qi, (153)
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for any j < n with

n

∑
i=1

qi =
n

∑
i=1

pi = 1. (154)

This can be shown by substracting Eq. (153) from Eq (154) to obtain:

n

∑
i=j+1

qi >
n

∑
i=j+1

pi. (155)

Therefore,

n

∑
j=1

[
n

∑
i=j+1

qi

]
log
(

q(i)
q(j + 1)

)
>

n

∑
j=1

[
n

∑
i=j+1

pi

]
log
(

q(i)
q(j + 1)

)
. (156)

Changing the order of the sums in Eq. (156), we obtain:

n

∑
i=1

[
i−1

∑
j=1

qi

]
log
(

q(i)
q(j + 1)

)
>

n

∑
i=1

[
i−1

∑
j=1

pi

]
log
(

q(i)
q(j + 1)

)
, (157)

and canceling equal terms within the sums over j, we obtain:

n

∑
i=1

qilog
(

q(1)
q(i)

)
>

n

∑
i=1

pilog
(

q(1)
q(i)

)
,

log(q(1))−
n

∑
i=1

qilog(q(i)) > log(q(1))−
n

∑
i=1

pilog(q(i)),

−
n

∑
i=1

qilog (q(i)) > −
n

∑
i=1

pilog (q(i)) .

(158)

Furthermore, since log(x) < x− 1, we obtain:

log
(

q(i)
p(i)

)
<

q(i)
p(i)
− 1,

p(i)log
(

q(i)
p(i)

)
< q(i)− p(i),

n

∑
i=1

p(i)log
(

q(i)
p(i)

)
< 0,

n

∑
i=1

p(i)log (q(i)) <
n

∑
i=1

p(i)log (p(i)) ,

−
n

∑
i=1

p(i)log (q(i)) > −
n

∑
i=1

p(i)log (p(i)) .

(159)

Therefore, according to Eqs. (158) and (159), we obtain:

−
n

∑
i=1

q(i)log (q(i)) > −
n

∑
i=1

p(i)log (p(i)) . (160)
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21.3 Maximum Entropy Image Reconstruction

Maximum entropy reconstruction is a widely applicable technique for generating images with maximum
information, from noisy data, as discussed by Skillin and Bryan in the [Mon. Not. R. Astr. Soc. (1984) 211,
111-124]. The image is regarded as a set of positive numbers f1, · · · , fN giving the intensity of pixels which
are to be determined for image reconstruction (e.g., the image of a galaxy, or cell culture). The observational
constraints on permitted reconstructions come from data points Dk that are related to the actual image in
some known way by means of the measuring device, and subject to some form of noise due to interference
with the background. In a linear experiment, Dk = ∑ Rkj f j + nkσk, where R is the instrument response,
σk is the standard error on the data and nk is a random variable of zero mean and unit variance. Naively,
one may attempt to recover the image P from the data D by applying R−1 but this usually fails whenever
the data are incomplete since R−1 is not uniquely defined, or when R−1 is badly conditioned as in most
deconvolution problems.

The reconstruction is set up by comparing the noisy data Dk with the simulated data Fk which would
be obtained in the absence of noise: Fk = ∑ Rkj f j. A reconstruction is said to be feasible if the simulated
data agree with the actual data to within the noise. The misfit is usually measured by the chi-squared value:
χ2 = ∑k(Fk − Dk)

2/σ2
k , where the summation is over the observed data points k.

According to the maximum entropy criteria, one selects the feasible image with greatest entropy: S =
−∑k Pklog2Pk, where Pk = fk/ ∑j f j, by maximizing S subject to minimum χ2. Using the Lagrange
multiplier method for Q = S− λχ2− µ(1−∑k Pk), with some value of the Lagrange multipliers λ and µ,
we make ∂Q/∂ f j = 0 to obtain f j.

As pointed out by Skilling and Bryan, the resulting maximum entropy fitting provides a unique approach
to reconstruct an image without introducing correlations beyond those which are required by the data. Max-
imizing the entropy can also be justified in terms of information. Given an image radiating with intensity
pattern f j, the entropy measures the average number of bits needed to define (or store) the position j of a
single radiated photon coming from the image. Maximizing S, subject to observational constraints, involves
seeking a maximally non-biased answer to the fundamental question ’Where would the next photon come
from?’. The practical merit of maximizing entropy is that the resulting image has minimum configurational
information, so that there must be evidence in the data for any structure which is seen, and the displayed
structure is uniquely easy to comprehend.

21.4 Fisher Index

Another measure of information is the Fisher index I, defined as follows:

I =
∫ ∞

−∞
dxP(x)

(
1

P(x)
∂P(x)

∂x

)2

,

=
∫ ∞

−∞
dxP(x)

(
∂log[P(x)]

∂x

)2 (161)

For an ergodic system, P(x) is determined by the time the variable is found at x over the total observation
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time, so the total probability is normalized:

1 =
∫ ∞

−∞
dxP,

= lim
t f→∞

1
t f

∫ t f /2

−t f /2
dt,

= lim
t f→∞

1
t f

∫ ∞

−∞
dx
∣∣∣∣ ∂t
∂x

∣∣∣∣ ,

= lim
t f→∞

1
t f

∫ ∞

−∞
dx

1√
v2

,

(162)

from where we identify 1/P = t f
√

v2, with t f → ∞. Therefore,

I = lim
t f→∞

t f

∫ ∞

−∞
dx
√

v2

(
∂P
∂x

)2

,

= lim
t f→∞

t f

∫ ∞

−∞
dxv2

∣∣∣∣ ∂t
∂x

∣∣∣∣ (∂P
∂x

)2

,

= lim
t f→∞

t f

∫ ∞

−∞
dx
∣∣∣∣ ∂t
∂x

∣∣∣∣ (∂P
∂t

)2

,

= lim
t f→∞

t f

∫ ∞

−∞
dt
(

∂P
∂t

)2

,

(163)

In the third row of Eq. (163), we have used that ∂P/∂x = −1/v ∂P/∂t, since according to the continuity
equation dP/dt = ∂P/∂t + v∂P/∂x and dP/dt = 0 for the system at equilibrium. Furthermore,

∂P
∂t

=
1
t f

∂

∂t
(v2)−1/2,

=
1
t f

(
−1

2

)
(v2)−3/22v

∂v
∂t

= − 1
t f

1
v2

∂v
∂t

= − 1
t f

a
v2 = − 1

t f m
F
v2 .

(164)

Therefore,

I = lim
t f→∞

1
t f

∫ t f /2

−t f /2
dt

F2

(mv2)2 ,

=

〈
F2

(mv2)2

〉
,

(165)

21.5 Mutual Information

The goal of this section is to introduce measures of mutual information (or uncertainty) shared by variables
x1 and x2. Such measures estimate the amount of uncertainty about a variable x1 reduced by measuring
a variable x2. In particular, when x1 and x2 are completely uncorrelated, knowing one of the two vari-
ables does not provide any information about the other and the joint probability distribution P(x1, x2) is
equal to the product of the marginal probability distributions P1(x1) =

∫
dx2P(x1, x2) and P2(x2) =∫

dx1P(x1, x2).
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The most common measure of mutual information is the index Ix1,x2 , defined as follows:

Ix1,x2 =
∫

dx1dx2P(x1, x2) (log[P(x1, x2)]− log[P1(x1)P2(x2)]) . (166)

Note that in the particular case of uncorrelated variables, Ix1,x2 = 0.
Analogously, another measure of mutual information can be defined, as follows:

Ĩx1,x2 =
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2P

(
1

P2

(
∂P
∂x1

)2

+
1

P2

(
∂P
∂x2

)2

− 1
P2

1

(
∂P1

∂x1

)2

− 1
P2

2

(
∂P2

∂x2

)2
)

. (167)

34



22 Bose-Einstein and Fermi-Dirac Distributions

Consider a system consisting of N quantum particles of a certain kind (e.g., bosons, or fermions with a
certain spin). If the interaction of the particles is weak enough, each particle has its own motion which is
independent of all others and the system is an ideal gas of quantum particles. The quantum states allowed
for this individual motion are the one-particle states |j > that satisfy the eigenvalue problem

H|j >= εj|j >, (168)

where εj are the eigenvalues. Since identical particles are indistiguishable in quantum mechanics, each
quantum state |ξ > for the complete system is completely specified when the number of particles occupying
each one-particle state is specified —i.e., the quantum numbers ξ of the whole system are determined by the
set of occupation numbers n1, n2, n3, .... The total energy of each quantum state |ξ > is, therefore,

Eξ = ∑
j

njεj. (169)

Furthermore, since the quantum particles are indistinguishable,

P̂jk|ξ(1, 2, 3, ..., j, j + 1, ..., k, k + 1, ...) >= ±|ξ(1, 2, 3, ..., k, j + 1, ..., j, k + 1, ...) >, (170)

where P̂jk is the operator that permutes particles j and k. The plus sign, in Eq. (170), corresponds to a
system of bosons (i.e., integer spin particles) and the minus sign corresponds to a system of fermions (i.e.,
half-integer spin particles). The Pauli Exclusion Principle is a consequence of the symmetry requirement
introduced by Eq. (170). Such principle establishes that in a system of fermions with the same spin there
cannot be two particles occupying the same spatial state and, therefore, nj = 0, 1. In a system of bosons,
however, nj = 0, 1, 2, ... —i.e., there can be an arbitrary large number of particles in each state j.
The grand canonical partition function for a system of indistigushable particles is defined, according to Eq.
(95),

Ξ = ∑
ξ

exp(−βEξ + βµnξ), (171)

or in terms of occupation numbers nj,

Ξ = ∑
n1,n2,...

exp(−β ∑
k

εknk + βµ ∑
k

nk). (172)

The grand canonical partition function for a system of fermions is

Ξ = ∏
k

1

∑
nk=0

exp(−βεknk + βµnk) = ∏
k
(1 + eβ(µ−εk)), (173)

due to the Pauli Exclusion Principle and Eq. (172). Therefore, the average occupation number

nk = Ξ−1 ∑
n1,n2,...

nke−β ∑k εknk+βµ ∑k nk = ∂lnΞ/∂(−βεj), (174)

is given by the following expression

nk =
eβ(µ−εk)

eβ(µ−εk) + 1
=

1
1 + eβ(εk−µ)

, (175)

which is the Fermi-Dirac distribution.
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Analogously, the grand canonical partition function for a system of bosons is

Ξ = ∏
k

∞

∑
nk=0

e−β(εk−µ)nk = ∏
k

1
1− eβ(µ−εk)

. (176)

Therefore, the average occupation number is given by the following expression

nk =
1

eβ(εk−µ) − 1
, (177)

which is the Bose-Einstein distribution.

22.1 Chemical Potential

The chemical potential µ, introduced Eq. (96), defines the increase in free energy of the system upon
addition of an infinitesimal amount of particles since

G = µN = E− TS + TkBlnΞ,
= H − TS,
= E + PV − TS,

(178)

so a change in extensive property gives

dG)T,P = µdN,

= dE + PdV − TdS,
(179)

Alternatively, we can define the chemical potential as the increase in internal energy due an increase in the
average number of particles since according to Eq. (179), µ = ∂G

∂N

)
T,P

= ∂E
∂N

)
V,S

.

Chemical Potential of Photons: The chemical potential of photons is zero since photons do not interact
with each other and the number of photons (thermal radiation) is automatically adjusted by the walls of the
container that emit and absorb photons until thermal equilibrium is reached. Noting that, lnΞ = lnZ+ βµN,
and µ = 0, we obtain that for photons Ξ = Z. Therefore, the partition function of a gas of photons is

Z = ∏
k

∞

∑
nk=0

e−βεknk = ∏
k

1
1− e−βεk

. (180)

and the average number of photons with energy εj is

nj =
1

eβεj − 1
, (181)

where εj = h̄k jc, with k j = |kj| defined by the components of momenta kj = (k(j)
x , k(j)

y , k(j)
z ) of the

electromagnetic standing waves in the container, with k(j)
x,y,z = n(j)

x,y,zπ/Lx,y,z defined by the dimensions of
the container Lx, Ly and Lx, with quantum numbers nx,y,z = 1, 2, · · · .

The number of states with energy smaller that εj is given by the octant volume of the Hilbert space with
positive quantum numbers within the sphere of radius nj, which is 1

8
4
3 πn3

j =
V

6π2 k3
j . Therefore, the number
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of states with momenta between k j and k j + dk j is V
2π2 k2

j dk j. Considering 2 states of polarization per mode,
we obtain:

E =
V

h̄3c3π2

∫ ∞

0
dε

ε3

eβε − 1
,

=
Vk4

BT4

h̄3c3π2

∫ ∞

0
dx

x3

ex − 1
.

(182)

According to Eq. (244), 3
x3

∫ x
0 dγ γ3

eγ−1 = π
5x3 when x � 1. Therefore,

∫ ∞
0 dx x3

ex−1 = π
15 giving

E =
Vk4

BT4

15h̄3c3π
. (183)

This equation can be used to obtain the Stefan-Boltzmann law, giving the energy radiated per unit time
through a hole of unit area in the wall of the container:

R = σT4, (184)

where σ is the Stefan-Boltzmann constant.
Furthermore, Eq. (182) allows us to obtain the energy per unit volume with frequency between w and

w + dw, with ε = h̄w = hν = hc/λ, as follows:

ρ(w, β)dw =
h̄

c3π2
w3

eβh̄w − 1
dw, (185)

which is the famous Planck’s blackbody distribution law that agrees with the experimental spectral radiance
and solves the paradox of the ‘ultraviolet catastrophe’ introduced by the Rayleigh-Jeans law of classical
physics (incorrect prediction of spectral radiance proportional to λ−4 and T that significantly deviates from
the experimental spectra in the ultraviolet range).
Exercise: Compute the derivative of the energy density with respect to λ and make it equal to zero to
obtain that λmax(T) (the wavelength of maximum radiance) is inversely proportional to temperature –i.e.,
Wien displacement law. Considering that the λmax of the solar spectrum is close to 500 nm, estimate the
temperature of the surface of the sun (you would get T ≈ 5270K, so you can classify the sun as a yellow
star. Analogously, we can estimate the temperature of other stars from their spectrum. The same law
quantitatively describes the wavelength of light radiated by a nail as it gets red hot and then colorless as in
gets hotter.

23 Classical limit of Quantum Statistical Distributions

According to Eqs. (175) and (177), the average number nj of noninteracting quantum particles in state j is

nj =
1

eβ(εj−µ) ∓ 1
, (186)

where the minus sign corresponds to the Bose-Einstein distribution and the plus sign corresponds to the
Fermi-Dirac distribution.

In the limit when nj → 0 the system is very "dilute", since there are much more energetically accessible
states than particles. This limit is achieved for all states of energy εj when

eβ(εj−µ) >> 1. (187)
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Therefore, in the limit when nj → 0,
nj ≈ e−β(εj−µ), (188)

and the average number of particles is

N = ∑
j

nj ≈∑
j

e−β(εj−µ), (189)

so that
βµ = lnN̄ − ln ∑

j
e−βεj . (190)

Moreover, according to Eqs. (188) and (189),

nj

N
=

e−βεj

∑j e−βεj
, (191)

which is the classical Boltzmann distribution. Therefore, in the limit when nj → 0 both the Fermi-Dirac
and the Bose-Einstein distributions converge to the classical Boltzmann distribution.

Furthermore, according to Eqs. (173) and (176),

lnΞ = ∓∑
j

ln(1∓ e−β(εj−µ)). (192)

and in the limit when eβ(εj−µ) >> 1,
lnΞ ≈∑

j
e−β(εj−µ), (193)

since
lim
x→0

ln(1 + x) = x. (194)

Therefore, according to Eqs. (189) and (193),

lnΞ ≈ N, (195)

and according to Eqs. (195) and (99),
N ≈ lnZ + βµN. (196)

Substituting Eq. (190) into Eq. (195), we obtain

N ≈ lnZ + NlnN − Nln ∑
j

e−βεj , (197)

and according to the Stirling formula, introduced by Eq. (63),

Z =

(
∑j e−βεj

)N

N!
, (198)

where the 1/N! factor, in Eq. (198), indicates that quantum particles remain indistinguishable even in the
classical limit!
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24 Gibbs Paradox

The factor 1/N!, in Eq. (198), is essential to resolve the paradox formulated by Gibbs before the discovery
of Quantum Mechanics, stating that the entropy of a gas of N particles in a volume V at temperature T
decreases by a factor of N k ln(2) when the system is divided in 2 by an internal membrane, although the
thermodynamic quantities that define the state (i.e., N, T, V) remain constant.

To explain the paradox and its solution, consider a monatomic gas of N non-interacting molecules at
temperature T and volume V, with internal energy E = 3

2 NkT and entropy S = E
T + kln(Z).

If we ignore the factor 1/N!, in Eq. (198), we obtain:

Z =

(
∑

j
e−βεj

)N

=

(∫
dr
∫

dpe−β p2
2m

)N

= VN
(

π2m
β

)3N/2

(199)

Therefore, ln(Z) = Nln(V) + 3
2 Nln

(
π2m

β

)
and the entropy is:

S =
3
2

Nk + Nkln(V) +
3
2

Nkln
(

π2m
β

)
. (200)

Equation (200) leads to the Gibbs paradox when we consider twice the entropy S1/2 of half of the system
(e.g., with half the number of particles N/2 and volume V/2):

2× S1/2 =
3
2

Nk + Nkln(V) +
3Nk

2
ln
(

π2m
β

)
− Nkln(2), (201)

since 2× S1/2 6= S and the sum of the entropies of the halves should be equal to the total entropy.
In contrast, correcting Eq. (200) with the factor 1/N!, using the Sterling approximation ln(N!) ≈

Nln(N)− N, we obtain:

S =
3
2

Nk + Nkln(V) +
3Nk

2
ln
(

π2m
β

)
− Nkln(N) + Nk (202)

and

2× S1/2 =
3
2

Nk + Nkln(V) +
3Nk

2
ln
(

π2m
β

)
− Nkln(2)− Nkln(N) + Nk + Nkln(2). (203)

showing that S = 2× S1/2.
The origin of the paradox is thus the misleading assumption that particles are distinguishable. How-

ever, that would require a method to determine whether a specific molecule is on one side of the dividing
membrane or the other.

25 Example 1: Ideal Gas of Structureless Quantum Particles

An ideal gas of N non-interacting structureless paticles of mass m is described by the N-particle Hamiltonian

Ĥ =
N

∑
j=1

ĥj, (204)
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where ĥj is the one-particle Hamiltonian

ĥj = −
h̄2

2m
∇2

Rj
= − h̄2

2m

(
∂2

∂x2
j
+

∂2

∂y2
j
+

∂2

∂z2
j

)
, (205)

with Rj = (xj, yj, zj). The eigenstates of ĥj are the free-particle states

φj(x, y, z) = Aekj·R, (206)

where kj = (kxj, kyj, kzj), and A is a normalization constant determined by the volume of the box that
contains the gas. The one-particle eigenstates satisfy the eigenvalue problem

ĥj|φj >= εj|φj >, (207)

with εj = (h̄kj)
2/(2mj). Note that since the volume of the box is V=Lx×Ly×Lz, and |φj > are stationary

states, then Kx Lx = nx π, Ky Ly = ny π and Kz Lz = nz π, with nx,ny,nz=1,2,...
Therefore,

∑
nx,ny,nz

= ∑
Kx,Ky,Kz

V
π3 ...

and

Z =
1

N!

(
∑

j
e−βεj

)N

=
1

N!π3N

(
V
∫ ∞

0
dKx

∫ ∞

0
dKy

∫ ∞

0
dKze−

βh̄2
2m (K2

x+K2
y+K2

z )

)N

. (208)

Computing the Gaussian integrals analytically, we obtain

Z =
1

N!π3N

(
V
23

(
π2m
βh̄2

)3/2)N

=
VN

23N N!π3N

(
2πm
βh̄2

)3N/2

, (209)

since
∫ ∞

0 e−αx2
dx = 1

2

√
π
α . Therefore,

Z =
VN

N!h3N

(
2πm

β

)3N/2

⇒ E = −∂lnZ
∂β

)
V,N

=
3
2

NkT. (210)

In addition, according to Eq. (99),
∂ln
∂V

Ξ =
∂ln
∂V

Z, (211)

since βµN depends only on T. Considering that G = µN = H − TS = E + pV − TS = β−1lnΞ −
β−1lnZ, with TS = E + β−1lnZ, or E + pV − TS = β−1lnΞ− TS + E, we obtain pV = β−1lnΞ, so we
can define p as follows:

βp ≡ ∂lnΞ
∂V

)
T,N

. (212)

and according to Eq. (211),

βp ≡ ∂lnZ
∂V

)
T,N

. (213)

Therefore, we obtain

βp =
N
V
⇒ pV = NkT , (214)

which is the equation of state for an ideal gas of structureless particles.
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26 Example 2: Dilute Gas of Diatomic Molecules

In the previous example, we showed that the state of a structureless particle is completely defined by the
vector K = (Kx, Ky, Kz) that specifies the momentum Kh̄ of the center of mass. Specifying the state
of a molecule, however, requires the specification of its internal state besides specifying the translation of
the molecule as a whole, since the molecule can vibrate, rotate, or undergo electronic excitations while
translating as specified by the vector K.
Contrary to structureless particles, molecules are described by the Hamiltonian

Ĥ = − h̄2

2m
∇2

R + Ĥel(R, r), (215)

where, R and r are the nuclear and electronic coordinates.
A simple expression for the cononical partition function of an ideal gas of diatomic molecules in the ground
electronic state can be obtained by factorizing the total energy into translational, rotational and vibrational
modes (i.e., assuming that these modes are uncoupled from each other) and then modeling vibrations accord-
ing to the harmonic approximation and rotations according to the rigid rotor approximation. The resulting
partition function is

Z =
(∑j e−βEj)N

N!
, (216)

Here, Ej = Erot(J(j)) + Etransl(n(i)) + Evib(ν(j)), where J(j) specifies the rotational quantum number,
ν(j) the vibrational quantum number and n(j) the translational modes of particle j. Therefore,

Z =
(qtransl ∗ qint)

N

N!
, where qint = qrot ∗ qvib, (217)

with

qvib =
∞

∑
ν=0

e−βh̄ω0(1/2+ν) =
e−βh̄ω0/2

1− e−βh̄ω0/2 , (218)

qtransl =
V
h3

(
2πm

β

)3/2

, (219)

and

qrot =
∞

∑
J=0

(2J + 1)e−β h̄2
2I0

J(J+1),

=
∞

∑
J=0

f (J),

=
∫ ∞

0
f (J)dJ +

1
2
[ f (∞) + f (0)] +

∞

∑
j=1

(−1)j Bj

(2j)!
[ f 2j−1(0)− f 2j−1(∞)],

(220)

where f (J) = (2J + 1)e−β h̄2
2I0

J(J+1). In the third line, we have introduced the Euler-MacLaurin formula,
where B1 = 1/6, B2 = 1/30, B3 = 1/42, · · · . Note that f (0) = 1, f (∞) = 0 and

∫ ∞
0 dJ f (J) =

− 2I0
βh̄2

∫ ∞
0 dJ d

dJ e−β h̄2
2I0

J(J+1)
= 2I0

βh̄2 . Also, note that for simplicity we have ignored the internal structure of
nuclei and the degeneracy factor associated with the permutation of indistinguishable nuclei.
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27 Example 3: Phonons in a Solid Lattice

Having computed the partition function of a harmonic oscillator, we now compute the partition function of
the normal modes of a solid at low temperature. According to the harmonic approximation, the Hamiltonian
of the system is

Ĥ =
DN

∑
α=1

ĥα, (221)

where DN is the number of normal modes, with D the dimensionality of the lattice and ĥα is the Hamiltonian
of a harmonic oscillator with a frequency ωα and eigenvalues

En(α) = h̄ωα(
1
2
+ nα), (222)

with nα = 1, 2...
An arbitrary vibrational state ξ of the lattice can be specified by the DN normal mode frequencies ωα and
vibrational quantum numbers nα. The energy of such state is

Eξ =
DN

∑
α=1

[nαh̄ωα +
h̄
2

ωα]. (223)

The canonical partition function for the lattice is

Z(β, N) = ∑
n1

∑
n2

∑
n3

...exp

(
− β

DN

∑
α=1

nαh̄ωα +
h̄
2

ωα

)
, (224)

which according to Eq.(174) becomes,

Z(β, N) =
DN

∏
α

e−β h̄ωα
2

1− e−βh̄ωα
=

DN

∏
α=1

(eβ h̄ωα
2 − e−β h̄ωα

2 )−1, (225)

and

lnZ = −
DN

∑
α=1

ln(eβ h̄ωα
2 − e−β h̄ωα

2 ), (226)

or in the continuous representation,

lnZ = −
∫ ∞

0
dωg(ω)ln(eβ h̄ω

2 − e−β h̄ω
2 ) (227)

where g(ω) is the density of states —i.e., the number of vibrational states with frequencies between ω and
ω + dω.

27.1 Einstein Model

The Einstein model assumes that all vibrational modes in a solid lattice have the same frequency ωE and,
therefore,

g(ω) = DNδ(ω−ωE). (228)

Substituting Eq. (228) into Eq. (227) we obtain

lnZ = −NDln

(
e+βh̄ωE/2 − e−βh̄ωE/2

)
. (229)
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The average internal energy of the lattice can be computed from Eq. (229) as follows,

E =
∂lnZ

∂(−β)
= +DN

h̄ωE

2
coth(βh̄ωE/2). (230)

Note that in the high temperature limit,

lim
β→0

E =
DN

β
= DNkT. (231)

The heat capacity at constant volume Cv can also be obtained from Eq. (229) as follows,

Cv =
∂E
∂T

)
v

=

(
− ND

kT2

)(
h̄
2

ωE

)2

((
eβh̄ωE/2 − e−βh̄ωE/2

)2

−
(

eβh̄ωE/2 + e−βh̄ωE/2

)2)
(

eβh̄ωE/2 − e−βh̄ωE/2

)2 . (232)

The expression introduced by Eq. (232) can be simplified to obtain

Cv =

(
θ

T

)2
NDk(

e−
θ

2T (e
θ
T − 1)

)2 = NDk

(
θ

T

)2
e

θ
T(

e
θ
T − 1

)2 , (233)

with θ ≡ h̄ωE
2k .

Limiting cases
(i) At high temperature, θ << T and e

θ
T ≈ 1 + θ

T . Therefore,

Cv = NDk

(
θ

T

)2
1 + θ

T + ...

(1 + θ
T − 1 + ...)2

= NDk. (234)

Eq. (234) is the Dulong-Petit’s law —i.e., the experimental limit for Cv at high temperature.
(ii). At low temperature, θ >> T. Therefore,

Cv = NDk

(
θ

T

)2

e−
θ
T . (235)

It is important to note that Eq. (235) does not predict the correct limit for Cv at low temperature, since Cv
should be proportional to T3 when T → 0.

27.2 Debye Model

Debye approximated the normal vibrations with the elastic vibrations of an isotropic continuous body where
the number of vibrational modes with frequencies between ω and ω + dω is

g(ω) =

{
ξω2, when ω < ω0,
0, otherwise,

(236)
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where ξ ≡ 3V/(2π2c3) and ∫ ω0

0
dωg(ω) = 3N =

Vω3
0

2π2c3 . (237)

Therefore,
ξ = 9N2π2c3/(ω3

02π2c3). (238)

According to Eqs.(237) and (227),

lnZ = −
∫ ω0

0
dωξω2ln

(
eβh̄ω/2 − e−βh̄ω/2

)
. (239)

Therefore,

lnZ = −
∫ ω0

0
dωξω2lneβh̄ω/2 −

∫ ω0

0
dωξω2ln(1− e−βh̄ω), (240)

and

lnZ = −βh̄
2

ξ
ω4

0
4
−
∫ ω0

0
dωξω2ln(1− e−βh̄ω). (241)

The internal energy E is computed from Eqs. (241) and (238) as follows,

E =
∂lnZ

∂(−β)
=

h̄
2

9Nω4
0

ω3
04

+
∫ ω0

0
dωξω3h̄

e−βh̄ω

1− e−βh̄ω
, (242)

and introducing the change of variables γ ≡ βh̄ω,

E =
h̄
2

9Nω0

4
+

1
βh̄

∫ βh̄ω0

0
dγξ

γ3

(βh̄)3 h̄
1

(eγ − 1)
. (243)

Considering that

f (x) =
3
x3

∫ x

0
dγ

γ3

eγ − 1
=

{
1− 3

8 x + ... x << 1
π

5x3 + ... x >> 1,
(244)

we obtain, according to Eqs. (243) and (244),

Ẽ = E− h̄
2

9Nω0

4
=

ω3
03N

βω3
0
×
{

1− ... = 3NkT when T → ∞
π

5(βh̄ω0)3 = (kT)4π3N
5(h̄ω0)3 when T → 0.

(245)

Therefore the Debye model predicts the following limits for the heat capacity of a solid lattice,

Cv =

{
3Nk when T → ∞
3Nk4 π4

5(h̄ω0)3 T3 when T → 0.
(246)

which are the correct high and low temperature limits, represented by the following diagram:

-

6

3Nk

T0

6

T3
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28 Example 4: Electrons in Metals

The goal of this section is to show that even at room temperature, the conducting electrons in metals can be
modeled as an ideal gas of fermions contained in a box of volume V = L3, where L defines the dimensions
of the piece of metal. Such a goal is accomplished by comparing the kinetic energy of conducting electrons,
modeled as an ideal gas of fermions, with typical energy fluctuations due to thermal motion.
The average number of electrons occupying the j-th energy state is

nj =
1

eβ(εj−µ) + 1
, (247)

where

εj =
h̄2K2

j

2m
, (248)

and
Kj = (nx(j), ny(j), nz(j))π/L (249)

with nx(j), ny(j), nz(j) = 1, 2, ... Therefore, the average number of electrons is

N = ∑
j

nj, (250)

N = 2 ∑
nx

∑
ny

∑
nz

1
eβ(ε(nx ,ny,nz)−µ) + 1

, (251)

or,

N = 2
∫ ∞

−∞
dkx

∫ ∞

−∞
dky

∫ ∞

−∞
dkz

(
L
π

)3
1

eβ( h̄2K2
2m −µ) + 1

. (252)

In particular, at T = 0,
1

1 + eβ( h̄2K2
2m −µ)

=

{
1, h̄2K2

2m < µ,

0, h̄2K2

2m > µ,
(253)

therefore,

N = 8π
∫ K f

0
dKK2

(
L

2π

)3

= 8π

(
L

2π

)3 K3
f

3
=

2V
(2π)3

4
3

πK3
f , (254)

where K f is the Fermi momentum defined as follows

h̄2K2
f

2m
= µ. (255)

The value of K f for a specific metal can be found, according to Eq. (254) and using the values of the density
and atomic weight of the corresponding metal, assuming that each atom in the metal donates an electron to
the conducting electron gas. Such value of K f , can be used to compute the chemical potential according to
Eq. (255). The calculation for Cu, with a density of 9 g/cm3 and atomic weight of 63.5 g/mol gives

µ/k ≈ 80, 000K, (256)

which indicates that even at room temperature the ideal gas approximation is accurate.
Thermal Energy and Heat Capacity
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The remaining of this section proves that at low temperature T the heat capacity Cv of electrons in metals is
proportional T.
The thermal energy E of electrons in metals is

E = ∑
j

2njεj, (257)

where index j specifies a one-electron quantum state with energy εj and nj is the average number of electrons
with one kind of spin in such state. The factor 2, introduced by Eq. (257) counts for the spin degeneracy.
Substituting nj according to Eq. (247) and changing the sum over j by a sum over energy levels we obtain

E = 2
∫ ∞

0
dε

ρ(ε)ε

eβ(ε−µ) + 1
, (258)

where ρ(ε) is the degeneracy of the energy level.
Eq. (258) can be integrated by parts, according to

∫ b

a
udφ = u ∗ φ

∣∣∣∣∣
b

a

−
∫ b

a
φdu, (259)

defining dφ = ερ(ε)dε and u(ε) = 1/(exp(β(ε− µ))+ 1). Note that according to this choice of variables
φ(ε) =

∫ ε
0 dε̄ρ(ε̄)ε̄. We obtain

E = lim
ε→∞

2
∫ ε

0 dε′ρ(ε′)ε′

eβ(ε−µ) + 1
− lim

ε→0

2
∫ ε

0 dε′ρ(ε′)ε′

eβ(ε−µ) + 1
− 2

∫ ∞

0
dε[
∫ ε

0
dε′ρ(ε′)ε′]

(−eβ(ε−µ)β)

(eβ(ε−µ) + 1)2
. (260)

Note that the first term, introduced by Eq. (260) is equal to 0 since in the limit when ε→ ∞ the denominator
becomes extremely large. The second term introduced by Eq. (260) is also equal 0 since in the limit when
ε→ 0 the numerator is equal to 0. Therefore, introducing the definition

F(ε) ≡ 1
eβ(ε−µ) + 1

, (261)

we obtain that Eq. (260) can be rewritten as follows,

E = −2
∫ ∞

0
dεφ(ε)

∂F
∂ε

. (262)

At this point, it is important to note that ∂F/∂ε is a function peaked at ε = µ, as represented by the following
diagram,

-

6
∂F
∂ε

0 ε
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since F(ε) is a step function represented by the following diagram,

-

6
F(ε)

1

ε

2kT

µ

-�

Therefore we can approximate φ(ε), in Eq. (262), by its expansion around ε = µ,

φ(ε) = φ(µ + x) ≈
∞

∑
0

∂nφ

∂εn

∣∣∣∣∣
ε=µ

(ε− µ)n

n!
, (263)

where x ≡ ε− µ. Substituting Eq. (263) into Eq. (262) for a given spin, we obtain,

E = −
∫ ∞

0
dε

∞

∑
n=0

∂nφ

∂εn

∣∣∣∣∣
ε=µ

(ε− µ)n

n!
∂F
∂ε

. (264)

Considering the first few terms of Eq. (264) we obtain,

E = φ(µ)

(
−
∫ ∞

0 dε ∂F
∂ε

)
+ ∂φ

∂ε

∣∣∣
ε=µ

∫ ∞
0 dε(ε− µ) eβ(ε−µ)

e2β(ε−µ)+2eβ(ε−µ)+1

+ ∂2φ
∂ε2

∣∣∣
ε=µ

∫ ∞
0 dε

(ε−µ)2

2
eβ(ε−µ)

e2β(ε−µ)+2eβ(ε−µ)+1
+ ...,

(265)

where the first term is equal to φ(µ) because F(∞) = 0 and F(0) = 1. To show that the second term in Eq.
(265) is equal to 0 we rewrite Eq. (265) in terms of the variable x̄ = βx,

E = φ(µ) + ∂φ
∂ε

∣∣∣
ε=µ

∫ ∞
−∞ dx̄ x̄

β
1

ex̄+e−x̄+2

+ (kT)2

2
∂2φ
∂ε2

∣∣∣
ε=µ

∫ ∞
−∞ dx̄ x̄2

ex̄+e−x̄+2 + ...,
(266)

where the lower integration limit has been changed from 0 to−∞ since the integrand is approximately equal
to zero whenever abs(ε− µ) is large. Note that the integral introduced by the second term of Eq. (266) is
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equal to 0 because the integrand is odd. In addition,∫ ∞

−∞
dx̄

x̄2

ex̄ + e−x̄ + 2
=

π2

3
, (267)

therefore,

E = φ(µ) +
(kT)2

2
∂2φ

∂ε2

)
ε=µ

(
π2

3

)
+ ..., (268)

At sufficiently low T, higher order terms in Eq. (268) are negligible. Therefore, at low T

Cv ∝ T, (269)

as observed in experiments.

28.1 Continuous Approximation

The goal of this subsection is to show that the error introduced by approximating Eq. (251) according to Eq.
(252) is negligible when L y sufficiently large. For simplicty, we show this for a 1-dimensional problem,
where

∞

∑
Kx=π/L

1

eβ( h̄2
2m K2

x−µ) + 1
= ∑

Kx

f (Kx)∆K, (270)

with
f (Kx) =

1
eβ(ε(Kx)−µ) + 1

Lx

π
, (271)

a decreasing function of Kx and
∆K =

π

Lx
, (272)

Remember, that Kx = Kx(nx) is a function of the quantum number nx, as defined by Eq. (249), where
nx = 1, 2, ..., with Kx = nxπ/L.
The discrete sum, introduced by Eq. (270), can be represented by the following diagram,

-

6

f (Kx)

Kx

Kx(0)Kx(1)Kx(2)Kx(3)Kx(4)︸︷︷︸
∆K

The diagram shows that,
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∞

∑
nx=1

f (Kx(nx))∆K ≤
∫ ∞

0
dK f (K) ≤

∞

∑
nx=0

f (Kx(nx))∆K =
∞

∑
nx=1

f (Kx(nx))∆K + f (Kx(0))∆K, (273)

since f (Kx(nx) is a decreasing function of Kx. So,

0 ≤
∫ ∞

0
dK f (K)−

∞

∑
nx=1

f (Kx(nx))∆K ≤ f (Kx(0))∆K ≤ 1. (274)

Therefore, Eq. (274) shows that the discrete sum and the integral become equal to each other when Lx
is very large since

0 ≤
∫ ∞

0
dKx

1
eβ(ε(Kx)−µ) + 1

−
∞

∑
Kx=π/L

∆Kx
1

eβ(ε(Kx(nx))−µ) + 1
≤ π

Lx
, (275)

so

lim
Lx→∞

Lx

π

∫ ∞

0
dKx

1
eβ(ε(Kx)−µ) + 1

=
∞

∑
nx=1

1
eβ(ε(Kx(nx))−µ) + 1

. (276)

28.2 Joint Probabilities

The goal of this section is to show that the joint probability gij that an electron is in state i and another
electron of the same spin is in state j is

gij = ninj − δijni, (277)

where ni is the average population of state i. Note that the average ninj thus provides information about
correlations between different particles.
Consider the population of state i, ni, in terms of the sum of occupation variables n(α)

i over all electrons α,

ni = ∑
α

n(α)
i , (278)

where n(α)
i = 1, 0. Therefore, the probability that states i and j are populated is

ninj = ∑
β

∑
α

n(α)
i n(β)

j = ∑
α

n(α)
i n(α)

j + ∑
α

∑
β 6=α

n(α)
i n(β)

j .︸ ︷︷ ︸
gijby definition

(279)

Note that

∑
α

n(α)
i n(α)

j = ∑
α

(n(α)
i )2δij, (280)

and that
n2

i = ∑
α

∑
β

n(α)
i n(β)

i = ∑
α

(n(α)
i )2 + ∑

α
∑
β 6=α

n(α)
i n(β)

i , (281)

where the double sum with β 6= α in Eq. (281) is equal to 0 because it corresponds to the joint probability
that both particles α and β are in state i.
Substituting Eqs. (280) and (281) into Eq. (279), we obtain

ninj = n2
i δij + gij. (282)
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Eq. (282) is identical to Eq. (277) because n2
i = ni when ni = 0, 1.

Finally, note that according to Eq. (173),

njni =
1
Ξ

∂2Ξ
∂(−βεi)∂(−βεj)

∣∣∣∣∣
V,T

=
∂2lnΞ

∂(−βεj)∂(−βεi)
+

∂lnΞ
∂(−βεj)

∂lnΞ
∂(−βεi)

=

(
∂

∂(−βεj)

∣∣∣∣∣
V,T

+ nj

)
ni,

=

(
δij

∂

∂(−βεi)

∣∣∣∣∣
V,T

+ nj

)
ni,

(283)

Therefore,

gij =

(
δij

∂

∂(−βεi)

∣∣∣∣∣
V,T

+ nj − δij

)
ni. (284)

29 Chemical Equilibrium

The goal of this section is to derive the law of mass action and to obtain an expresion of the equilibrium con-
stant for a chemical reaction in the gas phase in terms of the canonical partition function of the molecular
constituents. To achieve these goals, we first obtain an expression of the chemical potential for the con-
stituent molecules in terms of their canonical partition functions and then we derive the law of mass action
by using the minimum energy principle. Finally, we combine both results and we obtain an expression of
the equilibrium constant in terms of the molecular canonical partition functions.
The grand canonical ensemble of a multicomponent system is described by the density operator, introduced
by Eq. (86) but where

pj =
e−βEj+β ∑k µk Nj(k)

∑j e−βEj+β ∑k µk Nj(k)
= Ξ−1e−βEj+β ∑k µk Nj(k), (285)

with µk the chemical potential of species k and Nj(k) the number of particles of species k in quantum state
j. Eq. (285) is obtained by maximizing the entropy of the system, introduced by Eq. (23), subject to the
constraints of constant volume, average internal energy Ej and average number of particles Nj(k) for all the
different species k in the system.
Substituting Eq. (285) into Eq. (88), we obtain

S =
E
T
− 1

T ∑
k

µkN(k) + klnΞ. (286)

Therefore,
G ≡∑

k
µkN(k) = E− TS + TklnΞ, (287)

and since G = H − TS = E + PV − TS,

PV = kTlnΞ. (288)

Eqs. (286)—(288) provide an expression for the change in internal energy dE due to changes in the extensive
properties of the system such as changes of volume dV, number of particles dN(k) and entropy dS,
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dE = TdS− PdV + ∑
k

µkdN(k). (289)

According to Eq. (289), µk can be computed as follows,

µk =
∂E

∂N(k)

)
S,V

, (290)

and since A = E− TS and dA = dE− TdS− SdT,

µk =
∂A

∂N(k)

)
T,V

. (291)

Furthermore, according to Eqs. (291) and (56),

βµk = −
∂lnZ

∂N(k)

)
T,V

. (292)

The canonical partition function,

Z = ∏
k

(qt(k) ∗ qint(k))N(k)

N(k)!
, (293)

is computed according to Eq. (217), where qt(j) = V(2πmjkT)3/2/h3 and qint are the translational and
internal canonical partition functions of species j, respectively. The underlying assumption, when computing
Z according to Eq. (293), is that the constituents of the systems in the gas phase do not interact with each
other except when they undergo reactive collisions.
Substituting Eq. (293) into Eq. (292) and using the Stirling Formula, introduced by Eq. (63), we obtain

βµk = −ln

(
qt(k) ∗ qint(k)

N(k)

)
. (294)

To derive the law of mass action, we consider the following chemical reaction,

aA + bB 
 cC + dD, (295)

where the stoichiometric coefficients (ck =a, b, c and d) determine the relative changes in the number of
moles of the molecular constituents due to the chemical reaction, as follows:

dN(A)

a
=

dN(B)
b

= −dN(C)
c

= −dN(D)

d
. (296)

Substituting Eq. (296) into Eq. (289) we obtain an expression for the change in internal energy at constant
entropy S and volume V,

dE

)
S,V

= ∑
j

µjdN(j) = dN(A)∑
j

µjνj, (297)

where νj = cj/a.
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The minimum energy principle establishes that

dE

)
S,V

≥ 0, (298)

for all arbitrary changes dN(A) in a system that was initially at equilibrium. Therefore, according to Eqs.
(297) and (298),

∑
j

βµjνj = 0. (299)

Substituting Eq. (294) into Eq. (299), we obtain

∑
j

ln

([
qint ∗ (2πmjkT)3/2

h3

)νj[
V

N(j)

]νj)
= 0, (300)

and

ln ∏
j

[
qint ∗ (2 ∗ π ∗mj ∗ k ∗ T)3/2

h3

)νj[
V

N(j)

]νj

= 0. (301)

Therefore,

K(T) ≡∏
j

(
qint ∗ (2 ∗ π ∗mj ∗ k ∗ T)3/2

h3

)−νj

= ∏
j

(
V

N(j)

)νj

, (302)

which is the law of mass action. Such law establishes that the concentrations of the constituent molecules
in chemical equilibrium define an equilibrium constant K(T) that depends only on the temperature of the
system and on the nature of the chemical species. The first equality, in Eq. (302), provides a molecu-
lar expression of such equilibrium constant in terms of the canonical partition functions of the molecular
constituents and T.

29.1 Minimum Energy Principle

The minimum energy principle, introduced by Eq. (298), is a consequence of the maximum entropy prin-
ciple. This can be shown by considering the system at thermal equilibrium described by the following
diagram:

(1) (2)

S(E(1), X)

N1

S(E(2), X)

N2

6

Thermal (Heat) Conductor

Consider a small displacement of heat δE from compartment (2) to compartment (1). Since the system
was originally at equilibrium, such a contraint in the distribution of thermal energy produces a constrained
system whose entropy is smaller than the entropy of the system at equilibrium. Mathematically,

S(E(1) + δE, X) + S(E(2) − δE, X) < S(E(1), X) + S(E(2), X). (303)
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Now consider the system at equilibrium (i.e., without any constraints) with entropy S(E, X) such that

S(E, X) = S(E(1) + δE, X) + S(E(2) − δE, X). (304)

Since, according to Eqs. (304) and (303),

S(E, X) < S(E(1), X) + S(E(2), X), (305)

and according to Eq. (42),
∂S
∂E

)
V,N

=
1
T

> 0, (306)

then
E < E(1) + E(2). (307)

Eq. (304) thus establishes that by imposing internal constraints at constant entropy the system that was
initially at equilibrium with entropy S(E, X) moves away from such equilibrium and its internal energy
increases from E to E(1) + E(2). Mathematically,

dE

)
S,V

≥ 0, (308)

which is the minimum energy principle.

30 Exam 2

Exam 2 CHEM 430b/530b
Statistical Methods and Thermodynamics

Exercise 1
(20 points) Item (1.1):Consider an ideal gas of bosons with µ = 0 at temperature T = 1/(βk). Show that

δnk δnj = δkj
∂nk

∂(−βεk)

)
V,T

, (309)

where δnk = nk − nk and nk is the average occupation of the one-boson energy level k.
(20 points) Item (1.2): Explain the minimum energy principle and show that such principle is a consequence
of the maximum entropy principle.
(20 points) Item (1.3): Explain the classical limit of the quantum statistical distributions.

Exercise 2
Consider an ideal gas of O2 molecules adsorbed on a surface of area S in thermal equilibrium at temperature
T = 1/(kβ). Assume that each O2 molecule in the gas can freely translate, vibrate and rotate but only on
the 2-dimensional surface. Assume that the rotational motion of O2 molecules can be described by a rigid
rotor model where the rotational eigenstates have degeneracy g(J) = 2 for all values of J except for J=0 for

which g(J)=1. Assume that the rotational states have eigenvalues EJ =
h̄2 J2

2I0
, with J=0, 1, 2, ..., where I0 is

the moment of inertia of the O2 molecule.
(10 points) Item (2.1): Compute the rotational canonical partition function of an O2 molecule as a function
of its moment of inertia I0 and β.
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(10 points) Item (2.2): Compute the vibrational canonical partition function of an O2 molecule as a function
of its vibrational frequency ω0 and β.
(10 points) Item (2.3): Compute the translational canonical partition function of an O2 molecule as a func-
tion of its total mass m, β and the surface area S.
(10 points) Item (2.4): Compute the average internal energy E of the O2 gas as a function of β, the O2 mass
m , the area of the surface S, the O2 moment of inertia I0 and the total number N of O2 molecules on the
surface.

Solution:
Exercise 1:
Item (1.1): Since δnk = nk − nk,

δnk δnj = nknj − nk nj, (310)

where
nj =

1
eβεj − 1

, (311)

because µ = 0. Therefore,

nknj =
1
Ξ

∂2 ∑∞
n1=0 ∑∞

n2=0 ...e−β(ε1n1+ε2n2+...)

∂(βεj)∂(βεk)
, (312)

or

nknj =
1
Ξ

∂2

∂(βεk)∂(βεj)
∏

j

1
1− e−βεj

. (313)

Computing the first partial derivative we obtain

nknj =
1
Ξ

∂

∂(−βεj)

e−βεk

(1− e−βεk)2 ∏
l 6=k

1
1− e−βεl

, (314)

and computing the second partial derivative we obtain

nknj = 1
Ξ [∏l 6=k

1
1−e−βεl

δkj
[(1−e−βεk )2e−βεk+e−βεk 2(1−e−βεk )e−βεk ]

(1−e−βεk )4

+ e−βεk

(1−e−βεk )2
e−βεj

(1−e−βεj )2
∏l 6=j,l 6=k

1
1−e−βεl

],
(315)

where,

Ξ = ∏
j

1
1− e−βεj

. (316)

Therefore,

nknj = δkj
e−βεk

(1− e−βεk)2 +
e−βεk

(1− e−βεk)

e−βεj

(1− e−βεj)
, (317)

and

δnk δnj = δkj
e−βεk

(1− e−βεk)2 = δkj
∂

∂(−βεk)

1
eβεk − 1

, (318)
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which, according to Eq (264), gives

δnk δnj = δkj
∂nk

∂(−βεk)
. (319)

Item (1.2): See topic “Minimum Energy Principle” on page 55 of the lecture notes.
Item (1.3): See topic “Classical limit of Quantum Statistical Distributions” on page 36 of the lecture notes.

Exercise 2:
Item (2.1): The rotational canonical partition function of an O2 molecule is

qrot =
∞

∑
J=0

g(J)e−βεJ . (320)

Taking the continuous limit we obtain,

qrot ≈ lim
ε→0

∫ ∞

ε
dJg(J)e−βεJ =

√
π2I0

βh̄2 . (321)

Item (2.2): The vibrational canonical partition function of an O2 molecule is

qvib =
∞

∑
ν=0

e−βεν =
e−βh̄ω0/2

1− e−βh̄ω0
. (322)

Item (2.3): The translational canonical partition function of an O2 molecule is

qtransl =
S

π2 ∑
kx

∑
ky

e−β
(k2

x+k2
y)h̄

2

2m ≈ S
π2

∫
dkxe

−βk2
x h̄2

2m

∫
dkye

−βk2
y h̄2

2m . (323)

Therefore,

qtransl ≈
Sπ2m

βh2 , (324)

where S = Lx × Ly, with Lx and Ly the lengths of the surface along the x and y directions, respectively.
Item (2.4): The total canonical partition function of the system is

Q =
1

N!

N

∏
j=1

qrotqvibqtransl. (325)

Substituting the expressions for qrot, qvib and qtransl computed in items (2.1)—(2.3) we obtain,

Q =
1

N!

N

∏
j=1

S
2πm
βh2 (eβh̄ω0/2 − e−βh̄ω0/2)−1

√
2π I0

βh̄2 =
1

N!

N

∏
j=1

πx
β3/2(eβy − e−βy)

. (326)

Therefore, the average internal energy of the O2 gas is

E =
∑N

j=1 ∂lnQ
∂β

=
N
Q

∂Q
∂(−β)

= +
β3/2(eβy − e−βy)N

x
x(3/2β1/2(eβy − e−βy) + β3/2y(eβy + e−βy))

β3/2(eβy − e−βy)2 ,

(327)
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which gives

E =
N

∑
j=1

3/2(eβy − e−βy) + βy(eβy + e−βy)

β(eβy − e−βy)
= (

3
2β

+
3y
2
(eβy + e−βy)

(eβy − e−βy)
) ∗ N, (328)

where x = S2mπ
h2

√
2π I0

h̄2 and y = h̄ω0
2 .

31 Quiz 2

Quiz 2 CHEM 430b/530b
Statistical Methods and Thermodynamics

(30 points) Exercise 1: Derive the Fermi-Dirac distribution.
(30 points) Exercise 2: Derive the Bose-Einstein distribution.
(40 points) Exercise 3: Derive an expression for the average density of electrons N/V in a metal at T = 0
K, as a function of the Fermi energy µ and the electron mass m.

Solution:
Exercise 1: See topic “Bose-Einstein and Fermi-Dirac distributions” on pages 34 and 35 of the lecture notes.
Exercise 2: See topic “Bose-Einstein and Fermi-Dirac distributions” on pages 34 and 35 of the lecture notes.
Exercise 3: According to Eq. (254),

N = 8π
∫ K f

0
dKK2

(
L

2π

)3

= 8π

(
L

2π

)3 K3
f

3
=

2V
(2π)3

4
3

πK3
f , (329)

where K f is the Fermi momentum defined as follows

h̄2K2
f

2m
= µ. (330)

Therefore,

N
V

=
2

(2π)3
4
3

π

(
2mµ

h̄2

)(3/2)

. (331)
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32 Ising Model

The goal of this section is to introduce the Ising model which is a simple model of systems with interparticle
interactions and to compute its canonical partition function according to both the macroscopic approxima-
tion and the rigorous transfer matrix technique.

Figure 1: Chemistry Gate, Yale University. At the center is a panel representing the Ising Lattice, a tribute to
Nobel-prize winning Yale chemist Lars Onsager, who provided a proof of the Ising model for phase change.

The 1-dimensional Ising model is described by a system of N spins arranged in a ring as represented in
the following diagram:

e e e e e
ee e e e e

6
?

6 6

?

6

6

?
?

6
6

SN−1
SN S1 S2

S3

S4

SN−2

S7 S6
S5

bN−1 bN b1 b2
b3

b4b5b6
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The Hamiltonian of the system is
H = −µ̄B ∑

j
Sj − J ∑

jk
SjSk, (332)

where µ̄ is the magnetic dipole moment, B is an external magnetic field and J is the coupling constant
between spins. The sum of products SjSk defines the interaction between spins, including only nearest
neighbors.
In the absence of an external magnetic field, the canonical partition function of the system is

Z =
1

∑
S1=−1

1

∑
S2=−1

...
1

∑
SN=−1

eβJS1S2 eβJS2S3 ...eβJSNS1 , (333)

The partition function, introduced by Eq. (333), is approximately equal to

Z ≈ ∑
b1=±1

... ∑
bN=±1

eβJ ∑N
j=1 bj = [2cosh(βJ)]N , (334)

where we have replaced the products of interaction SkSj by bonds bj = ±1 and we have assumed that
all bonds are linearly independent. Note, however, that such approximation consist in assuming that N is
sufficiently large (i.e., N >> 1) as to neglect the energy of one bond relative to the total energy of the
system, since only N-1 bonds are actually linearly independent.
To perform a rigorous calculation of the canonical partition function introduced by Eq. (333), we define the
transfer function in the absence of an external magnetic field as follows,

T(Si, Si+1) ≡ exp(βJSiSi+1). (335)

Substituting Eq. (335) into Eq. (333) we obtain

Z =
1

∑
S1=−1

1

∑
S2=−1

...
1

∑
SN=−1

T(S1, S2)T(S2, S3)...T(SN , S1). (336)

This expression corresponds to the trace of a product of N identical 2 × 2 matrices. To show this we
introduce the transfer matrix,

T ≡
(

T(1, 1) T(1,−1)
T(−1, 1) T(−1,−1)

)
. (337)

Note that the element (j,k) of T2 is

T2(j, k) =
1

∑
S2=−1

T(j, S2)T(S2, k), (338)

and therefore

Z =
1

∑
S1=−1

TN(S1, S1) = Tr{TN}. (339)

Thus the calculation of the canonical partition function for the 1-dimensional Ising model has been reduced
to that of computing the trace of the Nth power of the transfer matrix.

We note that T = Γ†TdΓ, with Td the diagonal matrix of eigenvalues of T, and Γ the matrix of
eigenvectors of T with ΓΓ† = 1, so TN = Γ†TN

d Γ. Furthermore, the Tr{TN} = Tr{Γ†TN
d Γ} =

Tr{ΓΓ†TN
d } = Tr{TN

d } since the trace is invariant under cyclic permutations (i.e., Tr(ABC)=Tr(CAB)
since ∑j,k(AB)jkCkj = ∑j,k Ckj(AB)jk ).
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Now, the trace of a matrix is the sum of its eigenvalues and the eigenvalues of TN are λN
± , where λ± are

the eigenvalues of T determined by the equation∣∣∣∣∣eβJ − λ e−βJ

e−βJ eβJ − λ

∣∣∣∣∣ = 0, (340)

with solutions
λ± = eβJ ± e−βJ . (341)

Hence, the partition function is simply,

Z = λN
+ + λN

− = 2N(coshN(βJ) + sinhN(βJ)). (342)

Note that when N is sufficiently large, sinhN(βJ) << coshN(βJ) and Eq. (342) coincides with Eq. (334).
In the presence of a magnetic field, however,

Z =
1

∑
S1=−1

1

∑
S2=−1

...
1

∑
SN=−1

eβJS1S2+βµB(S1+S2)/2eβJS2S3+βµB(S2+S3)/2...eβJSNS1+βµB(SN+S1)/2, (343)

Exercise: 1-dimensional Ising Model
Compute the canonical partition function introduced by Eq. (343) by implementing the transfer matrix
approach.

33 Lattice Gas

The goal of this section is to show that with a simple change of variables, the Ising model can be mapped
into the lattice gas which is a simple model of density fluctuations and liquid-gas transformations. The
1-dimensional lattice gas model is described by the following diagram:

cN−1 cN c1 c2 c3

c4c5c6

The lattice divides space into cells c1, c2, ..., cN . Each cell has an occupation number nj = 0, 1. The
interaction between particles occupying the cells is modeled by assuming that the energy associated with a
pair of occupied nearest neighbor cells is −εnjnk and the total energy of the system is

E = −µ ∑
j

nj − ε ∑
j

∑
k

njnk, (344)
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where j is the index of the cell and µ is the chemical potential of a particle. The partition function of the
lattice model is

Ξ =
1

∑
n1=0

1

∑
n2=0

...
1

∑
nN=0

eβµ ∑N
j=1 nj+βε ∑j ∑k njnk . (345)

To show the correspondence between the lattice gas and the Ising model, we make the variable transforma-
tion nj ≡ (Sj + 1)/2 and we obtain

Ξ =
1

∑
S1=−1

1

∑
S2=−1

...
1

∑
SN=−1

eβ
µ
2 ∑j(Sj+1)+β ε

4 ∑j ∑k(Sj+1)(Sk+1), (346)

Therefore the lattice model is isomorphic with the Ising model: “Spin up” in the Ising model corresponds
to an occupied cell in the lattice model, “spin down” corresponds to an empty cell, the magnetic field in
the Ising model corresponds (within constants) to the chemical potential in the lattice gas and the coupling
constant in the Ising model is ε/4 in the lattice gas.
The Ising model can also be mapped into many other problems in Chemistry and beyond, ranging from
models of population dynamics to models of the brain.

34 Mean Field Theory

The goal of this section is to introduce the so-called mean field theory (also known as self consistent field
theory) and to illustrate the theory by applying it to the description of the Ising model.
The main idea of the mean field theory is to focus on one particle and assume that the most important
contribution to the interactions of such particle with its neighboring particles is determined by the mean
field due to the neighboring particles.
In the 1-dimensional Ising model, for instance, the average force Fk exerted on spin Sk is

Fk ≡ −
∂H
∂Sk

= µ̄B + J ∑
j

Sj, (347)

where the index j includes all the nearest neighbors of spin Sk. Therefore, the average magnetic field B
acting on spin Sk is

B ≡ Fk

µ̄
= B + ∆B, (348)

where
∆B = J2Sk/µ̄, (349)

is the contribution to the mean field due to the nearest neighbors. Note that Sk = Sj when all spins are
identical.

Eq. (348) defines the self consistent aspect of the theory, since according to such equation the mean field
B acting on spin Sk is determined by its own mean value Sk.
The assumption that the interactions of a spin with its neighboring spins can be approximately described
by the mean field, introduced by Eq. (349), introduces an enormous simplification. Such mean field ap-
proximation simplifies the many body statistical mechanics problem to a one-body problem (i.e., Eq. (348)
transforms the problem of N interacting spins influenced by an external magnetic field B to a problem of N
non-interacting spins influenced by the mean field B).
The partition function, under the mean field approximation, is

Z ≈∑
S1

∑
S2

... ∑
SN

eβ ∑j Sj(B+∆B)µ̄ = 2NcoshN(βµ̄B), (350)
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and the average value of Sk is

Sk =
1
N ∑

j
pj(∑

l
Sl(j)) =

1
N

Z−1 ∑
S1

∑
S2

... ∑
SN

(∑
l

Sl)eβ ∑j Sj(B+∆B)µ̄, (351)

where pj is the probability of state j. The average value of spin is

Sk =
1
N

∂lnZ
∂(βµ̄B)

= tanh(βµ̄(B + 2JSk/µ̄)). (352)

Note that Eq. (352) involves a transcendental equation. Its solution corresponds to the value of Sk = m for
which the function on the left hand side of Eq. (352) (i.e., Sk) equals the function on the right hand side of
Eq. (352) (i.e., tanh(βµ̄(B + 2JSk/µ̄)).
In the absence of an external magnetic field (i.e., when B = 0), Eq. (352) always has the trivial solution
Sk = 0 and a non-trivial solution Sk = m only when β2J > 1. Such solution is represented by the following
diagram:

-

6

?�
�
�
�
�
�
�
�
�
�
�
�
�
��

SjSj = m

Sj

tanh(β2JSj)

The diagram shows that the mean field theory predicts spontaneous magnetization (i.e., magnetization in the
absence of an external magnetic field) for the 1-dimensional Ising model at any temperature T < 2J/k, since
there is a non-trivial solution Sk = m for which Eq. (352) is satisfied. Unfortunately, however, this result
is erroneous! The 1-dimensional Ising model does not undergo spontaneous magnetization at any finite
temperature, since each spin has only two nearest neighbors and the stabilization energy due to two nearest
neighbors is not enough to overcome the randomization process due to thermal fluctuations. This simple
example, however, illustrates the theory including the fact that it is sometimes inaccurate near critical points.
The theory works better in higher dimensionality, e.g., in the 2-dimensional Ising model where the theory
predicts spontaneous magnetization at a critical temperature Tc = 4J/K that is close to the experimental
value 2.3 J/K.
Exercise: Show that there is no spontaneous magnetization in the 1-dimensional Ising model at finite tem-
perature by computing the average magnetization M = µ̄ ∑j Sj from the exact canonical partition function.
Hint: Compute the average magnetization in the presence of an external magnetic field and show that in the
limit when B→ 0 such magnetization becomes negligible.
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34.1 Variational Mean Field Theory

The goal of this section is to introduce a variational approach for computing the optimum mean field deter-
mined by the Gibbs-Bogoliubov-Feynman equation and to illustrate such variational method by applying it
to the description of the 1-dimensional Ising model.
Consider the task of computing the canonical partition function Z of the one-dimensional Ising model,

Z(K, N) = ∑
S1

∑
S2

... ∑
SN

e−βE(S1,S2,S2,S3,...SN), (353)

where
E(S1, S2, S2, S3, ...SN) = −µ̄B ∑

j
Sj − J ∑

jk
SjSk. (354)

The mean field approximation, introduced by Eq. (350), is

ZMF(K, N) = ∑
S1

∑
S2

... ∑
SN

e−βEMF(S1,S2,S2,S3,...SN) = 2NcoshN(βµ̄(B + ∆B)), (355)

with
EMF(S1, S2, S2, S3, ...SN) = −µ̄(B + ∆B)∑

j
Sj, (356)

where ∆B = J2Sk/µ̄. Note that the mean field partition function ZMF, introduced by Eq. (355) is an
approximation to the actual partition function Z(K, N), introduced by Eq. (353). The goal of the variational
treatment is, therefore, to optimize the expression of the mean field ∆B in order for ZMF to be as similar as
possible to Z(K, N).
To obtain a variational expression that involves both ZMF(K, N) and Z(K, N) (i.e., the Gibbs-Bogoliubov-
Feynman equation) we note that, according to Eqs. (353) and (355),

Z(K, N) = ZMF(K, N)
∑S1 ∑S2

... ∑SN
e−β∆Ee−βEMF

∑S1 ∑S2
... ∑SN

e−βEMF
= ZMF〈e−β∆E〉, (357)

where ∆E = E− EMF, and 〈〉 indicates a mean field ensemble average. Furthermore, we note that

〈e−β∆E〉 = 〈e−β〈∆E〉e−β(∆E−〈∆E〉)〉 ≥ e−β〈∆E〉, (358)

since 〈e−β〈∆E〉〉 = e−β〈∆E〉 and ex ≥ 1 + x. Therefore,

Z(K, N) ≥ ZMF(K, N)e−β〈∆E〉, (359)

which is the Gibbs-Bogoliubov-Feynman equation.
Eq. (359) allows us to find the optimum mean field by maximizing the right hand side (r.h.s.) of Eq. (359)
with respect to ∆B.
Note that according to Eqs. (355) and (352),

∂ZMF

∂∆B
= ZMF Nβµ̄〈sk〉. (360)

and according to Eq. (354) and (356),

〈∆E〉 = −J
N

∑
j=1

∑
k
〈sjsk〉+ ∆Bµ̄ ∑

j
〈sj〉 = −J

N
2

2〈sj〉2 + ∆Bµ̄N〈sj〉. (361)
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Therefore, computing the derivative of the r.h.s. of Eq. (359) with respect to ∆B and making such derivative
equal to zero we obtain, according to Eqs. (360) and (361),

ZMF Nβµ̄〈sk〉e−β〈∆E〉 + ZMFe−β〈∆E〉(−β)(−J
N
2

2
∂〈sj〉
∂∆B

2〈sj〉+ µ̄N〈sj〉) + ∆Bµ̄N
∂〈sj〉
∂∆B

) = 0. (362)

Therefore, solving for ∆B in Eq. (362) we obtain

∆B = 2J〈sj〉/µ̄, (363)

which is identical to the mean field introduced by Eq. (349). This means that the mean field introduced by
Eq. (349) is the optimum field as determined by the Gibbs-Bogoliubov-Feynman equation (i.e., the mean
field that maximizes the r.h.s. of Eq. (359)).

35 Renormalization Group Theory

The goal of this section is to introduce several concepts of Renormalization Group Theory and to illustrate
such concepts with the 1-dimensional Ising model.
Consider the task of computing the canonical partition function Z of the one-dimensional Ising model in the
absence of an external magnetic field. According to Eq. (333),

Z(K, N) = ∑
S1

∑
S2

... ∑
SN

eK(S1S2+S2S3+...+SNS1), (364)

where coupling parameter K ≡ βJ and N is the total number of spins. Note that according to Eq. (364),

lim
K→0

Z(K, N) =
N

∏
j=1

1

∑
Sj=−1

1 = 2N . (365)

The renormalization group strategy for the 1-dimensional Ising model can be described as follows.
Step (1). Sum over the even numbered spins in Eq. (364). Note that summing, e.g., over S2 we obtain

Z(K, N) = ∑
S1,S3,S4,S5,S6,S7...

[eK(S1+S3) + e−K(S1+S3)]eKS3S4 eKS4S5 eKS5S6 eKS6S7 ..., (366)

summing over S2 and S4 we obtain,

Z(K, N) = ∑
S1,S3,S5,S6,S7...

[eK(S1+S3) + e−K(S1+S3)][eK(S3+S5) + e−K(S3+S5)]eKS5S6 eKS6S7 ..., (367)

and summing over all even numbered spins we obtain

Z(K, N) = ∑
S1,S3,S5,S7...

[eK(S1+S3) + e−K(S1+S3)][eK(S3+S5) + e−K(S3+S5)][eK(S5+S7) + e−K(S5+S7)].... (368)

Step (2). Rewrite the remaining sum (i.e., the sum over odd numbered spins introduced by Eq. (368) by
implementing the Kadanoff transformation

eK(S+S′) + e−K(S+S′) = f (K)eK′SS′ , (369)

where both f (K) and K′ are functions of K. Substituting Eq. (369) into Eq. (368) we obtain

Z(K, N) = f (K)N/2 ∑
S1,S3,S5,S7...

eK′S1S3 eK′S3S5 eK′S5S7 .... = f (K)N/2Z(K′, N/2). (370)
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Note that such transformation allows us to rewrite the partition function Z(K, N) in terms of a renormalized
partition function Z(K′, N/2) (i.e., a partition function with new parameters that describes an Ising model
with half the number of spins and a different coupling parameter K′). To determine the renormalization
group equations (i.e., K′ and f (K) as a function of K) and show that K′ < K, we note that when S = S′ =
±1, Eq. (369) gives

e2K + e−2K = f (K)eK′ , (371)

and when S = −S′ = ±1, Eq. (369) gives

2 = f (K)e−K′ . (372)

Therefore, solving for f (K) in Eq. (372) and substituting into Eq. (371) we obtain

K′ =
1
2

ln(cosh(2K)), (373)

and substituting Eq. (373) into Eq. (372) we obtain

f (K) = 2cosh
1
2 (2K). (374)

Eqs. (373) and (374) are called renormalization group equations since they provide the renormalization
scheme.
Step (3). Go to (1), replacing Z(K, N) by Z(K′, N/2).
Step (3) is repeated each time on the subsequent (renormalized) partition function (i.e., Z(K′′, N/4),
Z(K′′′, N/8), Z(K IV , N/16), Z(KV , N/32), ... etc.) until the renormalized parameters become approxi-
mately constant (i.e., until the renormalized parameters reach a fixed point and become invariant under the
Kadanoff transformation). Note that, according to Eq. (373), K > K′ > K′′ > K′′′, etc., so after a few
iterations the coupling parameter becomes negligibly small and the partition function can be approximated
by using Eq. (365) as follows:

lnZ(K, N) ≈ N
2 ln[2cosh1/2(2K)] + N

4 ln[2cosh1/2(2K′)] + N
8 ln[2cosh1/2(2K′′)]+

N
16 ln[2cosh1/2(2K′′′)] + N

32 ln[2cosh1/2(2K IV)] + N
64 ln[2cosh1/2(2KV)] + N

26 ln2.
(375)

The renormalization group strategy thus involves computing the total sum, introduced by Eq. (364), step
by step. The success of the approach relies on the fact that the sum converges to an expression that can be
easily computed, after a few iterations.
Sometimes the partition function is known for a specific value of the coupling parameter (e.g., for K′ ≈ 0
in the 1-dimensional Ising model). The renormalization group theory can then be implemented to compute
the partition function of the system for a different value K of the coupling constant. This is accomplished
by inverting Eq. (373) as follows:

K =
1
2

cosh−1[exp(2K′)]. (376)

and computing Z(K, N) from Z(K′, N/2) according to Eq. (370).
One could also define the function g(K) as follows

Ng(K) ≡ lnZ(K, N), (377)

and substituting Eq. (376) into Eq. (370) we obtain

Ng(K) =
N
2

ln2 +
N
2

ln(cosh
1
2 (2K)) +

N
2

g(K′). (378)
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Therefore, given the partition function Z(K′, N) for a system with coupling constant K′, one can com-
pute g(K′) and K according to Eqs. (377) and (376), respectively. The partition function Z(K, N) =
exp(Ng(K)) is then obtained by substituting the values of g(K′) and K in Eq. (377).
Note that according to this procedure, K > K′ and the subsequent iterations give larger and larger values
of K. This indicates that the flow of K has only two fixed points at K= 0 (e.g., at infinite temperature) and
K= ∞ (e.g., at 0 K). Systems with phase transitions, however, have nontrivial fixed points at intermediate
values of K. For instance, following a similar procedure, as the one described in this section, it is possible
to show that the 2-dimensional Ising model has an additional fixed point Kc and that the heat capacity
C = d2

dk2 g(k) divergers at Kc. Thus, Kc determines the critical temperature where the system undergoes a
phase transition and spontaneosly magnetizes.
Hint for Exercise 5.17: From Eq. (c) solve for K to obtain Eq. (c’): K = 1

4 cosh−1(e8K′/3). Then,
substitute K defined according to (c’) into (b) to obtain: g(K′) = 2g(K) − ln{2[cosh(x/2)]1/2eK′/3},
with x = cosh−1(e8K′/3). Next, note that (cosh(x/2))2 = (ex + e−x + 2)/4 = (cosh(x) + 1)/2, so
[cosh(x/2)]1/2 = (cosh(x) + 1)1/4/21/4 = 2−1/4(e8K′/3 + 1)1/4 = eK′/32−1/4(e4K′/3 + e−4K′/3)1/4 =
eK′/3cosh1/4(4K′/3). Therefore, g(K′) = 2g(K)− ln{2e2K′/3cosh1/4(4K′/3)}, giving Eq. (b’): g(K) =
1
2 g(K′) + 1

2 ln{2e2K′/3cosh1/4(4K′/3)}.

36 Metropolis Monte Carlo Method

The goal of this section is to introduce the Metropolis Monte Carlo Method (J. Chem. Phys. 21, 1087, 1953)
and to illustrate the algorithm as applied to the computation of canonical ensemble averages for the Ising
model.
The Metropolis Monte Carlo method is a computational approach (i.e., an algorithm) for generating a set of
N configurations of the system ξ1, ξ2, ξ3, ..., ξN such that

lim
N→∞

Nξ

N
= P(ξ), (379)

where P(ξ) is a given probability distribution (e.g., the Boltzmann distribution P(ξ) = Z−1 exp[-β E(ξ)])
and Nξ is the number of configurations ξ (e.g., the number of configurations generated with a particular
arrangement of spins S1(ξ), S2(ξ), ..., SN(ξ) in the Ising model).

The Metropolis Monte Carlo algorithm can be described as follows:
Step (1): Pick a configuration ξn (the initial configuration can be any configuration of the system, e.g., any
arrangement of spins in the Ising model).
Step (2): Pick a trial configuration ξt (usually a configuration similar to ξn) and compute the probability
ratio R = P(ξt)

P(ξn)
. Pick a random number p with value between 0 and 1. Make ξn+1 = ξt if p ≤ R.

Otherwise, make ξn+1 = ξn.
Step (3): Go to (2) replacing ξn by ξn+1.
Step (3) is repeated N times, where N is a sufficiently large number. Note that, according to step (2), the
probability of accepting a trial configuration ξt by making ξn+1 = ξt from a configuration ξn is

Pξn,ξt =

{
R = P(ξt)

P(ξn)
, when P(ξt) < P(ξn),

1, otherwise.
(380)
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The goal of the remaining of this section is to prove that such an algorithm indeed produces an ensemble of
configurations that satisfies Eq. (379).
Consider an ensemble of N configurations with N(ξ) members of the ensemble in state ξ. Apply the
Metropolis Monte Carlo algorithm to each member of the ensemble by setting ξn = ξ and ξt = ξ ′ in
step (2), where ξ and ξ ′ are any two possible states. Note that by applying the algorithm the we generate
more configurations and we therefore evolve the initial distribution. To show that the algorithm produces an
ensemble of configurations that satisfies Eq. (379) we need to show that the any initial distribution N(ξ)/N
evolves towards the distribution P(ξ) = and once such a distribution is reached it remains at equilibrium.
According to step (2), for any pair of states ξ and ξ ′, the number of configurations generated in state ξ ′ by
applying the algorithm to the N(ξ) configurations in state ξ is N(ξ)Pξ,ξ ′ , where Pξ,ξ ′ is the probability of
accepting the trial configuration ξ ′ when ξn = ξ. In addition, the number of configurations generated in
state ξ ′ by applying the algorithm to the N(ξ ′) configurations in state ξ ′ is (1-Pξ ′,ξ) N(ξ ′). Therefore, the
total number N(ξ ′) of configurations generated in state ξ ′ due to any other state ξ is

N(ξ ′) = N(ξ ′) + ∆N(ξ ′), (381)

where
∆N(ξ ′) = N(ξ)Pξ,ξ ′ − N(ξ ′)Pξ ′,ξ , (382)

is the net change in the number of configurations in state ξ ′, relative to N(ξ ′).
According to Eqs. (380) and (382),

∆N(ξ ′) = N(ξ)− N(ξ ′)
P(ξ)
P(ξ ′)

, (383)

when P(ξ ′) > P(ξ) and

∆N(ξ ′) = N(ξ)
P(ξ ′)
P(ξ)

− N(ξ ′), (384)

when P(ξ ′) < P(ξ). Therefore, according to Eqs. (383) and (384), ∆N(ξ ′) = 0 when N(ξ)/N = P(ξ)
and N(ξ ′)/N = P(ξ ′), i.e., the algorithm does not alter the relative population of the states when the
ensemble distribution is equal to the equilibrium distribution. In addition, Eqs. (383) and (384) indicate
that ∆N(ξ ′) > 0 when N(ξ ′)/N < P(ξ ′) (and ∆N(ξ ′) < 0 when N(ξ ′)/N > P(ξ ′)), i.e., the algorithm
evolves any arbitrary distribution towards the equilibrium distribution where Nξ

N = P(ξ).
Note: The most important aspect of the method is that the algorithm is able generate an ensemble of con-
figurations with the probability distribution P(ξ) = Z−1 exp[-β E(ξ)], simply by computing the probability
ratios P(ξ ′)/P(ξ). Therefore, the method avoids the need of computing the canonical partition function
of the system Z, a computational task that would be computationally intractable for most real applications.
This numerical technique is thus extremely useful since it allows one to compute any canonical ensembles
without having to compute the canonical partition function of the system as follows,

〈A〉 ≈ Ā =
1
N ∑

ξ

Nξ A(ξ), (385)

where A(ξ) is the value of the observable A for state ξ and Ā is the Monte Carlo estimator of 〈A〉 associated
with the finite number of configurations N.

Exercise:
Implement the Metropolis Monte Carlo Algorithm to generate an ensemble of configurations for a 2-
dimensional Ising model with (20 × 20 spins) in the absence of an external field. Compute the average
value of the magnetization at various different temperatures and show that the system exhibits spontaneous
magnetization when T < 2.3J/k, where J is the coupling constant between spins.
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37 Variance-Reducing Techniques

The goal of this section is to introduce a few techniques commonly used for reducting the statistical error in
Monte Carlo computations of ensemble averages.
According to the previous section, the Monte Carlo computation of the ensemble average

〈A〉 = Z−1
∫

dξ A(ξ)e−βE(ξ), (386)

entails sampling an ensemble of random configurations ξ with probability distribution P(ξ) = Z−1exp[−βE(ξ)],
computing A(ξ) for each configuration and finally averaging all of these values to obtained the unbiased
estimator Ā introduced by Eq. (385). The convergence rate of such computation is determined by the cen-
tral limit theorem (CLT) (see, e.g., K.L. Chung A course in Probability Theory, Academic Press, New York,
1974).
The CLT states that given a sequence of random variables A(ξ1), A(ξ2), A(ξ3), ...A(ξN) with expectation
〈A〉 and variance

σ2 =
1
N ∑

ξ

N(ξ)(A(ξ)− 〈A〉)2, (387)

then the distribution of averages Ā obtained with different sequences of random variables tends to be a
Gaussian distribution

G(Ā) =
1√
2πε

e−
(Ā−〈A〉)2

2ε2 , (388)

where
ε = σ/

√
N, (389)

regardless of the dimensionality of the integral introduced by Eq. (386) and the nature of the probability
function used to generate the sequences of random variables A(ξ1), A(ξ2), A(ξ3), ...A(ξN). The standard
deviation ε of the distribution of the average is the standard error of the Monte Carlo computation. There-
fore, results are reported as follows

〈A〉 = Ā± ε. (390)

Note that according to the definitions of the variance and the standard error, introduced by Eqs. (387) and
(389), respectively, the standard error is large whenever the random variables A(ξ j) spread over a wide
range of values. This is one of the main problems in calculations of high dimensional integrals, since the
integrand A(ξ) usually spreads over a very large range of values and the variance σ2 is thus formidably
large. In addition, depending on the observable of interest, the Boltzmann distribution might not sample
the configurations of the system that contribute with the most to the ensemble average. These difficulties
are sometimes overcome by implementing variance reduction techniques such as importance sampling,
correlated sampling, stratified sampling, adaptive sampling, control variates and umbrella sampling. J.M.
Hammersley and D.C. Handscomb Monte Carlo Methods, Chapter 5, John Wiley & Sons Inc., London,
(1964) and J.S. Liu Monte Carlo Strategies in Scientific Computing, Chapter 2, Springer New York (2001)
are recommended references for these methods. Here we limit our presentation to a concise description of
some of them.

37.1 Importance Sampling

The importance sampling technique concentrates the distribution of sampled configurations in the parts of
the integration range that are of most importance. Instead of computing the ensemble average

〈A〉 =
∫

dξP(ξ)A(ξ), (391)
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according to the estimator Ā introduced by Eq. (385), after sampling configurations ξ according to the
probability distribution P(ξ), configurations are sampled according to a different probability distribution
P̃(ξ) and the ensemble average is computed according to the estimator

〈A〉 ≈ g
P̃
≡ 1

N ∑
ξ

N(ξ)
g(ξ)
P̃(ξ)

, (392)

where g(ξ) ≡ P(ξ)A(ξ) and P̃(ξ) is assumed to be normalized.
The variance of the estimator introduced by Eq. (392) is

σ2 =
1
N ∑

ξ

N(ξ)

(
g(ξ)
P̃(ξ)

− < A >

)2

, (393)

or

σ2 =
1
N ∑

ξ

N(ξ)
g(ξ)2

P̃(ξ)2
−
(

1
N ∑

ξ

N(ξ)
g(ξ)
P̃(ξ)

)2

. (394)

Note that according to Eq. (394), σ2 = 0, when P̃(ξ) = g(ξ). Therefore, the variance can be reduced
by choosing P̃(ξ) similar to |g(ξ)|. Such choice of P̃(ξ) concentrates the distribution of sampled config-
urations in the parts of the integration range that are of most importance. According to such distribution,
the random variables g(ξ)/P̃(ξ) spread over a modest range of values close to 1 and therefore the standard
error of the Monte Carlo calculation is reduced.

The umbrella sampling technique is a particular form of importance sampling, specially designed to
investigate rare events. Configurations are sampled according to the non-Boltzmann distribution P(ξ) ∝
exp[-β (E(ξ)+W(ξ))], where W(ξ) is zero for the interesting class of configurations that defined the rare
event and very large for all others.

37.2 Correlated Sampling

Consider the task of computing the integral

∆I = I1 − I2, (395)

with
I1 =

∫
dxg1(x) f1(x), (396)

and
I2 =

∫
dxg2(x) f2(x). (397)

The procedure for correlated sampling can be described as follows:
Step (1). Sample random configurations x1, ..., xN by using the sampling function f1(x) and evaluate the
function g1 for each of these configurations to obtain g1(x1), g1(x2), g1(x3) ... g1(xN). In addition, sample
random configurations y1, ..., yN by using the sampling function f2(y) and evaluate the function g2 for each
of these configurations to obtain g2(y1), g2(y2), g2(y3) ... g2(yN).
Step (2) Estimate ∆I according to

∆I =
1
N

N

∑
j=1

g1(xj)− g2(yj). (398)
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The variance of ∆I is

σ2 =
1
N

N

∑
j=1

(
g1(xj)− g2(yj)− (I1 − I2)

)2

, (399)

or

σ2 =
1
N

N

∑
j=1

(
g1(xj)− I1

)2

+
1
N

N

∑
j=1

(
g2(yj)− I1

)2

− 2
1
N

N

∑
j=1

(
g1(xj)− I1

)(
g2(yj)− I2

)
, (400)

where the first two terms on the r.h.s. of Eq. (400) are the variances σ2
1 and σ2

2 of the random variables g1
and g2, respectively, and the third term is the covariance cov(g1,g2) of the two random variables. Note that
when xj and yj are statistically independent then the cov(g1,g2)=0 and

σ2 = σ2
1 + σ2

2 . (401)

However, if the random variables are positively correlated then the cov(g1, g2) > 0 and the variance σ2 is
reduced. The key to reduce the variance is thus to ensure positive correlation between g1 and g2. This could
be achieved by using the same sequence of random numbers for sampling both sets of random configurations
xj and yj.

37.3 Control Variates

Consider the Monte Carlo computation of a multidimensional integral (e.g., an ensemble average),

〈A〉 =
∫

dξg(ξ), (402)

and assume that the integral ∫
dξ g̃(ξ) = A0, (403)

can be analytically computed for an approximate expression of the integrand g̃(ξ) ≈ g(ξ). The function
g̃(ξ) is called the control variate for g(ξ).
The control variates method is an approach that exploits the information provided by Eq. (403) to reduce
the variance of the Monte Carlo computation. The integral, introduced by Eq. (402), is written in two parts,

〈A〉 = A0 +
∫

dξ(g(ξ)− g̃(ξ)), (404)

where the first term on the r.h.s. of Eq. (404) is analytically computed and the second term is computed by
correlated sampling Monte Carlo integration. Note that since g̃(ξ) mimcs g(ξ) and usually absorbs most of
its variation, the error in the Monte Carlo computation of the second term in the r.h.s. of Eq. (404) is usually
appreciably smaller than those of a Monte Carlo evaluation of the integral introduced by Eq. (402).

37.4 Stratified Sampling

Consider the task of computing the multidimensional integral (e.g., an ensemble average),

〈A〉 =
∫

dξ f (ξ). (405)
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The stratified sampling technique breaks the integration range into the union of k disjoint subregions D1, D2, ..., Dk,
so that within each subregion the integrand is relatively constant. Then, we can sample mj random configu-
rations ξ j(1), ξ j(2), ..., ξ j(mj) in the subregion Dj and approximate each subregional integral by∫

Dj

dξ f (ξ) ≈ Aj =
1

mj
[ f (ξ j(1)) + f (ξ j(2)) + ... + f (ξ j(mj))]. (406)

The overall integral is computed as

〈A〉 ≈ Ā = A1 + A2 + ... + Ak, (407)

whose variance is

σ2 =
σ2

1
m1

+
σ2

2
m2

+ ... +
σ2

k
mk

, (408)

where σ2
j indicates the variation of the integrand in the subregion Dj. Note that only when the integrand

is relatively constant within each subregion the variance introduced by Eq. (408) will be smaller than the
variance of the estimator obtained by using a single region for the whole integration range, σ̃2/m where
m = m1 + m2 + ... + mk and σ̃ is the overall variation of the integrand in the whole integration range.
If we look carefully we can see that the stratified sampling technique described in this section is a particular
version of the importance sampling method.

37.5 Simulated Annealing

Consider the task of computing a thermodynamic ensemble average for a system with many degrees of
freedom at low temperature (e.g., a large cluster, a polymer, or a protein). The challenge presented by these
many-body systems is that in addition to their global minumum energy configuration they usually have
many local energy minima separated by high energy barriers. A Metropolis Monte Carlo computation at
low temperature that starts from a configuration that is far from the minimum energy geometry usually leads
to erroneous results. The reason for this is that the configurations that make the most important contributions
to an ensemble average are those that are close to the minimum energy configuration and the algorithm is
inefficient at sampling configurations that are beyond high potential energy barriers. Reliable Monte Carlo
calculations thus require obtaining first the minimum energy configuration of the system.
The simulated annealing algorithm (by S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi Science 220 671-680,
1983) is an efficient technique to find the minimum energy configuration of the system. The algorithm can
be described as follows:
Step (1): Initialize an arbitrary configuration ξ0 for the system at temperature T0, where T0 is reasonably
large.
Step (2): Starting from the configuration ξ0, sample N configurations ξ1, ξ2, ..., ξN by implementing the
Metropolis Monte Carlo method with P(ξ) = Z−1exp(−E(ξ)/(kT0)).
Step (3): Go to (2), replacing ξ0 by ξN and T0 by a lower temperature.
Step (3) is repeated each time on the subsequent configuration ξN until the temperature of the system is
equal to 0.
It can be shown that the configuration that corresponds to the global minimum of E(ξ) can be reached
according to such algorithm whenever the temperature decreases at a logarithmic rate (e.g., see S. Geman
and D. Geman IEEE Transactions on Pattern Analysis and Machine Intelligence 6:721-741, 1984). In
practice, however, a linear or even exponential temperature decrease schedule can often be implemented.
Exercise:
This computational assignment has been designed and organized by Dr. Jose A. Gascon.
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1. Write a program for implementing the simulated annealing procedure and find the minimum energy
geometry of a “cluster” of two atoms interacting according to the 12-6 Lennard-Jones potential

U(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]

, (409)

where ε = 0.0104 ev and σ = 3.4 Å. You can write you own code or modify the Fortran program
mclj.for attached to the www page for the lecture notes of this course.

Notes:

(a) If you decide to use the mclj.for program, you will have to edit the code and write a few lines
as specified in the mclj.for file. The missing lines should specify the Metropolis Monte Carlo
procedure.

(b) When running the mclj.for program you will be asked for the initial and final temperature. A
reasonable value for the initial temperature is 10 K (just type 10). Since we are trying to find the
global minimum the final temperature must be zero.

(c) When asked "Is the initial geometry random (yes/no)?", type "yes" to have the program select
an initial guess of the geometry. You can eventually put your own initial guess in which case
type "no". To create an initial geometry you must create a file called initial.xyz in the standard
xyz format, where the first line is the number of atoms, the second line is left blank or with any
coment, and the following lines have the atom type and coordinates as shown below for a cluster
of N argon atoms.

N
comment
Ar x1 y1 z1

Ar x2 y2 z2

...
Ar xN yN zN

(d) The mclj.for program reports on the screen the numbers of steps, the average interatomic dis-

tance, the energy at that step and the ratio of accepted trials out of 100.

(e) The final geometry is recorded in the output file final.xyz.

2. Visualize the final geometry using a molecular viewer program such as Rasmol or Molden. The file
movie.xyz contains snapshots of the accepted geometries along the simulation. The movie with the
sequence of accepted geometries can be visualized by using Molden. Compare the minimum energy
geometry (i.e., the minimum energy distance between the two Ar atoms) found by the simulated
annealing algorithm with the exact value computed from the expression of the 12-6 Lennard-Jones
potential.

3. To appreciate the power of the simulated annealing method, find the minimum energy geometry of
clusers with 3 and 13 argon atoms and report the values of the minimum energy. For the cluster with
13 atoms run the program with three different initial temperatures, 10 K, 20 K and 30 K. Compare the
final results. Do the final energy and geometry depend on the initial temperature? Why, or why not?
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4. How would you compute a thermodynamic average at a constant temperature using the program for
simulating annealing ?

The link (http://ursula.chem.yale.edu/∼batista/classes/vaa/LJ.m) provides a Matlab solution to the com-
putational assignment.
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38 Kinetic Monte Carlo

This section introduces Monte Carlo simulations of dynamical processes. We consider the stochastic simula-
tion of a complex dynamical phenomenon that involves N independent processes. As an example, consider
the problem of modeling the time-dependent evolution of a 2-dimensional Ising model with N spins, where
spins are flipped in time due to the influence of thermal fluctuations. For simplicity, consider that the time-
evolution of a spin j is described by the first order differential equation ∂sj(t)

∂t = −k(1)j (sj(t) + s(0)), with

sj(t) = sj(0)(2exp(−k(1)j t) − 1). We assume that the rate constants k(1)j can take different values k(1)j ,
depending on the number of nearest neighbors (1–4) of j that have the same spin as j.

Accurate MC simulations should sample event j with probability pj =
k(1)j

k where k = ∑N
j=1 k(1)j is the

total rate. This can be accomplished according to the so-called kinetic Monte Carlo method as follows:

1. Set the simulation time to zero, t = 0.

2. Pick a random number r1 between 0 and k.

3. Select the process labeled by index that satisfies the condition,

α−1

∑
j=1

k(1)j ≤ r1 ≤
α

∑
j=1

k(1)j . (410)

4. Carry out event α.

5. Assign the time tα = − 1
k ln(r2) to the selected event, where r2 is a random number between 0 and 1,

and advance the simulation time t = t + tα.

6. Update the values of k(1)j that have changed due to event α.

7. Recompute k.

8. Goto (2).

Selecting the event α, according to Eq. (410), can be pictured as throwing a dart to a ruler of length k,
subdivided by segments of length k(1)1 , k(1)2 , k(1)3 , ..., k(1)N , as depicted in Fig. 1. The process α corresponds to
the segment targeted by the dart ( α= 7, in Fig. ??).
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Figure 2: Dart and ruler scheme described in the text.

Unfortunately, finding out which segment was hit by the dart requires O(N) operations when the search
is based on a naive linear search procedure, since it is necessary to evaluate Eq. ( 410) with α = 1, then
with α = 2, · · · , etc., until finding the value of α that satisfies Eq. ( 410). Such a procedure is prohibitively
expensive for most realistic applications. It is, therefore, necessary to implement an algorithm based on a
binary tree where α can be selected in O(log2N) steps, as described later in this section [J.L. Blue; I. Beichl,
Phys. Rev. E (1995) 51, R867-R868].

Binary tree method: To explain the binary tree method, consider a system with only 8 possible events,
where rate constants k(1)1 , · · · , k(1)8 define the roots of the tree depicted in Fig. ( ??). The next layer of nodes

in the tree, k(2)1 , · · · , k(2)4 , is defined by computing the partial sums of pairs of rate constants, as follows:

k(2)1 = k(1)1 + k(1)2 , k2(2) = k(1)3 + k(1)4 , · · · , k(2)4 = k(1)7 + k(1)8 . The third layer of nodes, k(3)1 , · · · , k(3)2

is defined analogously, as follows:: k(3)1 = k(2)1 + k(2)2 , k(3)2 = k(2)3 + k(2)4 . Finally, the top of the tree is

k(4)1 = k(3)1 + k(3)2 = k.

To select the dynamical process α, we start from the top of the tree, where k(4)1 = k(n)j , with j = 1 and
n = 4, and we proceed as follows:

1. Generate a random number r1.

2. If r1 ≤ k(n−1)
2j−1 = k(3)1 , make j = 2j− 1. Otherwise, substract from r1 and make j = 2j.

3. If n = 1, then α = j. Otherwise, make n = n− 1 and go to (1).

Updating the binary tree, after carrying out the selected event, can also be done recursively from n = 1 to
the top of the tree, by propagating the effects of the new rate constants.
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Figure 3: Binary tree explained in the text.
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39 Exam 3

Exam 3 CHEM 430b/530b
Statistical Methods and Thermodynamics

Exercise 1
(10 points) Item (1.1): Explain the underlying approximation of Mean Field theory and illustrate it with a
specific Hamiltonian.
(20 points) Item (1.2): Show that Mean Field theory predicts spontaneous magnetization for the 2-dimensional
Ising model when T < 4J/k, where J is the coupling constant between spins.
(20 points) Item (1.3): Derive the Gibbs-Bogoliubov-Feynman inequality.
(20 points) Item (1.4): Derive the renormalization group equations for the 1-dimensional Ising model.
Exercise 2
(30 points) Compute the grand canonical partition function of a 1-dimensional lattice gas by implementing
the transfer matrix approach.
Hint: Assume that the total energy for a given set of occupation numbers {nj} is

E = −µ
N

∑
j=1

nj − ε
N

∑
j=1

∑
k

njnk, (411)

where µ is the chemical potential of the particles, the occupation numbers nj = 0, 1. The indices k, in Eq.
(411) label the cells that are next to cell j and N is the total number of cells.

Solution
Item (1.1):
The underlying approximation of Mean Field theory is to assume that the most important contribution to the
interaction between each particle and its neighboring particles is determined by the mean field due to the
neighboring particles. Section Mean Field Theory on page 65 of your lecture notes illustrates this concept
as applied to the description of the 1-dimensional Ising model.
Item (1.2):
In the 2-dimensional Ising model, the average force Fk exerted on spin Sk is

Fk ≡ −
∂H
∂Sk

= µ̄B + J ∑
j

Sj, (412)

where the index j includes all the nearest neighbors of spin Sk. Therefore, the average magnetic field B
acting on spin Sk is

B ≡ Fk

µ̄
= B + ∆B, (413)

where
∆B = J4Sk/µ̄, (414)

is the contribution to the mean field due to the nearest neighbors. Note that Sk = Sj when all spins are
identical.
The partition function, under the mean field approximation, is

Z ≈∑
S1

∑
S2

... ∑
SN

eβ ∑j Sj(B+∆B)µ̄ = 2NcoshN(βµ̄B), (415)
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and the average value of Sk is

Sk =
1
N

∂lnZ
∂(βµ̄B)

= tanh(βµ̄(B + 4JSk/µ̄)). (416)

Note that Eq. (416) involves a transcendental equation. Its solution corresponds to the value of Sk = m for
which the function on the left hand side of Eq. (416) (i.e., Sk) equals the function on the right hand side of
Eq. (416) (i.e., tanh(βµ̄(B + 4JSk/µ̄)).
In the absence of an external magnetic field (i.e., when B = 0), Eq. (416) always has the trivial solution
Sk = 0 and a non-trivial solution Sk = m only when β4J > 1.
Item (1.3):
See derivation of Eq. (359) on page 69 of your lecture notes.
Item (1.4):
See derivation of Eqs. (373) and (374) on your lecture notes.
Exercise 2:
The Hamiltonian of the system is

H = −µ ∑
j

nj − ε ∑
jk

njnk, (417)

where the sum of products njnk defines the interaction between cells that are nearest neighbors.
The grand canonical partition function of the system is

Ξ = ∑
n1=0,1

∑
n2=0,1

... ∑
nN=0,1

eβ(µ(n1+n2)/2+εn1n2)eβ(µ(n3+n2)/2+εn2n3)...eβ(µ(nN+n1)/2+εnNn1). (418)

To perform a rigorous calculation of the grand canonical partition function introduced by Eq.(370), we
define the transfer function as follows,

T(ni, ni+1) ≡ exp(β(µ(ni + ni+1)/2 + εnini+1)). (419)

Substituting Eq.(371) into Eq.(370) we obtain

Ξ = ∑
n1=0,1

∑
n2=0,1

... ∑
nN=0,1

T(n1, n2)T(n2, n3)...T(nN , n1). (420)

This expression corresponds to the trace of a product of N identical 2× 2 matrices. Thus the calculation
of the grand canonical partition function is reduced to that of computing the trace of the Nth power of the
transfer matrix. Now, the trace of a matrix is the sum of its eigenvalues and the eigenvalues of TN are λN

± ,
where λ± are the eigenvalues of T determined by the equation∣∣∣∣∣eβ(µ+ε) − λ eβµ/2

eβµ/2 1− λ

∣∣∣∣∣ = 0, (421)

with solutions
λ± =

1
2
[eβ(µ+ε) + 1]±

√
[eβ(µ+ε) − 1]2/4 + eβµ. (422)

Hence, the partition function is simply,
Z = λN

+ + λN
− , (423)

where λ± are defined by Eq. (422).
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40 Classical Fluids

To perform statistical mechanical calculations for classical fluids, we must be able to compute phase space
averages,

〈A〉 = ∑
ξ

A(ξ)
e−βE(ξ)

Z
, (424)

where A(ξ) is the observable of interest evaluated in state ξ.
In a classical system of particles, the index ξ labels the microscopic phase point

ξ = (r1, r2, ..., rn, p1, p2, ..., pn) = (rN , pn), (425)

i.e., the list of coordinates and momenta (rN , pn). Therefore, the ensemble average is

〈A〉 =
∫

drN
∫

dpN f (rN , pN)A(rN , pN), (426)

where

f (rN , pN) =
e−βE(rN ,pN)∫

drN
∫

dpNe−βE(rN ,pN)
, (427)

is the probability density at phase-point (rN , pN), where the system has total energy

E(rN , pN) = V(rN) + K(pN), (428)

with total kinetic energy

K(pN) =
N

∑
j=1

p2
j

2mj
, (429)

and total potential energy of interaction between particles V(rN).
The factorization of the total energy into kinetic and potential energy terms, allows one to factorize the
probability distribution function as follows,

f (rN , ρN) = Φ(rN)P(ρN), (430)

where
P(pN) = exp(−βK(pN))/

∫
dpNexp(−βK(pN)), (431)

and
Φ(rN) = exp(−βV(rN))/

∫
drNexp(−βV(rN)). (432)

Further factorization of the momentum distribution is possible, since the total kinetic energy of the system
K(pN) is the sum of the kinetic energy of individual particles

Φ(pN) =
N

∏
j=1

φ(pj), where φ(pj) =
e−βp2

j /2mj∫
dpje

−βp2
j /2mj

. (433)

Eqs. (432) and (433) thus define the probability distribution functions that are necessary to sample an
ensemble of configurations of the fluid at thermal equilibrium.
Contrary to clusters of atoms or molecules, fluids with bulk properties usually involve an enormous number
of particles (i.e.,∼ O(1023) particles where the fraction of particles near the walls of the container is
negligibly small. However, computer memory and disk space requirements usually limit the capabilities of
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computer simulations to model sytems with less than 106–107 particles. Contrary to macroscopic systems,
these model systems have a significant fraction of particles near the walls of the container. Therefore,
to simulate systems with bulk properties, it is necessary to implement a trick called periodic boundary
conditions (p.b.c.) that minimizes surface effects.
Periodic Boundary Conditions: The implementation of p.b.c. for a one-dimensional "box" of length L
converts the segment L into a circle of radius r, where 2πr = L. The distance between any two particles is
measured along the arc of such circle and hence the maximum separation between any two particles is L/2.
One simple way of implementing p.b.c. for particles in a 1-dimensional box of length L is to add(subtract) L
to the coordinate of any particle that crosses the left(right) boundary of the box after being slightly displaced
to a new position. This can be implemented with an if-statement as follows:

if(x > L)
x = x− L

else if(x < 0)
x = x + L

end if

(434)

To compute the minimum distance dx between particles p1 and p2 at x1 and x2, respectively, we can write

dx = x1− x2
if(dx > 0.5 ∗ L)

dx = dx− L
else if(dx < −0.5 ∗ L)

dx = dx + L
end if

(435)

Note that when programing Eqs. (434) and (435) you will need to implement the logic characters and the
punctuation marks required by the specific programing language of choice. The generalization of Eqs. (434)
and (435) to the implementation of p.b.c. in two and three dimensions is straightforward.

40.1 Radial Distribution Function

The goal of this section is to introduce the radial distribution function g(r) (also known as pair correlation
function), a central quantity in studies of fluids since it determines the average density of particles at a
coordinate r relative to any particle in the fluid.
The radial distribution function is defined as follows

g(r) = ρ2/N(0, r)/ρ2, (436)

where ρ = N/V is the density of a fluid of N particles in a container of volume V and ρ2/N(0, r) is the
probability that a particle is at r when there is another particle at the origen of coordinates.
The probability P2/N(R1, R2) that particle 1 is found at R1 when particle 2 is at R2, in an N particle system,
is

P2/N(R1, R2) =

∫
drNδ(r1 − R1)δ(r2 − R2)e−βV(rN)∫

drNeV(rN)
=

∫
drN−2e−βV(R1,R2,r3,...rN)∫

drNeV(rN)
, (437)

and the probability ρ2/N(R1, R2) that a particle (i.e., any particle) is found at R1 when another one (i.e.,
any other one) is at R2 is

ρ2/N(R1, R2) =
N!

(N − 2)!
P2/N(R1, R2) = N(N − 1)P2/N(R1, R2). (438)
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In particular, in a fluid where the interaction between particles can be neglected,

P2/N(R1, R2) =
1

V2 , (439)

or

ρ2/N(R1, R2) =
N(N − 1)

V2 ≈ ρ2, (440)

and g(r) = 1.
In an atomic fluid (e.g., liquid argon), g(r1, r2) = g(r), where r =| r1 − r2 |, since the fluid is uniform and
isotropic. The presence of an atom at the origen of coordinates excludes other particles from all distances
smaller than the radius of the first coordination shell where g(r) has a maximum (see figure). The presence
of the first coordination shell tends to exclude particles that are closer than the radius of the second coordi-
nation shell, where g(r) has another maximum. This oscillatory form for g(r) persists until r is larger than
the range of correlations between the particles. At distances larger than the correlation length g(r) = 1,
since ρ2/N(0, r) ≈ ρ2 for uncorrelated particles. Therefore, h(r) = g(r)− 1 describes the deviation from
the asymptotic limit of uncorrelated particles (i.e., an ideal gas) and the product ρg(r) describes the average
density of particles at a distance r from any particle in the fluid.
Note that ρg(r)4πr2dr is the average number of particles at a distance between r and r+dr from any particle
in the fluid. Therefore, the calculation of g(r) involves averaging the number of particles at a distance r
from any particle in the system and dividing that number by the element of volume 4πr2dr.
Exercise:
Compute the radial distribution function g(r) for a fluid of argon atoms at constant T,N,V using the program
developed in the assignment of simulating annealing.

41 Reversible Work Theorem

The theorem states that the radial distribution function g(r) determines the reversible work w(r) associated
with the process by which two particles in a fluid are moved from an infinite separation to a separation r, as
follows:

g(r) = exp(−βw(r)). (441)

Note that since the process is reversible at constant T, N and V, w(r) = ∆A, where A is the Helmholtz free
energy.

Proof:
Consider the mean force between particles 1 and 2, averaged over the equilibrium distribution of all other
particles,

− <
dV(rN)

dr1
>r1r2=

−
∫ dV

dr1
e−βV(rN)dr3...drN∫

e−βV(rN)dr3...drN
, (442)

which gives

− <
dV(rN)

dr1
>r1r2=

1
β

d
dr1

ln
∫

e−βV(rN)dr3...drN , (443)

or

− <
dV(rN)

dr1
>r1r2= +

1
β

d
dr1

ln
N(N − 1)

ρ2Z
+

1
β

d
dr1

ln
∫

e−βV(rN)dr3...drN , (444)
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since both the density ρ, the number of particles N in the system and the partition function Z are constants,
independent of r1.
Eq. (444) can be simplified according to Eqs. (436) and (437) as follows,

− <
dV(rN)

dr1
>r1r2=

1
β

d
dr1

lng(r1). (445)

Integration of the expression for the average force, introduced by Eq. (445), gives the reversible work,

w(r12) =
∫ ∞

r12

dr1(− <
dV(rN)

dr1
>) = kT

∫ ∞

r12

dr1
d

dr1
lng(r1), (446)

Therefore, the reversible work w(r12) associated with the process by which particles 1 and 2 are moved
from infinite separation to a relative separation r12 is

w(r12) = kTlng(∞)− kTlng(r12) = −kTlng(r12), (447)

since g(∞) = 1.
Finally, note that

w(r) = kTln
Z(r12 = ∞)

Z(r12 = r)
= −(A(r12 = ∞)− A(r12 = r)), (448)

where Z(r12 = r) and A(r12 = r) are the canonical partition function and the Helmholtz free energy of the
system, subject to the constraint of fixed relative distance r12 = r between particles 1 and 2.

42 Thermodynamic Properties of Fluids

The goal of this section is to show that the thermodynamic properties of fluids (e.g., the internal energy,
the virial coefficient, etc.) can be computed in terms of the corresponding properties of an ideal gas plus
a correction term that is determined by the radial distribution function of the fluid. This is illustrated by
computing the internal energy of a classical fluid.
The ensemble average of the internal energy E is

〈E〉 = 〈K(pN)〉+ 〈V(rN)〉, (449)

where K(pN) is the total kinetic energy. The simplest model for the potential energy V(rN) is the pairwise
additive potential

V(rN) = ∑
i

∑
j<i

u(|ri − rj|), (450)

where u(r) is, for example, a Lennard-Jones potential

u(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]

, (451)

represented by the following diagram:

81



-

6

r

u(r)

−ε

21/6σ
0

.......................

.................

According to Eq. (450),

〈E〉 = N〈 p2

2m
〉+

N

∑
j=1

∑
k 6=j

1
2
〈u(|rj − rk|)〉, (452)

therefore,

〈E〉 = N
3
2

kT +
∫

dr1

∫
dr2u(|r1 − r2|)

N(N − 1)
2

∫
drN−2e−βV(rN)∫
drNe−βV(rN)

. (453)

Eq. (453) can be simplified, according to Eqs. (436) and (437), as follows:

〈E〉 = 3
2

NkT +
1
2

∫
dr1

∫
dr2u(|r1 − r2|)ρ2/N(r1, r2), (454)

or

〈E〉 = 3
2

NkT +
Vρ2

2

∫
dru(r)g(r). (455)

Therefore, the ensemble average internal energy per particle

〈E〉
N

=
3
2

kT +
ρ

2

∫
dru(r)g(r), (456)

is the sum of the internal energy per particle in an ideal gas (i.e., 3/2 k T) plus a correction term that can be
obtained in terms of the radial distribution function g(r).

43 Solvation Free Energy: Thermodynamic Integration

The goal of this section is to show how to compute the free energy of solvation of structureless solute
particles A dissolved in a solvent S. The solvation free energy is computed according to the coupling
parameter method in terms of the pair correlation function g(rA, rS), where rA and rS are the coordinates
of the solute and solvent molecules, respectively.
Consider a solute-solvent mixture where solute particles with no internal structure interact with solvent
molecules according to a pairwise additive potential VAS. Assume that the solute concentration is so low
that the interactions between solute particles can be neglected. The canonical partition function of the system
is

Zλ =
Z(id)

A Z(id)
S

VNA+NS

∫
drNA

∫
drNS e−βVS(rNS )−βVSA(rNS ,rNA )λ, (457)
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where the coupling parameter λ = 1 and where

Z(id) =
1

h3N N!

∫
dr3N

∫
dp3Ne−β

p2
2m =

VN

N!h3N

∫
dp3Ne−β P2

2m . (458)

In the absence of solute-solvent interactions (i.e., λ = 0), the energy of the system becomes factoriz-
able into the solute and the solvent contributions to the total energy and the free energy of the system is
A(id)(NS, NA, V, T) = −β−1lnZλ=0. The change in free energy due to a differential change in λ is

− kT
dlnZλ

dλ
= −kT

∫
drNA

∫
drNS(−βVSA(rNS , rNA))e−βVS(rNS )−βVSA(rNS ,rNA )λ∫

drNA
∫

drNS e−βVS(rNS )−βVSA(rNS ,rNA )λ
. (459)

and assuming that

VSA(rNS , rNA) =
NA

∑
j=1

NS

∑
k=1

uAS(|rj − rk|), (460)

we obtain

− kT
dlnZλ

dλ
= NANS

∫
dr(A1)

∫
dr(S1)uA1S1(|rA1 − rS1 |)

∫
drNA−1

∫
drNS−1e−βVS−βVSA∫

drNA
∫

drNS e−βVS−βVSA
. (461)

Introducing the pair correlation function gAS = ρAS/ρAρB, where ρAS is the joint probability of finding a
solute particle at rA1 and a solvent molecule at rS1 ,

ρAS = NANS

∫
drNA−1

∫
drNS−1 e−βVS−βVSA∫

drNA
∫

drNS e−βVS−βVSA
, (462)

we obtain

− kT
dlnZλ

dλ
=
∫

drA1

∫
drS1 u(|rA1 − rS1 |)ρAρSgAS, (463)

or

− kT
dlnZλ

dλ
= ρAρSV

∫
druAS(r)gAS(r). (464)

Therefore, the change in free energy due to a differential change in the coupling parameter λ is

− kT
dlnZλ

dλ
= NA

∫
druAS(r)ρSgAS(r), (465)

and the total free energy of the system is

A(NS, NA, V, T) = A(id)(NS, NA, V, T) + (∆A)solv, (466)

where the free energy of solvation (∆A)solv is,

(∆A)solv = NA

∫ 1

0
dλ
∫

druAS(r)ρSg(λ)AS (r). (467)

The approach implemented in this section, where a coupling parameter is introduced to investigate the
contributions of specific interactions to an ensemble average, is called coupling parameter method.
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43.1 Zwanzig Equation

The goal of this subsection is to show that the free energy change due to a change in the coupling parameter λ
can be computed according to the equation that Zwanzig derived here at Yale, J. Chem. Phys. 22 1420-1426
(1954), as follows:

A(λ2)− A(λ1) = −β−1ln〈e−β[E(λ2)−E(λ1)]〉β, (468)

where 〈· · · 〉β indicates the ensemble average at temperature T = β−1/k.
Considering that

A(λ, β) = −β−1lnZ(λ, β), (469)

where Z(λ, β) = ∑j exp(−βEj(λ)), we obtain:

Z(λ2, β2)

Z(λ1, β1)
=

1
Z(λ1, β1)

∑
j

e−[β2Ej(λ2)−β1Ej(λ1)]e−β1Ej(λ1),

= 〈e−[β2E(λ2)−β1E(λ1)]〉β1 .

(470)

From (470), we obtain:

− [β2A(λ2, β2)− β1A(λ1, β1)] = ln〈e−[β2E(λ2)−β1E(λ1)]〉β1 (471)

When β1 = β2 = β, Eq. (471) is identical to Eq. (468).
In addition, when λ1 = λ2, we obtain that the change in free energy per unit temperature due to a change

in temperature from T1 = β−1
1 /k to T2 = β−1

2 /k is

β2A(λ, β2)− β1A(λ, β1) = −ln〈e−[β2E(λ)−β1E(λ)]〉β1 (472)

which is computed as the ensemble average of e−[β2−β1]E at the temperature defined by β1, as indicated in
Problem 6.6 of the textbook.

Other properties could also be computed by thermodynamic integration, analogously, as implemented
above for free energy calculations. As an example, consider the ensemble average of property N̂:

〈N(λ1, β1)〉 =
∑j Nje−β1E(λ1)

∑j e−β1E(λ1)

=
∑j e−β2E(λ2)

∑j e−β1E(λ1)

∑j Nje−β1E(λ1)+β2E(λ2)e−β2E(λ2)

∑j e−β2E(λ2)

(473)

where

∑j e−β1E(λ1)

∑j e−β2E(λ2)
=

∑j e−β1E(λ1)+β2E(λ2)e−β2E(λ2)

∑j e−β2E(λ2)
(474)

Therefore,

〈N(λ1, β1)〉 =
∑j pj(λ2, β2)Nje−β1E(λ1)+β2E(λ2)

∑j pj(λ2, β2)e−β1E(λ1)+β2E(λ2)
(475)
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44 Quiz 3

Quiz 3 CHEM 430b/530b
Statistical Methods and Thermodynamics

Metropolis Monte Carlo
(25 points) Item 1a: Describe the implementation of a Metropolis Monte Carlo algorithm to generate an
ensemble of configurations with probability distribution P(ξ).
(25 points) Item 1b: Prove that the Metropolis Monte Carlo algorithm described in item (1a) evolves any
arbitrary distribution of configurations toward the equilibrium distribution P(ξ).
Classical Fluids
(25 points) Item 2a: Explain how to compute the radial distribution function g(r) of liquid Ar, after having
generated an ensemble of configurations of the system at thermal equilibrium.
(25 points) Item 2b: Derive an expression for the internal energy of liquid argon in terms of the radial
distribution function g(r).

Solution:
Item 1a:
Read the description of the Metropolis Monte Carlo algorithm on page 74 of the lecture notes.
Item 1b:
Read the proof of the Metropolis Monte Carlo algorithm described on pages 75 and 76 of the lecture notes.
Item 2a:
The number of particles at a distance between r and r+dr from any particle in the fluid is

N(r) = ρg(r)4πr2dr. (476)

Therefore, the calculation of g(r) involves averaging the number of particles at a distance between r and
r + dr from any particle in the system and dividing that number by the element of volume 4πr2dr.
Item 2b:
See derivation of Eq. (456) of the lecture notes.

45 Lars Onsager’s Regression Hypothesis

The goal of this section is to introduce Lars Onsager’s regression hypothesis, a consequence of the fluctuation-
dissipation theorem proved by Callen and Welton in 1951. Here, we derive the regression hypothesis from
the principles of statistical mechanics.
The regression hypothesis states that the regression of microscopic thermal fluctuations at equilibrium fol-
lows the macroscopic law of relaxation of small non-equilibrium disturbances (L. Onsager, Phys. Rev. 37,
405 (1931); 38, 2265 (1931)).
To understand this hypothesis, consider an observable A for a system at thermal equilibrium. Such property
fluctuates in time with spontaneous microscopic fluctuations

δA(t) = A(t)− 〈A〉. (477)
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Here, A(t) is the instantaneous value of the observable and 〈A〉 is the equilibrium ensemble average

〈A〉 = Tr{A(t)e−βH0}
Tr{e−βH0}

. (478)

The average correlation between δA(t) and an instantaneous fluctuation at time zero δA(0) is described by
the correlation function

C(t) = 〈δA(t)δA(0)〉 = 〈A(t)A(0)〉 − 〈A〉2, (479)

where 〈〉 represents the equilibrium ensemble average. Note that at small times, instantaneous fluctuations
are correlated and therefore,

lim
t→0

C(t) = 〈(δA(0))2〉, (480)

has a finite value. However, at large times C(t) vanishes, i.e.,

lim
t→∞

C(t) = 0, (481)

since δA(t) becomes uncorrelated to δA(0). This decay of correlations is the regression of microscopic
thermal fluctuations referred to in Onsager’s hypothesis. Therefore, Onsager’s regression hypothesis can be
formulated as follows

A(t)− 〈A〉
A(0)− 〈A〉

=
〈δA(t)δA(0)〉
〈(δA(0))2〉 , (482)

where A(t) describes the macroscopic relaxation of the observable towards its equilibrium value 〈A〉, while
the system evolves from an initial state that is not far from equilibrium to its final state in equilibrium with
a thermal reservoir.
To derive Eq.(482) from the ensemble postulates of statistical mechanics, consider preparing the system in a
state that is not far from equilibrium by applying to the system a weak perturbational field f (e.g., an electric
field) that couples to the dynamical variable A(t) (e.g., the instantaneous total dipole moment). The external
field is assumed to be so weak that the perturbation Hamiltonian ∆H, written as an expansion in powers of
f , can be approximated to be first order in the field as follows,

∆H = − f A(0). (483)

Assume that such perturbational field was applied until the system equilibrated according to the total Hamil-
tonian

H = H0 + ∆H, (484)

The macroscopic relaxation of the system is analyzed by switching off the external perturbational field and
computing the evolution of the non-equilibrium ensemble average

A(t) =
Tr{A(t)e−β(H0+∆H)}

Tr{e−β(H0+∆H)}
, (485)

as the system evolves towards equilibrium. Since the perturbation ∆H is small, we can introduce the ap-
proximation

e−β(H0+∆H) ≈ e−βH0(1− β∆H). (486)

Substituting Eq. (486) into Eq. (485), we obtain

A(t) ≈ Tr{e−βH0(1− β∆H + ...)A(t)}
Tr{e−βH0(1− β∆H + ...)}

=
Tr{e−βH0 A(t)} − βTr{e−βH0 ∆HA(t)}

Tr{e−βH0} − βTr{e−βH0 ∆H}
, (487)
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or

A(t) ≈ Tr{e−βH0 A(t)}
Tr{e−βH0}(1− β Tr{e−βH0 ∆H}

Tr{e−βH0} )
− β

Tr{e−βH0 ∆HA(t)}
Tr{e−βH0}(1− β〈∆H〉)

, (488)

which gives

A(t) ≈ 〈A(t)〉
1− β〈∆H〉 − β

〈∆HA(t)〉
1− β〈∆H〉 . (489)

Introducing the approximation
1/(1− x) ≈ 1 + x, (490)

for small x, in Eq. (489), we obtain

A(t) ≈ 〈A〉 − β〈∆HA(t)〉+ β〈∆H〉(〈A〉 − β〈∆HA(t)〉). (491)

Therefore, according to Eq. (491),

A(t) ≈ 〈A〉 − β(〈∆HA(t)〉 − 〈∆H〉〈A〉) + O((∆H)2). (492)

Substituting Eq. (483) into Eq. (492) and keeping only the terms that are first order in ∆H we obtain,

A(0)− 〈A〉 ≈ f β(〈A(0)2〉 − 〈A(0)〉2), (493)

and
A(t)− 〈A〉 ≈ f β(〈A(0)A(t)〉 − 〈A(0)〉〈A(t)〉). (494)

Finally, Eqs. (493) and (494) complete the derivation of Eq. (481) in terms of the ensemble average postu-
lates of statistical mechanics, since according to Eq. (477),

〈δA(t)δA(0)〉 = 〈A(t)A(0)〉 − 〈A〉2. (495)

45.1 Response Function: Generalized Susceptibility

The goal of this section is to introduce the concept of response function χ(t, t′), or generalized susceptibility,
for the description of non-equilibrium disturbances.
According to Eqs. (494) and (495), the response to a perturbation ∆H in the linear regime (i.e., a perturbation
that is linear in the field f ) is

∆A(t, f ) ≈ f β〈δA(t)δA(0)〉, (496)

where ∆A(t, f ) = A(t)− 〈A〉. Therefore,

∆A(t, λ f ) = λ∆A(t, f ). (497)

The most general expression for a macroscopic response that is consistent with Eq. (497) is

∆A(t, f ) =
∫ ∞

−∞
dt′χ(t, t′) f (t′) = ∑

j
χ(t, tj) f (tj)dtj, (498)

where dtj = (tj+1 − tj) is the time increment, f (t) is the external perturbational field and χ(t, t′) is the
response function. Note that the name response function is due to the fact that χ(t, t0) is equal to the
response at time t when the perturbational field is an impulse at time t0 (i.e., χ(t, t0) = ∆A(t, δ(t− t0))).
In addition, any other perturbational field can always be written as a linear superposition of impulses since
any function can be expanded as a linear combination of delta functions.
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Another important observation is that according to Eq. (498),

χ(t, tj) =
∂∆Ā(t)
∂ f (tj)

, (499)

Therefore, χ(t, tj) defines the first nonvanishing term in an expansion of ∆A(t, f ) in powers of f (t). The
response function χ(t, t′) is thus also called generalized susceptibility, since the electric susceptibility χe
defines the first nonvanishing term in an expansion of the polarization ~P (i.e., the total electric dipole moment
per unit volume) in powers of the electric field ~E as follows,

~P = χe~E. (500)

In analogy to the electric susceptibility χe, that is a property of the unperturbed system, the response function
χ(t, tj) is a function of the unperturbed system at equilibrium. To show this important aspect of the response
function, consider the perturbational field represented by the following diagram:

-

6

t

f

f (t)

which is defined as follows:

f (t) =

{
f , when t ≤ 0,
0, otherwise.

(501)

The response at time t > 0 is

∆A(t) = f
∫ 0

−∞
dt′χ(t− t′) = − f

∫ t

∞
dt′′χ(t′′), (502)

where t′′ = t− t′, dt′′ = −dt′ and we have assumed that χ(t, t′) = χ(t− t′). Therefore,

d∆A(t)
dt

= − f χ(t), (503)

since, according to the second fundamental theorem of calculus,

χ(t) =
d
dt

∫ t

a
dt′χ(t′), (504)

where a is an arbitrary constant value. Substituting Eq. (496) into Eq. (503), we obtain

χ(t) = −β
d
dt

< δA(0)δA(t) >, (505)

where t > 0.
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45.2 Linear Spectroscopy

The goal of this section is to show that the linear absorption spectrum σ(ω) of a system is determined by
the regression of spontaneous polarization fluctuations at equilibrium as follows:

σ(ω) = 2ω f 2
0 ε̄2

∫ ∞

0
χ(t′)sin(ωt′)dt′,

= β2ω2 f 2
0 ε̄2

∫ ∞

0
< δA(0)δA(t′) > cos(ωt′)dt′,

(506)

where A(t) is the time-dependent polarization

A(t) = ∑
j

pj〈φj(t) | Â | φj(t)〉, (507)

where the functions φj(t) evolve according to the unperturbed system Hamiltonian H0, as follows:

ih̄
∂

∂t
φj(t) = Ĥ0φj(t). (508)

To derive Eq. (506), consider that the system is perturbed by a monochromatic electric field,

f (t) = f0 ε̄(e−iωt + eiωt), (509)

where f0 is the amplitude of the field and ε̄ is the unit vector along the spatially uniform electric field. In the
linear regime, the interaction between the system and the field is

∆Ĥ(t) = − f (t)Â. (510)

The total energy of the system is

E(t) = ∑
j

pj〈φj(t) | Ĥ0 + ∆Ĥ(t) | φj(t)〉, (511)

and the differential change of energy per unit time is

Ė(t) = ∑
j

pj〈φj(t) |
∂∆Ĥ(t)

∂t
| φj(t)〉 = − ˙f (t)A(t), (512)

since,

〈
∂φj(t)

∂t
| Ĥ0 + ∆Ĥ(t) | φj(t)〉 = −〈φj(t) | Ĥ0 + ∆Ĥ(t) |

∂φj(t)
∂t
〉. (513)

Equation (513) can be proved by considering that ih̄|φ̇j〉 = Ĥ0|φj〉 and, therefore, ih̄〈φj|Ĥ|φ̇j〉 = 〈φj|ĤĤ0|φj〉,
and conjugating both sides of this equality gives −ih̄〈φ̇j|Ĥ|φj〉 = 〈φj|ĤĤ0|φj〉 and therefore 〈φ̇j|Ĥ|φj〉 =
−〈φj|Ĥ|φ̇j〉.
Therefore, the total energy change σ due to the interaction with the external field for time T is

σ =
1
T

∫ T

0
dt(− ḟ (t))A(t), (514)

where, according to Eq. (509),
ḟ (t) = −i f0 ε̄ω[e−iωt − e+iωt]. (515)
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Substituting Eq. (515) into Eq. (514) we obtain,

σ = − iω
T

∫ T

0
f0 ε̄[e+iωt − e−iωt]

(
< A > +

∫ ∞

−∞
χ(t− t′) f (t′)dt′

)
. (516)

Note that ∫ ∞

−∞
χ(t− t′) f (t′)dt′ =

∫ ∞

−∞
χ(−t′) f (t′ − t)dt′ =

∫ ∞

−∞
χ(t′) f (−t′ − t)dt′, (517)

thus Eq. (516) becomes

σ = − iω
T

∫ T

0
dt f0 ε̄[e+iωt − e−iωt]

(
< A > +

∫ ∞

−∞
χ(t′) f (−t′ − t)dt′

)
. (518)

To simplify Eq. (518), we note that

lim
T→∞

1
T

∫ T

0
eint′dt′ =

{
1, when n=0
0, otherwise.

(519)

Therefore, Eq. (518) becomes

σ = − iω
T

∫ T

0
dt f0 ε̄[e+iωt − e−iωt]

∫ ∞

−∞
χ(t′) f0 ε̄[e+iω(t+t′) + e−iω(t+t′)]dt′, (520)

or
σ = −iω f 2

0 ε̄2
∫ ∞

−∞
χ(t′)[e+iωt′ − e−iωt′ ]dt′. (521)

Therefore,

σ = 2ω f 2
0 ε̄2

∫ ∞

−∞
χ(t′)sin(ωt′)dt′. (522)

Substituting Eq. (505) into Eq. (522) we obtain

σ = −β2ω f 2
0 ε̄2

∫ ∞

0

d
dt

< δA(0)δA(t′) > sin(ωt′)dt′. (523)

Finally, integrating Eq. (523) by parts we obtain Eq. (506), since Eq. (523) can be written as
∫

dt′u(t′)dv/dt′ =
u(t′)v(t′)−

∫
dt′v(t′)du/dt′, with u(t′) = sin(ωt′) and v(t′) =< δA(0)δA(t′) >.

46 Langevin Equation

In previous sections we have shown how to implement the regression hypothesis to describe the dissipation
of macroscopic disturbances in terms of the regression of spontaneous fluctuations. As an example, we
have analyzed the relaxation of a polarization disturbance A(t)-〈A〉, in the linear regime, in terms of the
regression of spontaneous polarization fluctuations 〈δ(t)δA(0)〉. The goal of this section is to describe
another application of this general theoretical approach to relate the fluctuations of a physical quantity with
the dissipation of a macroscopic disturbance.
Consider the motion of a particle through a medium after being initially prepared in a certain state of motion
(e.g., after being pushed by an external force). As a result of friction with the medium, the particle will be
slowed down (i.e., its initial kinetic energy will be dissipated by heating up the medium). The motion of
such particle is described by the generalized Langevin equation, which is derived in this section as follows.
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Consider the Hamiltonian that describes a particle with coordinates x(t), linearly coupled to the bath coor-
dinates yj(t),

H =
mẋ2

2
+ V(x) + Hb −∑

j
cjyj(t)x(t), (524)

where cj are the coupling constants that linearly couple x(t) and yj(t). The terms V(x) and Hb, introduced
by Eq. (524), describe the interactions among system coordinates and among bath coordinates, respectively.
The total force acting on the particle is

F(t) = −∂V
∂x

+ f (t), (525)

where the fluctuating force f (t) can be readily identified from Eq. (524),

f (t) = ∑
j

cjyj(t). (526)

Note that the motion of yj(t) depends on x(t) since, according to Eq. (524), the force acting on yj(t) is
f j = −∂H/∂yj = −∂Hb/∂yj + cjx(t). Therefore, f (t) is also a function of x(t). Assuming that f (t) is
linear in x(t),

f (t) = fb(t) +
∫ ∞

−∞
dt′χb(t− t′)x(t′), (527)

where, according to Eq. (505),

χb(t− t′) =

{
−β dCb(t−t′)

d(t−t′) , when t > t′,

0, otherwise,
(528)

with
Cb(t) =< δ f (0)δ f (t) > . (529)

Therefore, the equation of motion for the particle is

mẍ = −dV
dx

+ fb(t) +
∫ t

−∞
dt′(−β)

dCb(t− t′)
d(t− t′)

x(t′). (530)

Changing the integration variable t′ to t′′ = t− t′, in Eq. (530), we obtain

mẍ = −dV
dx

+ fb(t)−
∫ 0

t
dt′′(−β)

dCb(t′′)
dt′′

x(t− t′′), (531)

where the lower integration limit includes only values of x(t− t′′) with (t− t′′) > 0. Integrating Eq. (531)
by parts, we obtain

mẍ = −dV
dx

+ fb(t)− [x(t− t′′)βCb(t′′)|t
′′=0

t′′=t +
∫ 0

t
dt′′(−β)Cb(t′′)

∂x(t− t′′)
∂t′′

]. (532)

Changing the integration variable t′′ to t′ = t− t′′, in Eq. (532), we obtain

mẍ = −dV
dx

+ fb(t) + [x(0)βCb(t)− x(t)βCb(0)]−
∫ t

0
βCb(t− t′)ẋ(t′)dt′. (533)

Eq. (533) is the Generalized Langevin Equation, which can be written in terms of the potential of mean
force

V(x) ≡ V(x) +
1
2

x2βCb(0), (534)
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and the fluctuating force
F(t) ≡ fb(t) + χ(0)βCb(t), (535)

as follows,

mẍ = −∂V
∂x

+ F(t)−
∫ t

0
βCb(t− t′)ẋ(t′)dt′, (536)

where the third term on the r.h.s. of Eq. (536) is the generalized frictional force, a force that is linear in
the velocity. The connection between the frictional force and the regression of thermal fluctuations of f (t),
introduced by Eq. (536), is known as the second fluctuation-dissipation theorem.
Note (Laplace transform method): Equation (536) can be used to obtain the equation of motion for the
correlation function c(t) = 〈x(t)x(0)〉 when V(x) = 1

2 mω2x2. Multiplying Eq. (536) by x(0) and
computing the ensemble average to obtain:

m
d2

dt2 c(t) = −mω̄2c(t)−
∫ t

0
dt′βCb(t− t′)ċ(t′), (537)

where ω̄2 = ω2 + βCb(0)/m, since 〈F̄(t)x(0)〉 = 0.
To solve Eq. (537) and find c(t), we implement the Laplace transform method, as follows. We compute

the Laplace transform of both sides of Eq. (537) to obtain,

m
∫ ∞

0
dte−st d2

dt2 c(t) = −mω̄2
∫ ∞

0
dte−stc(t)−

∫ ∞

0
dte−st

∫ t

0
dt′βCb(t− t′)

d
dt′

c(t′). (538)

Integrating by parts, we obtain:∫ ∞

0
dte−st ċ(t) = c(t)e−st|∞0 + s

∫ ∞

0
dte−stc(t),

= −〈x(0)2〉+ sc̃(s),
(539)

with c̃(s) =
∫ ∞

0 dte−stc(t) since c(0) = 〈x(0)2〉. In addition,

∫ ∞

0
dte−st d2

dt2 〈x(0)x(t)〉 = 〈x(0)ẋ(t)〉e−st|∞0 + s
∫ ∞

0
dte−st ċ(t),

= s(−〈x(0)2〉+ sc̃(s)),
(540)

since 〈x(0)ẋ(0)〉 = 0.
Substituting into Eq. (538), we obtain:

ms(−〈x(0)2〉+ sc̃(s)) = −mω̄2c̃(s)− β
∫ ∞

0
dte−st

∫ t

0
dt′Cb(t− t′)ċ(t′),

= −mω̄2c̃(s)− β
∫ ∞

0
dt′ ċ(t′)

∫ ∞

t′
dte−stCb(t− t′),

= −mω̄2c̃(s)− β
∫ ∞

0
dt′e−st′ ċ(t′)

∫ ∞

0
dt′′e−st′′Cb(t′′),

= −mω̄2c̃(s)− β(−〈x(0)2〉+ sc̃(s))C̃b(s).

(541)

Distributing and solving for c̃(s), we obtain:

−ms〈x(0)2〉+ ms2c̃(s) = −(mω̄2 + βsC̃b(s))c̃(s) + β〈x(0)2〉C̃b(s), (542)
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and

c̃(s) = 〈x2〉 s + βC̃b(s)/m
s2 + ω̄2 + βsC̃b(s)/m

, (543)

giving c(t) according to the inverse Laplace transform c(t) =
∫ ∞

0 dsest c̃(s).

Markovian Approximation
Changing the interation variable t′, in Eq. (536), to t′′ = t− t′ and considering a time t much larger than
the relaxation time scale for the correlation function Cb (so that Cb(t) = 0 and ∂x(t− t′′)/∂(t− t′′) ≈
∂x(t)/∂t), we obtain

mẍ = −∂V
∂x

+ fb(t)− β
∫ ∞

0
Cb(t′′)ẋ(t)dt′′. (544)

Note that Eq. (544) becomes the traditional Langevin Equation,

mẍ = fb(t)− γẋ(t), (545)

when −∂V/∂x = 0. The friction coefficient γ is, therefore, determined by the regression of spontaneous
thermal fluctuations as follows

γ = β
∫ ∞

0
Cb(t′′)dt′′. (546)

The approximation implemented to obtain Eq. (544) involves considering that the relaxation time for fluc-
tuating forces in the bath is much shorter than the time over which one observes the particle. Such approx-
imation removes the “memory effects” from the equation of motion (note that Eq. (544) does not involve
the nonlocality in time introduced by the time integral in Eq. (536)). This approximation is thus called
Markovian approximation since it makes the instantaneous force independent of the state of the particle at
any previous time.
Note that, according to Eq. (545),

m〈v̇〉 = −γ〈v(t)〉, (547)

where v = ẋ, since 〈 f (t)〉 = 0. The solution to Eq. (547) is,

〈v(t)〉 = 〈v(0)〉exp(−γt/m). (548)

Eq. (548) indicates that the average initial momentum of the particle is dissipated into the bath at an expo-
nential rate (i.e., the average velocity vanishes at an exponential rate). However, it is important to note that
the condition 〈v(t)〉 = 0 at t >> m/γ (e.g., at equilibrium) does not imply that the particle is at rest! At
equilibrium, the fluctuating force fb(t) keeps buffeting the particle and the distribution of velocities is given
by the Boltzmann distribution (see Eq. (431)). The average squared velocity for the particle is

〈v2〉 =
∫ ∞
−∞ dvx

∫ ∞
−∞ dvy

∫ ∞
−∞ dvz(v2

x + v2
y + v2

z)exp(−βm(v2
x + v2

y + v2
z)/2)∫ ∞

−∞ dvx
∫ ∞
−∞ dvy

∫ ∞
−∞ dvzexp(−βm(v2

x + v2
y + v2

z)/2)
=

3kT
m

, (549)

and the velocity autocorrelation function is

〈v(t)v(0)〉 = 〈v(0)v(0)〉exp(−γt/m) =
3kT
m

exp(−γt/m), (550)

since Eq. (547) is valid not only for the dynamical variable v(t) but also for v(t)v(0).
The motion of the particle is called Brownian Motion, in honor to the botanist Robert Brown who observed it for the
first time in his studies of pollen. In 1828 he wrote “the pollen become dispersed in water in a great number of small
particles which were perceived to have an irregular swarming motion”. The theory of such motion, however, was
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derived by A. Einstein in 1905 when he wrote: “In this paper it will be shown that ... bodies of microscopically visible
size suspended in a liquid perform movements of such magnitude that they can be easily observed in a microscope on
account of the molecular motions of heat ...”
To compute the average mean squared displacement 〈x̄2〉 of the particle we substitute the variable x(t) in
Eq. (545) by x̄ = x(t)− x(0), we multiply both sides of Eq. (545) by such variable and we average over
the ensemble distribution as follows,

m〈x̄ ∂ ˙̄x
∂t
〉 = −γ〈x̄ ˙̄x〉, (551)

since 〈x̄ f (t)〉 = 〈x̄〉〈 f (t)〉 = 0. Eq. (551) is equivalent to

m〈∂x̄ ˙̄x
∂t
〉 = −γ〈x̄ ˙̄x〉+ m〈 ˙̄x2〉, (552)

which, according to Eq. (549), gives

m
∂〈x̄ ˙̄x〉

∂t
= −γ〈x̄ ˙̄x〉+ 3kT. (553)

The solution to Eq. (553) is

〈x̄ ˙̄x〉 = 1
2

∂

∂t
〈x̄2〉 = −3kT

γ
(exp(−γt/m)− 1). (554)

Therefore, the mean squared displacement is

〈x̄2〉 = −6kT
γ

(
− m

γ
(exp(−γt/m)− 1)− t

)
. (555)

At short times (i.e., when exp(−γt/m)− 1 ≈ −γt/m + t2/2 ∗ γ2/m2),

〈x̄2〉 = 3kT
m

t2, (556)

i.e., the mean squared displacement at short times is quadratic in time. This is the so-called ballistic regime,
since it corresponds to ballistic motion (motion without collisions) for a particle with velocity equal to√

3kT/m.
At long times (i.e., when m/γ(exp(−γt/m)− 1) << t),

〈x̄2〉 = 6kT
γ

t = 6Dt, (557)

where the constant

D =
kT
γ

, (558)

is the diffusion coefficient. Therefore, at long times the mean squared displacement is linear in time. This
long time limit is the so-called diffusional regime.
The remaining of this section shows that the diffusion coefficient can be computed in terms of the velocity
autocorrelation function 〈v(0)v(t)〉 as follows:

D =
1
3

∫ t

0
dt′〈v(0)v(t′)〉. (559)
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Note that Eq. (558) can be readily obtained by substituting Eq. (550) into Eq. (559).
To prove Eq. (559), consider the particle displacement at time t,

x̄(t) =
∫ t

0
dt′v(t′), (560)

and compute the time derivative of the squared displacement as follows

∂

∂t
x̄2 =

∂

∂t
(
∫ t

0
dt′v(t′))2, (561)

which according to Eq. (504) gives,

∂

∂t
〈x̄2〉 = 2

∫ t

0
dt′〈v(t)v(t′)〉. (562)

Changing integration variables from t′ to t′′ = t− t′ we obtain

∂

∂t
〈x̄2〉 = 2

∫ t

0
dt′′〈v(t)v(t− t′′)〉 = 2

∫ t

0
dt′′〈v(0)v(−t′′)〉, (563)

since C(t′+ t− t) = 〈v(t)v(t′+ t)〉 is equal to C(t′− 0) = 〈v(0)v(t′)〉. Finally, since C(t′′) = C(−t′′)
we obtain

∂

∂t
〈x̄2〉 = 2

∫ t

0
dt′′〈v(0)v(t′′)〉, (564)

Eq. (559) is obtained by substituting Eq. (557) into the l.h.s. of Eq. (564).

47 Velocity Verlet Algorithm

The goal of this section is to introduce the velocity Verlet algorithm for molecular dynamics (MD) simula-
tions and to show how to implement it to compute time-correlation functions (e.g., 〈v(t)v(0)〉) and transport
coefficients (e.g., the diffusion coefficient D).
Consider the task of computing the diffusion coefficient according to Eq. (559). The quantity of interest is,
therefore, the equilibrium ensemble average of the velocity autocorrelation function

〈v(0)v(t)〉 = Tr{ρ (v(0)v(t))}. (565)

The computation of 〈v(0)v(t)〉 thus requires sampling initial conditions according to the ensemble distri-
bution described by ρ and for each initial condition compute the value of the particle velocity v(t) at time
t.
The velocity Verlet algorithm (W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, J. Chem.
Phys. 76, 637 (1982)) computes the particle velocity v(t + τ) and position x(t + τ) at time t+τ as follows:

x(t + τ) = x(t) + v(t)τ + 1
2 τ2 f (t)

m ,
v(t + τ) = v(t) + f (t)+ f (t+τ)

2m τ,
(566)

where τ is a small time increment, m is the particle mass and f (t) is the total force acting on the particle
at time t. Given the initial conditions x(0) and v(0) one can compute v(t) and x(t) simply by applying
Eqs. (566) successively n times, with n = t/τ. Note that by implementing the algorithm one generates
a phase space trajectory (i.e., a sequence of “snapshots” for the particle coordinates and velocities at all
intermediate times tj = j ∗ τ (with j=1,2,...,n)).
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We note that the evolution is time reversible since the velocities are evolved with a force that is symmetric
in time (i.e., same force evolves velocities from t to t + τ than from t + τ to t). Time reversibility can be
shown more formally by showing that the velocity Verlet algorithm is essentially the Trotter decomposition
of the propagator, as shown by Tuckerman and Berne.
Molecular dynamics simulations thus provide the sequence of microscopic configurations through which
the model system passes in time. Such detailed microscopic information allows one to compute the result
of a measurement of an observable (i.e., an ensemble average) according to the time average introduced by
Eq. (125) (i.e., simply by averaging the value of the observable throught the whole manifold of microscopic
configurations generated during the time of the measurement). Therefore, another way of computing the
ensemble average introduced by Eq. (565) is

〈v(0)v(t)〉 = 1
T

∫ T

0
dt′v(t′)v(t′ + t), (567)

where T is the time of the measurement of the diffusion constant D, a time that is much larger than the
relaxation time of the velocity autocorrelation function.
Exercise:
Compute the velocity autocorrelation function for a fluid of argon atoms using the program developed for
computing the radial distribution function. (Hint: substitute the Metropolis Monte Carlo algorithm by the
velocity Verlet algorithm).

48 Thermal Correlation Functions

Equation 564 shows how to obtain transport coefficients, such as the diffusion coefficient by integration
of the thermal correlation function corresponding to the velocity-velocity autocorrelation. Classical calcu-
lations can be performed by propagating Hamilton’s equations according to the Velocity-Verlet algorithm.
Coordinates and momenta q(t) and p(t) are propagated for a sufficiently long trajectory and classical cor-
relation functions are obtained as follows:

C(t) = 〈A(0)B(t)〉 = 1
τ

∫ τ

0
dt′A(q(t′), p(t′))B(q(t′ + t), p(t′ + t)), (568)

where A(0) and B(t) represent the quantities of interest at time 0 and t, respectively. 2

The goal of this section is to show how to compute thermal correlation functions C(t) = 〈A(0)B(t)〉
for systems where quantum mechanical effects are important. The quantum mechanical expression of C(t)
is,

C(t) = Tr[ρ̂ÂB̂(t)], (569)

where ρ̂ = Z−1exp(−βĤ) is the density operator and the operators Â and B̂(t) are defined so that A(0) =
〈Ψ0|Â|Ψ0〉 is the expectation value of A at t = 0. In addition,

B(t) = 〈Ψ0|B̂(t)|Ψ0〉 = 〈Ψ0|e(i/h̄)ĤtB̂e−(i/h̄)Ĥt|Ψ0〉, (570)

is the expectation value of B̂ at time t when the system is initially prepared in state |Ψ0〉 and evolves
according to the Hamiltonian,

Ĥ = p̂2/(2m) + V̂, (571)

as follows: |Ψt〉 = e−(i/h̄)Ĥt|Ψ0〉. Note that B̂(t) = e(i/h̄)ĤtB̂e−(i/h̄)Ĥt is the Heisenberg operator associ-
ated with quantity B.

2Note that calculations of C(t) provide a description of any equilibrium property, 〈A〉, when B̂ = 1, or dynamical ensemble
average 〈B(t)〉, when Â = 1, respectively.
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Thermal correlation functions can therefore be expressed as,

C(t) = Z−1Tr[e−βĤ Âe(i/h̄)ĤtB̂e−(i/h̄)Ĥt], (572)

an expression that can be re-written in coordinate representation as follows:

C(t) = Z−1
∫

dx
∫

dx′
∫

dx′′
∫

dx′′′
∫

dx′′′′〈x|e−βĤ |x′〉〈x′|Â|x′′〉〈x′′|e(i/h̄)Ĥt|x′′′〉
〈x′′′|B̂|x′′′′〉〈x′′′′|e−(i/h̄)Ĥt|x〉.

(573)

Note that to compute C(t) it is necessary to obtain expressions for the Boltzmann operator matrix el-
ements 〈x|e−βĤ |x′〉 as well as for the forward and backward time-evolution operator matrix elements
〈x|e−(i/h̄)Ĥt|x′〉 and 〈x|e(i/h̄)Ĥt|x′〉, respectively.

48.1 Boltzmann Operator Matrix elements

To obtain the matrix elements of the Boltzmann operator at finite temperature T = (kBβ)−1, we write the
exponential operator as a product of a large number n of exponential operators,

〈x0|e−βĤ |xn〉 = 〈x0|e−εĤe−εĤ...e−εĤ |xn〉, (574)

where ε ≡ β/n << 1. Inserting the closure relation in between exponential operators we obtain,

〈x0|e−βĤ |xn〉 =
∫

dx1...
∫

dxn−1〈x0|e−εĤ |x1〉...〈xn−1|e−εĤ |xn〉. (575)

The high-temperature Boltzmann operator e−εĤ can be written in the form of the Trotter expansion,

e−εĤ ≈ e−εV̂/2e−ε p̂2/(2m)e−εV̂/2, (576)

to second order accuracy. Therefore, matrix elements of the Boltzmann operator at high-temperature can be
obtained as follows:

〈x0|e−εĤ |x1〉 =
∫

dx
∫

dp
∫

dx′
∫

dp′〈x0|e−εV̂/2|x′〉〈x′|p′〉〈p′|e−ε p̂2/(2m)|p〉〈p|x〉〈x|e−εV̂/2|x1〉,
(577)

where
〈x|p〉 = 1√

2πh̄
e

i
h̄ xp, (578)

since

− ih̄
∂

∂x
〈x|p〉 = p〈x|p〉. (579)

Furthermore,
〈x|e−εV̂/2|x′〉 = e−εV(x)/2δ(x− x′). (580)

Therefore,

〈x0|e−εĤ |x1〉 = 1
2πh̄

∫
dx
∫

dp
∫

dx′
∫

dp′e−εV(x′)/2δ(x′ − x0)e
i
h̄ x′p′e−εp2/(2m)δ(p− p′)

e−
i
h̄ xpδ(x− x1)e−εV(x1)/2,

(581)

which gives,

〈x0|e−εĤ |x1〉 =
1

2πh̄
e−

ε
2 [V(x0)+V(x1)]

∫
dpe−εp2/(2m)+ i

h̄ (x0−x1)p, (582)
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or,

〈x0|e−εĤ |x1〉 = e−
ε
2 (V(x0)+V(x1))

√
m

2πεh̄2 e−
1
2 m
[
(x1−x0)

h̄ε

]2
ε,

≈ e−εV(x1)

√
m

2πεh̄2 e−
1
2 m
[
(x1−x0)

h̄ε

]2
ε,

(583)

Matrix elements of the Boltzmann operator at finite-temperature can be obtained by substituting Eq. (583)
into Eq. (575):

〈x0|e−βĤ |xn〉 =
∫

dx1...
∫

dxn−1

(
m

2πεh̄2

)n/2

e−ε ∑n
j=1 V(xj)+

1
2 mω2(xj−xj−1)

2
, (584)

where ω = 1/(h̄ε). Note that the r.h.s of Eq. (584) corresponds to the partition function of a chain of
n-harmonic oscillators with cordinates xj under the influence of an external potential V(xj). Each chain of
harmonic oscillators describes a path from x0 to xn.

The multidimentional integral, introduced by Eq. (584), can be computed by importance sampling Monte
Carlo by sampling sets of coordinates x1, ..., xn−1 with sampling functions defined by the Gaussians associ-
ated with the linked harmonic oscillators. Such a computational approach for obtaining thermal equilibrium
density matrices is called Path Integral Monte Carlo.

48.2 The Bloch Equation: SOFT Integration

The Boltzmann-operator matrix-elements are the solution of the Bloch equation,

{ ∂

∂β
− h̄2

2m
∇2

x + V0(x)}ρ(x, x′; β) = 0, (585)

with ρ(x, x′; β) ≡ 〈x|e−βĤ0 |x′〉 and Ĥ0 = − h̄2

2m∇2
x + V0(x). The Bloch equation, introduced by Eq.

(585), is obtained by simply computing the derivative of 〈x|e−βĤ0 |x′〉 with respect to β and can be formally
integrated, as follows:

ρ(x, x′; β) =
∫

dx′′ρ(x, x′′; β− ε)ρ(x′′, x′; ε), (586)

with initial condition ρ(x′′, x′; ε) defined according to the high-temperature approximation, introduced by
Eq. (583):

ρ(x, x′; ε) =
( m

2πε

)1/2
e−

ε
2 [V0(x)+V0(x′)]e−

m
2ε (x−x′)2

. (587)

Note: We note that the Bloch equation, introduced by Eq. (585), is the imaginary-time version of the
time-dependent Schrödinger equation since introducing the change of variables β ≡ it/h̄ and ρ(x, x′; β) =
ψx′(x; β), we obtain:

{−ih̄
∂

∂t
− h̄2

2m
∇2

x + V0(x)}ψx′(x; t) = 0. (588)

Therefore, the same numerical methods developed for integration of the time-dependent Schrödinger equa-
tion can be used for integration of the Bloch equation by simply changing the variable t by −ih̄β. One of
those methods is the Split-Operator Fourier Transform (SOFT) method introduced in the next section.
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48.3 SOFT Method

In this section we introduce the SOFT for integration of the Schrödinger equation, as necessary for wavepacket
propagation. Next, we show that it can be analogously applied to obtain ρx′;β(x) from ρx′;ε(x) by imaginary
time propagation.

Integration of the Schrödinger equation: The SOFT method is a numerical approach for solving the
time-dependent Schrödinger equation by using a grid-based representation of the time-evolving states and
operators.

The essence of the method is to discretize the propagation time on a grid tk = (k− 1)τ, with k = 1, ..., n
and time-resolution τ = t/(n− 1), and obtain the wave-packet at the intermediate times tk by recursively
applying the evolution operator, as follows:

Ψtk+1(x) =
∫

dx′〈x|e−iĤτ|x′〉〈x′|Ψtk〉. (589)

If τ is a sufficiently small time-increment (i.e., n is large), the time-evolution operator can be approximated
according to the Trotter expansion to second order accuracy,

e−iĤτ = e−iV(x̂)τ/2e−i p̂2τ/(2m)e−iV(x̂)τ/2 + O(τ3), (590)

which separates the propagator into a product of three operators, each of them depending either on x̂, or p̂.
Substituting Eq. (590) into Eq. (589) and inserting the closure relation 1̂ =

∫
dp|p〉〈p| gives,

Ψtk+1(x) =
∫

dp
∫

dx′e−iV(x̂)τ/2〈x|p〉e−ip2τ/(2m)〈p|x′〉e−iV(x′)τ/2Ψtk(x′). (591)

By substituting 〈p|x′〉 and 〈x|p〉 as plane-waves, we obtain:

Ψtk+1(x) = e−iV(x̂)τ/2 1√
2π

∫
dpeixpe−ip2τ/(2m) 1√

2π

∫
dx′e−ipx′e−iV(x′)τ/2Ψtk(x′). (592)

According to Eq. (592), then, the computational task necessary to propagate Ψt(x) for a time-increment τ
involves the following steps:

1. Represent Ψtk(x′) and e−iV(x′)τ/2 as arrays of numbers Ψtk(xj) and e−iV(xj)τ/2 associated with a grid
of equally spaced coordinates xj = xmin + (j− 1)∆, with finite resolution ∆ = (xmax − xmin)/(n−
1).

2. Apply the potential energy part of the Trotter expansion e−iV(x′)τ/2 to Ψtk(x′) by simple multiplica-
tion of array elements:

Ψ̃tk(xj) = e−iV(xj)τ/2Ψtk(xj).

3. Fourier transform Ψ̃tk(xj) to obtain Ψ̃tk(pj), and represent the kinetic energy part of the Trotter expan-

sion e−ip2τ/(2m) as an array of numbers e−ip2
j τ/(2m) associated with a grid of equally spaced momenta

pj = j/(xmax − xmin).

4. Apply the kinetic energy part of the Trotter expansion e−ip2τ/(2m) to the Fourier transform Ψ̃tk(p) by
simple multiplication of array elements:

Ψ̃tk(pj) = e−ip2
j τ/(2m)Ψ̃tk(pj).

5. Inverse Fourier transform Ψ̃tk(pj) to obtain Ψ̃tk(xj) on the grid of equally spaced coordinates xj.

6. Apply the potential energy part of the Trotter expansion e−iV(x′)τ/2 to Ψ̃tk(x′) by simple multiplica-
tion of array elements,

Ψtk+1(xj) = e−iV(xj)τ/2Ψ̃tk(xj).
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48.4 Imaginary time propagation

Note that with the variable substitution τ → −it, with real t, the time evolution operator becomes a decaying
exponential e−Ĥt/h̄ that reduces the amplitude of the initial wavepacket Ψ0(x) = ∑j cjφj(x), as follows:

Ψt(x) = e−iĤτ/h̄Ψ0(x) = ∑
j

cje−Ejtφj(x), (593)

where Ĥφj(x) = Ejφj(x). Terms with higher Ej are reduced more than those with smaller Ej. After
renormalizing the resulting wavefunction Ψt(x) (by dividing it by the square root of its norm), we get a
state enriched with low energy components. The imaginary time propagation and renormalization procedure
can be repeated several times until the function stops changing since it composed solely by the ground state
φ0(x), after removal of all other components (of higher energies) at a faster rate.

Having found φ0, we can proceed to find φ1 as done for φ0 but including orthogonalization relative to
φ0, Ψt(x) → Ψt(x) − 〈φ0|Ψt〉φ0(x), after each propagation step, right before renormalization. Higher
energy states are found analogously, by orthogonalization of the propagated state relative to all previously
found eigenstates.

48.5 Ehrenfest Dynamics

The goal of this section is to show that the expectation values 〈x̂〉 = 〈ψ|x̂|ψ〉 and 〈 p̂〉 = 〈ψ| p̂|ψ〉 are con-
jugate variables in the sense that they evolve according to the classical equations of motion (i.e., Hamilton’s
equaitons):

d
dt
〈x̂〉 = 〈∂Ĥ

∂ p̂
〉

=
〈 p̂〉
m

,

d
dt
〈p〉 = −〈∂Ĥ

∂x̂
〉

= −〈V ′〉,

(594)

where Ĥ = p̂2/2m + V(x̂). This remarkable result, introduced by Eq. (594), is known as Ehrenfest’s
theorem and can be demonstrated, as follows.

First, we show that since ψ evolves according to the Schrödinger equation:

ih̄
∂ψ

∂t
= Ĥψ, (595)

then

〈 p̂〉 = m
d
dt
〈x̂〉. (596)
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Using integration by parts, we obtain:

〈 p̂〉 = −ih̄〈ψ| ∂

∂x
|ψ〉,

= − ih̄
2
〈ψ| ∂

∂x
+

∂

∂x
|ψ〉,

= − ih̄
2

∫
dx
[

ψ∗
∂ψ

∂x
+ ψ∗

∂ψ

∂x

]
,

= − ih̄
2

∫
dx
[

ψ∗
∂ψ

∂x
− ψ

∂ψ∗

∂x

]
,

= m
∫

j dx,

= −m
∫

x
∂j
∂x

dx,

(597)

where the current j = − ih̄
2m

[
ψ∗ ∂ψ

∂x − ψ
∂ψ∗

∂x

]
satisfies the continuity equation,

d
dt

ψ∗ψ +
∂j
∂x

= 0. (598)

Therefore,

〈 p̂〉 = m
∫

x
d
dt

ψ∗ψ dx,

= m
d
dt

∫
ψ∗xψ dx,

= m
d
dt
〈x̂〉.

(599)

Next, we show that

d
dt
〈 p̂〉 = −〈V ′〉, (600)

by substituting Eq. (595) into Eq. (597) and integrating by parts, as follows:

d
dt
〈 p̂〉 = m

d
dt

∫ ∞

−∞
dx j,

= − ih̄
2

∫ ∞

−∞
dx
[

dψ∗

dt
∂ψ

∂x
+ ψ∗

∂

∂x
dψ

dt
− dψ

dt
∂ψ∗

∂x
− ψ

∂

∂x
dψ∗

dt

]
= ih̄

∫ ∞

−∞
dx
[

dψ

dt
∂ψ∗

∂x
+

dψ∗

dt
∂ψ

∂x

]
=
∫ ∞

−∞
dx

[
− h̄2

2m
∂2ψ

∂x2
∂ψ∗

∂x
+ Vψ

∂ψ∗

∂x
+ c.c.

]

=
∫ ∞

−∞
dx

[
− h̄2

2m
∂

∂x

(
∂ψ

∂x
∂ψ∗

∂x

)
+ V

(
ψ

∂ψ∗

∂x
+ ψ∗

∂ψ

∂x

)]
,

=
∫ ∞

−∞
dxV

(
ψ

∂ψ∗

∂x
+ ψ∗

∂ψ

∂x

)
,

(601)
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since ∂ψ
∂x

∂ψ∗

∂x = 0 when evaluated at x = ±∞. Therefore,

d
dt
〈 p̂〉 =

∫ ∞

−∞
dx

∂ψ∗ψ

∂x
V,

= −
∫ ∞

−∞
dxψ∗

∂V
∂x

ψ.
(602)

Optional Exercise: Real and Imaginary Time Evolution
1. Write a Matlab code to simulate the evolution of a wavepacket bouncing back and forth on a

harmonic well, described by the Hamiltonian H = p2/(2 ∗ m) + V(x), with V(x) = 0.5 ∗ x2 af-
ter initializing the state according to the ground state displaced from its equilibrium position, as follows:
ψ(x, 0) = exp(−(x− 1)2/2)/ 4

√
π.

2. Compute the expectation values of position and momentum as a function of time x(t) and p(t) and
compare them to the corresponding classical values obtained by integrating Hamilton’s equation with the
Velocity-Verlet algorithm:

pj+1 = pj + (F(xj) + F(xj+1))τ/2,

xj+1 = xj + pjτ/m + F(xj)τ
2/(2m),

(603)

with x0 = 1 and p0 = 0 the initial position and momentum of the harmonic oscillator and xj and pj the
position and momentum at time t = j ∗ τ, while F(xj) = −V ′(xj) = −xj.

3. Compute the expectation values of position and momentum as a function of time x(t) and p(t) and
compare them to the Ehrenfest trajectory obtained by integrating Hamilton’s equation, using mean force:

〈p〉j+1 = 〈p〉j + (〈F(x)〉j + 〈F(x)〉j+1)τ/2,

〈x〉j+1 = 〈x〉j + 〈p〉jτ/m + 〈F(x)〉jτ2/(2m),
(604)

with 〈x〉0 = 1 and 〈p〉0 = 0 the initial position and momentum of the harmonic oscillator and 〈x〉j and 〈p〉j
the mean position and momentum at time t = j ∗ τ, while 〈F(x)〉j = −〈V ′(x)〉j = −〈x〉j.

4. Find the ground state of the harmonic well by propagating the wavepacket in imaginary time (i.e.,
using the propagation time increment τ = −it, with real t) and renormalizing the wave function after each
propagation step.

5. Find the first excited state of the harmonic well by propagating the wavepacket in imaginary time
(i.e., using the propagation time increment τ = −it, with real t), projecting out the ground state component
and renormalizing the wave function after each propagation step.

6. Find the first 9 excited states, iteratively, by imaginary time propagation as in item 4, projecting out
lower energy states and renormalizing after each propagation step.

7. Change the potential to that of a Morse oscillator V(x) = De(1− exp(−a(x− xe)))2, with xe = 0,
De = 8, and a =

√
k/(2De), where k = mω2. Recompute the wave-packet propagation with x0 =

−0.5 and p0 = 0 for 100 steps with τ = 0.1 a.u. Compare the expectation values x(t) and p(t) to the
corresponding classical and Ehrenfest trajectories obtained according to the Velocity-Verlet algorithm.

Solution:The link (http://ursula.chem.yale.edu/∼batista/classes/vvv/HO570.tar) provides a Matlab imple-
mentation of the SOFT method as applied to the simulation of evolution of a wavepacket in a harmonic well
in real time. In addition, the Matlab code implements the SOFT propagation method to find the lowest 10
eigenstates of the harmonic oscillator by ‘evolution’ in imaginary time.

Integration of the Bloch equation: The SOFT method can also be applied to integrate the Bloch equa-
tion, as implementation for the integration of the Schrödinger equation. Starting with the initial state
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ρ(x′′, x′; ε), defined according to the high-temperature approximation introduced by Eq. (583) we can
obtain ρ(x′′, x′; 2ε), as follows:

ρ(x′′, x′; ε̃ + ε) =
∫

dx〈x′′|e−ε̃Ĥ0 |x〉ρ(x, x′; ε). (605)

Substituting 〈x′′|e−ε̃Ĥ0 |x〉 by its Trotter expansion and following the same steps as before we obtain:

ρ(x′′, x′; ε̃ + ε)) = e−iV(x̂)τ/2 1√
2π

∫
dpeix′′pe−ip2τ/(2m) 1√

2π

∫
dxe−ipxe−iV(x)τ/2ρ(x, x′; ε). (606)

Therefore, according to Eq. (606), ρ(x′′, x′; ε̃ + ε)) can be obtained for each x′ by first representing
ρ(x, x′; ε) on a grid of x, then (i) multiply it by the function e−iV(x)τ/2; (ii) compute the Fourier transform
of the resulting product; (iii) multiply it by e−ip2τ/(2m); (iv) inverse Fourier transform; and (v) multiply it
by e−iV(x̂)τ/2. Repeating the sequence of steps (i)–(v) n times generates ρ(x′′, x′; β) when ε̃ = (β− ε)/n.

Optional Exercise: Implement the SOFT method to obtain ρ(x′′, x′; β) for a Morse oscillator at β =
1. Compute the partition function Z = Tr[ρ̂] =

∫
dxρ(x, x; β) and the ensemble average energy E =

Z−1Tr[ρ̂Ĥ] = Z−1
∫

dxdx′ρ(x, x′; β)〈x′|Ĥ|x〉 as a function of β. Then, compute the heat capacity as a
function of temperature. Compare your results with the corresponding classical calculations.

48.6 Path Integral Monte Carlo and Ring Polymer Implementation

An alternative expression for the matrix elements of the Boltzmann operator can be obtained by introducing
into Eq. (584) the following substitution:(

m
2πεh̄2

)1/2

= (2πh̄)−1
∫

dpje−ε
p2

j
2m , (607)

as follows:

〈x0|e−βĤ |xn〉 = (2πh̄)−n
∫

dp1...
∫

dpne−ε ∑n
j=1

p2
j

2m

×
∫

dx1...
∫

dxn−1e−ε ∑n
j=1 V(xj)+

1
2 mω2(xj−xj−1)

2
,

(608)

to obtain
〈x0|e−βĤ |xn〉 = (2πh̄)−n

∫
dx1...

∫
dxn−1

∫
dp1...

∫
dpn e−εHn(x0;xn,pn), (609)

where Hn is the n-bead polymer Hamiltonian

Hn(x0; xn, pn) =
n

∑
j=1

p2
j

2m
+ V(xj) +

1
2

mω2(xj − xj−1)
2, (610)

and

Z =
∫

dx0

∫
dxnδ(x0 − xn)〈x0|e−βĤ |xn〉

= (2πh̄)−n
∫

dxn
∫

dpn δ(x0 − xn)e−εHn(x0;xn,pn).
(611)
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48.7 Optional Exercise

Compute 〈x0|e−βĤ |xn〉 for the Harmonic oscillator defined by the Hamiltonian

Ĥ =
p̂2

2m
+

1
2

mω2
0 x̂2, (612)

by using the Path Integral Monte Carlo method, with n = 2, 4, 6, 8 and 10 and show that for larger values of
n the calculation converges to the analytic expression:

〈x|e−βĤ |x′〉 =
√

mω

2πh̄sinh(βh̄ω)
exp

(
− mω

2h̄sinh(ωβh̄)
[
(x2 + x′2)cosh(ωβ)− 2xx′

])
, (613)

which in the free particle limit (ω → 0) becomes

〈x|e−βĤ |x′〉 =
√

m
2πβh̄2 exp

(
− m

2βh̄2

[
(x− x′)2]) , (614)

since sinh(βh̄ω)→ βh̄ω and cosh(βh̄ω)→ 1.

Matrix elements of the time-evolution operator e−
i
h̄ Ĥt can be obtained by following the same methodol-

ogy implemented for the Boltzmann matrix e−βĤτ. We first introduce the variable substitution ε ≡ iτ/h̄ in
Eq. (583) and then we obtain the short-time propagator as follows:

〈x|e− i
h̄ Ĥτ|x′〉 =

√
m

2πh̄iτ
e

i
h̄

(
1
2 m
[
(x−x′)

τ

]2
− 1

2 [V(x)+V(x′)]
)

τ
. (615)

Then, we concatenate the short-time propagators introduced by Eq. (615) and we obtain the finite-time
propagator,

〈x0|e−
i
h̄ Ĥt|xn〉 =

∫
dx1...

∫
dxn−1

( m
2πh̄iτ

)n/2
e

i
h̄

(
∑n

j=1
1
2 m
[
(xj−xj−1)

τ

]2

− 1
2 [V(xj)+V(xj−1)]

)
τ

, (616)

which in the limit when τ → 0 and n→ ∞ with t = nτ becomes,

〈x0|e−
i
h̄ Ĥt|xn〉 =

∫
D[x(t)]e

i
h̄ Sc(t), (617)

where Sc(t) is the classical action associated with the arbitrary trajectory x(t),

Sc(t′) ≡
∫ t′

0
dt

[
1
2

m
(

∂

∂t
x(t)

)2

−V(x(t))

]
, (618)

and D[x(t)] is defined as follows,∫
D[x(t)] f (x(t)) ≡

∫
dx1...

∫
dxn−1

( m
2πh̄iτ

)n/2
f (x(t)), (619)

representing the integral over all paths x(t) from x0 to xn, with intermediate coordinates x1, x2, ..., xn−1 at
times τ, 2τ, ..., (n− 1)τ, respectively.
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49 Path Integral Molecular Dynamics and RPMD

The discrete path integral approach [D. Chandler and P. G. Wolynes J. Chem. Phys. 74, 4078 (1981)] im-
plements Feynman’s imaginary time path integral for computation of partition functions as discretized in
coordinate space by time-slicing the Boltzmann operator and replacing the short-(imaginary)time propaga-
tors according to the Trotter approximation, as described in Sec. 48, to obtain the partition function of a
’ring polymer’ with harmonically coupled beads:

Zn =

(
βk
2π

)n/2 ∫
dx1 · · · dxne

−β ∑n
j=1[ 1

2 k(xj−xj+1)
2+ 1

n V(xk)]xn+1=x1 , (620)

where k = mω2 with ω =
√

n/(βh̄) is the ’force constant’ that harmonically couples the beads.
The path integral molecular dynamics (PIMD) simulation method [M. Parrinello and A. Rahman, J.

Chem. Phys. 80, 860 (1984); R. W. Hall and B. J. Berne, J. Chem. Phys. 81, 3641 (1984)], replaced the
prefactor by Gaussians integrals over momentum, as follows:

Zn =
∫

dx1 · · · dxndp1 · · · dpne−βHn(x,p), (621)

where Hn(x, p) is the Hamiltonian of the ’ring polymer’:

Hn(x, p) =
n

∑
j=1

[
p2

j

2m′
+

1
2

mω2(xj − xj+1)
2 +

1
n

V(xk)

]
xn+1=x1

, (622)

PIMD samples configurations of the beads by using the primitive equation of motion for xj and pj:

ẋj =
pj

m′
, ṗj = −mω2(2xj − xj+1 − xj−1)−

1
n

∂V
∂xj

+ heat bath. (623)

The coupling to the heat bath makes it effectively a path integral Monte Carlo (PIMC) method. In PIMD/PIMC,
m′ is an arbitrary parameter, often called the ’fictitious mass’ which could be defined in terms of m to im-
prove convergence [M. E. Tuckerman, G. J. Martyna, M. L. Klein and B. J. Berne J. Chem. Phys. 99, 2796
(1993)] after transforming the primitive variables xj to the ’staging modes’ that diagonalize the harmonic
coupling.

The ‘path centroid’ is the coordinate of the ring center-of-mass:

xc(t) =
1
n

n

∑
j=1

xj(t), (624)

which experiences a force given by the ’potential of mean force’ [Feynman and Kleinert Phys. Rev. A 34,
5080 (1986)]:

W(xc) = −β−1ln
[∫

dx1 · · · dxndp1 · · · dpne−βHn(x,p)
]

. (625)

The centroid molecular dynamics (CMD) method [J. Cao and G. A. Voth J. Chem. Phys. 99, 10070
(1993); ibid 100, 5106 (1994); ibid 101, 6168 (1994)], expresses the partition function as the path integral
molecular dynamics of the centroid, as follows:

Zn =

(
βk
2π

)n/2 ∫
dxce−βW(xc), (626)
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and samples configurations of the centroid by using the approximate dynamics defined by the potential of
mean force, as follows:

ẋc =
pc

m
, ṗc = −

∂W
∂xc

+ heat bath. (627)

The ring polymer molecular dynamics method [I. R. Craig and D. E. Manolopoulos J. Chem. Phys. 121,
3368 (2004)] is essentially the PIMD method, typically carried out at n times the actual temperature (ı.e.,
βn = β/n), using a scaled Hamiltonian nHn(x, p) and m′ = mn. Originally, the heat bath was not applied.

Correlation functions are evaluated in terms of the Kubo transformed thermal correlation function,

KAB(t) = Z−1tr[Âβ
Kubo eiĤtB̂e−iĤt], (628)

where

Âβ
Kubo =

1
β

∫ β

0
dλe−βĤeλĤ Âe−λĤ, (629)

approximated by PIMD/RPMD as,

KAB(t) ≈ Z−1
n

∫
dpdxAn(0)Bn(t)e−βHn(x,p), (630)

where

An(0) =
1
n

n

∑
j=1

Aj(0), and Bn(t) =
1
n

n

∑
j=1

Bj(t), (631)

or in terms of its centroid approximation, as follows:

KAB(t) ≈ Z−1
n

∫
dpcdxc A(xc(0))B(xc(t))e

−β

(
p2

c
2m+W(xc)

)
. (632)

which requires computing W by PIMD. The derivation of the path integral expression of KAB, introduced
by Eq. (630), is provided in Sec. 49.1.

Standard quantum correlation functions,

CAB(t) = Z−1tr[e−βĤ ÂeiĤtB̂e−iĤt], (633)

are then obtained from the Fourier transform of the Kubo correlation function K̃AB(ω) which is related to
the Fourier transform of the standard correlation function C̃AB(ω), as follows:

C̃AB(ω) =

[
βω

1− e−βω

]
K̃AB(ω), (634)

as shown in the following section (Sec. 49.2).
Obtaining CAB(t) from KAB(t) is convenient since KAB(t) is purely real and invariant under time re-

versal, just like the classical time correlation functions, which are the natural output of both CMD and
PIMD/RPMD calculations. In the linear regime, the response of the system is directly linked to such func-
tions via the Kubo relations [R. Kubo, M. Toda, and N. Hashitsume. Statistical Physics II: Nonequilibrium
Statistical Mechanics. Springer, New York, (1985)]. Furthermore, the PIMD KAB(t) reduces to its classical
counterpart not only in the classical limit (i.e., β → 0) or when t → 0 but also in harmonic systems for
which they are exact. The CMD approximation to KAB(t) is also exact for t = 0 or for harmonic potentials.
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49.1 PIMD/RPMD Expression of Kubo Transform Correlation Function

(This section was contributed by Kenneth Jung.)
Beginning with

KAB(t) =
1

Zβ

∫ β

0
dλ Tr

[
e−(β−λ)Ĥ Âe−λĤeiĤt/h̄B̂e−iĤt/h̄

]
, (635)

where β = 1/(kBT) and Z is the partition function. The integral over lambda can be discretized as

K[N]
AB(t) =

1
ZN N

N

∑
k=1

Tr
[
e−βN(N−k)Ĥ Âe−βNkĤeiĤt/h̄B̂e−iĤt/h̄

]
=

1
ZN N

N

∑
k=1

Tr
[(

e−βN Ĥ
)N−k

Â
(

e−βN Ĥ
)k

eiĤt/h̄B̂e−iĤt/h̄
]

=
1

ZN N

N

∑
k=1

Tr
[(

e−βN Ĥ
)N−k−1

e−βN Ĥ Â
(

e−βN Ĥ
)k−1

e−βN ĤeiĤt/h̄B̂e−iĤt/h̄
]

, (636)

with βN = β/N. We will now insert N − 1 identities of the form

1̂t = eiĤt/h̄e−iĤt/h̄, (637)

in Eq. (636) to give:

K[N]
AB(t) =

1
ZN N

N

∑
k=1

Tr
[(

e−βN Ĥ1̂t

)
N−k−1e−βN Ĥ Â1̂t

(
e−βN Ĥ1̂t

)
k−1e−βN ĤeiĤt/h̄B̂e−iĤt/h̄

]
=

1
ZN N

N

∑
k=1

Tr
[ (

e−βN ĤeiĤt/h̄e−iĤt/h̄
)N−k−1

e−βN Ĥ ÂeiĤt/h̄e−iĤt/h̄

×
(

e−βN ĤeiĤt/h̄e−iĤt/h̄
)k−1

e−βN ĤeiĤt/h̄B̂e−iĤt/h̄
]

, (638)

The trace will then be expanded in the position basis

K[N]
AB(t) =

1
ZN N

N

∑
k=1

∫
dq′′N〈q′′N |

(
e−βN ĤeiĤt/h̄e−iĤt/h̄

)N−k−1
e−βN Ĥ ÂeiĤt/h̄e−iĤt/h̄

×
(

e−βN ĤeiĤt/h̄e−iĤt/h̄
)k−1

e−βN ĤeiĤt/h̄B̂e−iĤt/h̄|q′′N〉. (639)

Now consider the jth term in the sum of Eq. (639):∫
dq′′N〈q′′N |

(
e−βN ĤeiĤt/h̄e−iĤt/h̄

)N−j−1
e−βN Ĥ ÂeiĤt/h̄e−iĤt/h̄

×
(

e−βN ĤeiĤt/h̄e−iĤt/h̄
)j−1

e−βN ĤeiĤt/h̄B̂e−iĤt/h̄|q′′N〉

=
∫

dq′′N〈q′′N | e−βN ĤeiĤt/h̄e−iĤt/h̄ · · · e−βN ĤeiĤt/h̄e−iĤt/h̄︸ ︷︷ ︸
N − j− 1 terms

e−βN Ĥ ÂeiĤt/h̄e−iĤt/h̄

× e−βN ĤeiĤt/h̄e−iĤt/h̄ · · · e−βN ĤeiĤt/h̄e−iĤt/h̄︸ ︷︷ ︸
j− 1 terms

e−βN ĤeiĤt/h̄B̂e−iĤt/h̄|q′′N〉. (640)
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We will insert identities of the form
1̂q′l

=
∫

dq′l |q′l〉〈q′l |, (641)

after each e−βN Ĥ term,
1̂zl =

∫
dzl |zl〉〈zl |, (642)

after each eiĤt/h term and
1̂q′′l

=
∫

dq′′l |q′′l 〉〈q′′l |, (643)

after each e−iĤt/h term (except the one next to |q′′N〉 since the expansion of the trace takes care of this term)
to get

=
∫

dq′′N〈q′′N |e−βN Ĥ1̂q′1
eiĤt/h̄1̂z1 e−iĤt/h̄1̂q′′1

· · · e−βN Ĥ1̂q′N−j−1
eiĤt/h̄1̂zN−j−1 e−iĤt/h̄1̂q′′N−j−1

×e−βN Ĥ1̂q′N−j
ÂeiĤt/h̄1̂zN−j e

−iĤt/h̄1̂q′′N−j
e−βN Ĥ1̂q′N−j+1

eiĤt/h̄1̂zN−j+1 e−iĤt/h̄1̂q′′N−j+1

× · · · e−βN Ĥ1̂q′N−1
eiĤt/h̄1̂zN−1 e−iĤt/h̄1̂q′′N−1

e−βN Ĥ1̂q′N
eiĤt/h̄1̂zN B̂e−iĤt/h̄|q′′N〉

=
∫

dq′′
∫

dz
∫

dq′〈q′′N |e−βN Ĥ |q′1〉〈q′1|eiĤt/h̄|z1〉〈z1|e−iĤt/h̄|q′′1 〉 · · · 〈q′′N−j−2|e−βN Ĥ |q′N−j−1〉

×〈q′N−j−1|eiĤt/h̄|zN−j−1〉〈zN−j−1|e−iĤt/h̄|q′′N−j−1〉〈q′′N−j−1|e−βN Ĥ |q′N−j〉

×〈q′N−j|ÂeiĤt/h̄|zN−j〉〈zN−j|e−iĤt/h̄|q′′N−j〉〈q′′N−j|e−βN Ĥ |q′N−j+1〉〈q′N−j+1|eiĤt/h̄|zN−j+1〉

×〈zN−j+1|e−iĤt/h̄|q′′N−j+1〉 · · · 〈q′′N−2|e−βN Ĥ |q′N−1〉〈q′N−1|eiĤt/h̄|zN−1〉〈zN−1|e−iĤt/h̄|q′′N−1〉

×〈q′′N−1|e−βN Ĥ |q′N〉〈qN |eiĤt/h̄|zN〉〈zN |B̂e−iĤt/h̄|q′′N〉.

We assume that Â and B̂ are functions of the position operator

=
∫

dq′′
∫

dz
∫

dq′A(q′N−j)B(zN)〈q′′N |e−βN Ĥ |q′1〉〈q′1|eiĤt/h̄|z1〉〈z1|e−iĤt/h̄|q′′1 〉 · · · 〈q′′N−j−2|e−βN Ĥ |q′N−j−1〉

×〈q′N−j−1|eiĤt/h̄|zN−j−1〉〈zN−j−1|e−iĤt/h̄|q′′N−j−1〉〈q′′N−j−1|e−βN Ĥ |q′N−j〉

×〈q′N−j|eiĤt/h̄|zN−j〉〈zN−j|e−iĤt/h̄|q′′N−j〉〈q′′N−j|e−βN Ĥ |q′N−j+1〉〈q′N−j+1|eiĤt/h̄|zN−j+1〉

×〈zN−j+1|e−iĤt/h̄|q′′N−j+1〉 · · · 〈q′′N−2|e−βN Ĥ |q′N−1〉〈q′N−1|eiĤt/h̄|zN−1〉〈zN−1|e−iĤt/h̄|q′′N−1〉

×〈q′′N−1|e−βN Ĥ |q′N〉〈qN |eiĤt/h̄|zN〉〈zN |e−iĤt/h̄|q′′N〉.

=
∫

dq′′
∫

dz
∫

dq′A(q′N−j)B(zN)
N

∏
l=1
〈q′′l−1|e−βN Ĥ |q′l〉〈q′l |eiĤt/h̄|zl〉〈zl |e−iĤt/h̄|q′′l 〉. (644)

Where we have used the fact that x0 = xN , x = {q′, q′′, z} to arrive at Eq. (644) and the following notation
was introduced ∫

dx =
N

∏
k=1

∫
dxk. (645)

Now that we see how one term in the sum of Eq. (639) looks, it is easy to see that Eq. (639) can be rewritten
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using the result of Eq. (644) as

K[N]
AB(t) =

∫
dq′′

∫
dz
∫

dq′
N

∑
k=1

A(q′N−k)B(zN)
N

∏
l=1
〈q′′l−1|e−βN Ĥ |q′l〉〈q′l |eiĤt/h̄|zl〉〈zl |e−iĤt/h̄|q′′l 〉

=
∫

dq′′
∫

dz
∫

dq′
N

∑
k=1

A(q′k)B(zN)
N

∏
l=1
〈q′′l−1|e−βN Ĥ |q′l〉〈q′l |eiĤt/h̄|zl〉〈zl |e−iĤt/h̄|q′′l 〉

=
∫

dq′′
∫

dz
∫

dq′A(q′)B(zN)
N

∏
l=1
〈q′′l−1|e−βN Ĥ |q′l〉〈q′l |eiĤt/h̄|zl〉〈zl |e−iĤt/h̄|q′′l 〉. (646)

Since all the blocks are identical and can be permuted we can average the observable B(zN) over all the
blocks to get

K[N]
AB(t) =

∫
dq′′

∫
dz
∫

dq′A(q′)B(z)
N

∏
l=1
〈q′′l−1|e−βN Ĥ |q′l〉〈q′l |eiĤt/h̄|zl〉〈zl |e−iĤt/h̄|q′′l 〉, (647)

where

O(x) =
1
N

N

∑
k=1

O(xk), (648)

is the block-averaged observable.

49.2 Relation of Kubo Transforms to standard TCF’s

There is a general relationship between the Kubo correlation functions and the standard correlation functions
through Fourier space which can be found by working in the energy representation of the Kubo transform.

CAB(t) =
1
Z

tr
[
e−βĤ Â(0)B̂(t)

]
=

1
Z

tr
[
e−βĤ Â(0)eiĤt/h̄B̂(0)e−iĤt/h̄

]
=

1
Z ∑

n,m
〈n| e−βĤ Â(0) |m〉 〈m| eiĤt/h̄B̂(0)e−iĤt/h̄ |n〉 (649)

=
1
Z ∑

n,m
e−βEn AnmeiEmt/h̄Bmne−iEnt/h̄

=
1
Z ∑

n,m
e−βEn ei(Em−En)t/h̄ AnmBmn

where Anm = 〈n| Â |m〉 and Bmn = 〈m| B̂ |n〉. This provides a straightforward way to evaluate the
correlation function if the Hamiltonian can be efficiently diagonalized. Next we will Fourier transform the
correlation function to obtain
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C̃AB(ω) =
∫

dte−iωtCAB(t)

=
1
Z

∫
dte−iωt ∑

n,m
e−βEn ei(Em−En)t/h̄ AnmBmn

=
1
Z ∑

n,m
e−βEn AnmBmn

∫
dte−iωtei(Em−En)t/h̄ (650)

=
1
Z ∑

n,m
e−βEn AnmBmnδ [ω− (Em − En)]

Next we will evaluate the Kubo form in the eigen basis

KAB(t) =
1

Zβ

∫ β

0
dλtr

[
e−(β−λ)Ĥ Â(0)e−λĤ B̂(t)

]
=

1
Zβ

∫ β

0
dλtr

[
e−(β−λ)Ĥ Â(0)e−λĤeiĤt/h̄B̂(0)e−iĤt/h̄

]
=

1
Zβ

∫ β

0
dλ ∑

n.m
〈n| e−(β−λ)Ĥ Â(0) |m〉 〈m| e−λĤeiĤt/h̄B̂(0)e−iĤt/h̄ |n〉

=
1

Zβ

∫ β

0
dλ ∑

n.m
e−(β−λ)En Anme−λEm eiEmt/h̄Bmne−iEnt/h̄ (651)

=
1

Zβ ∑
n.m

∫ β

0
dλeλ(En−Em)e−βEn ei(Em−En)t/h̄ AnmBmn

=
1

Zβ ∑
n.m

eβ(En−Em) − 1
(En − Em)

e−βEn ei(Em−En)t/h̄ AnmBmn

=
1

Zβ ∑
n.m

1− e−β(Em−En)

(Em − En)
e−βEn ei(Em−En)t/h̄ AnmBmn

and again we Fourier transform to get

K̃AB(ω) =
∫

dte−iωtKAB(t)

=
1

Zβ ∑
n.m

1− e−β(Em−En)

(Em − En)
e−βEn AnmBmn

∫
dte−iωtei(Em−En)t/h̄

=
1

Zβ ∑
n.m

1− e−β(Em−En)

(Em − En)
e−βEn AnmBmnδ [ω− (Em − En)] (652)

If we compare this result with the Fourier transform of the normal TCF and rename (Em − En) as h̄ω we
see that the Kubo TCF and the normal TCF are related through their Fourier transforms as

C̃AB(ω) =
βh̄ω

1− e−βh̄ω
K̃AB(ω) (653)
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50 Appendix I: Python and Colab

For this class, I recommend working in the Google Colab environment, so you can run your codes in
Google’s computers. In Colab, everything you need is already installed, or you can upload by mounting
your Google drive.

I also recommend strengthening your python knowledge with the excellent tutorial provided in this
section, adapted by Kevin Zakka for the Spring 2020 edition of cs231n, and available at Python_tt.ipynb.

Python is a great general-purpose programming language on its own, but with the help of a few popular
libraries (numpy, scipy, matplotlib) it becomes a powerful environment for scientific computing. I expect
that many of you will have some experience with Python and numpy; for the rest of you, this section will
serve as a quick crash course both on the Python programming language and on the use of Python for
scientific computing.

In this tutorial, we will cover:

• Basic Python: Basic data types (Containers, Lists, Dictionaries, Sets, Tuples), Functions, Classes
• Numpy: Arrays, Array indexing, Datatypes, Array math, Broadcasting
• Matplotlib: Plotting, Subplots, Images
• IPython: Creating notebooks, Typical workflows

50.1 A Brief Note on Python Versions

As of Janurary 1, 2020, Python has officially dropped support for python2. We’ll be using Python
3.7 for this iteration of the course. You can check your Python version at the command line by running
python --version. In Colab, we can enforce the Python version by clicking Runtime -> Change
Runtime Type and selecting python3. Note that as of April 2020, Colab uses Python 3.6.9 which
should run everything without any errors.

[6]: !python --version

Python 3.6.9

50.1.1 Basics of Python

Python is a high-level, dynamically typed multiparadigm programming language. Python code is often said
to be almost like pseudocode, since it allows you to express very powerful ideas in very few lines of code
while being very readable. As an example, here is an implementation of the classic quicksort algorithm in
Python:

[7]: def quicksort(arr):
if len(arr) <= 1:

return arr
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return quicksort(left) + middle + quicksort(right)

print(quicksort([3,6,8,10,1,2,1]))

[1, 1, 2, 3, 6, 8, 10]
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50.1.1.1 Basic data types

50.1.1.1.1 Numbers Integers and floats work as you would expect from other languages:
[8]: x = 3

print(x, type(x))

3 <class 'int'>

[9]: print(x + 1) # Addition
print(x - 1) # Subtraction
print(x * 2) # Multiplication
print(x ** 2) # Exponentiation

4
2
6
9

[10]: x += 1
print(x)
x *= 2
print(x)

4
8

[11]: y = 2.5
print(type(y))
print(y, y + 1, y * 2, y ** 2)

<class 'float'>
2.5 3.5 5.0 6.25

Note that unlike many languages, Python does not have unary increment (x++) or decrement (x–) oper-
ators.

Python also has built-in types for long integers and complex numbers; you can find all of the details in
the documentation.

50.1.1.1.2 Booleans Python implements all of the usual operators for Boolean logic, but uses English
words rather than symbols (&&, ||, etc.):

[12]: t, f = True, False
print(type(t))

<class 'bool'>

Now we let’s look at the operations:
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[13]: print(t and f) # Logical AND;
print(t or f) # Logical OR;
print(not t) # Logical NOT;
print(t != f) # Logical XOR;

False
True
False
True

50.1.1.1.3 Strings
[14]: hello = ’hello’ # String literals can use single quotes

world = "world" # or double quotes; it does not matter
print(hello, len(hello))

hello 5

[15]: hw = hello + ’ ’ + world # String concatenation
print(hw)

hello world

[16]: hw12 = ’{} {} {}’.format(hello, world, 12) # string formatting
print(hw12)

hello world 12

String objects have a bunch of useful methods; for example:
[17]: s = "hello"

print(s.capitalize()) # Capitalize a string
print(s.upper()) # Convert a string to uppercase; prints "HELLO"
print(s.rjust(7)) # Right-justify a string, padding with spaces
print(s.center(7)) # Center a string, padding with spaces
print(s.replace(’l’, ’(ell)’)) # Replace all instances of one

↪→substring with another

print(’ world ’.strip()) # Strip leading and trailing whitespace

Hello
HELLO

hello
hello
he(ell)(ell)o
world

You can find a list of all string methods in the documentation.
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50.1.1.2 Containers Python includes several built-in container types: lists, dictionaries, sets, and tu-
ples.

1. List item

2. List item

3. List item

4. List item

50.1.1.2.1 Lists A list is the Python equivalent of an array, but is resizeable and can contain elements
of different types:

[18]: xs = [3, 1, 2] # Create a list
print(xs, xs[2])
print(xs[-1]) # Negative indices count from the end of the list;

↪→prints "2"

[3, 1, 2] 2
2

Lists can be generated from arrays, as follows:
[20]: import numpy as np

int_list = [] # list initialization
int_list = [0,0,1,2,3] # list with commas
int_list.append(4) # add 4 to end of the list
int_list.pop(2) # remove element with index 2

int_list2 = list(range(5)) # make list [0,1,2,3,4]
int_array = np.array(int_list) # make array [] with no commas: [0 1 2

↪→3 4]

int_array2 = np.arange(5) # make array [] with no commas: [0 1 2 3 4]
int_list2 = int_array.tolist() # convert array to list

first = 0
last = 4
float_array = np.linspace(first,last,num=5)

print(’int_list=’,int_list)
print(’int_list2=’,int_list2)
print(’int_array=’,int_array)
print(’int_array2=’,int_array2)
print(’float_array=’,float_array)

int_list= [0, 0, 2, 3, 4]
int_list2= [0, 0, 2, 3, 4]
int_array= [0 0 2 3 4]
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int_array2= [0 1 2 3 4]
float_array= [0. 1. 2. 3. 4.]

[21]: xs[2] = ’foo’ # Lists can contain elements of different types
print(xs)

[3, 1, 'foo']

Lists have methods, including append, insert, remove, sort
[22]: xs.append(’bar’) # Add a new element to the end of the list

print(xs)

[3, 1, 'foo', 'bar']

[23]: x = xs.pop() # Remove and return the last element of the list
print(x, xs)

bar [3, 1, 'foo']

As usual, you can find all the gory details about lists in the documentation.

50.1.1.2.2 Slicing In addition to accessing list elements one at a time, Python provides concise syn-
tax to access sublists; this is known as slicing:

[24]: nums = list(range(5)) # range is a built-in function that creates
↪→a list of integers

print(nums) # Prints "[0, 1, 2, 3, 4]"
print(nums[2:4]) # Get a slice from index 2 to 4 (exclusive);

↪→prints "[2, 3]"

print(nums[2:]) # Get a slice from index 2 to the end; prints
↪→"[2, 3, 4]"

print(nums[:2]) # Get a slice from the start to index 2
↪→(exclusive); prints "[0, 1]"

print(nums[:]) # Get a slice of the whole list; prints ["0, 1,
↪→2, 3, 4]"

print(nums[:-1]) # Slice indices can be negative; prints ["0, 1,
↪→2, 3]"

nums[2:4] = [8, 9] # Assign a new sublist to a slice
print(nums) # Prints "[0, 1, 8, 9, 4]"

[0, 1, 2, 3, 4]
[2, 3]
[2, 3, 4]
[0, 1]
[0, 1, 2, 3, 4]
[0, 1, 2, 3]
[0, 1, 8, 9, 4]

50.1.1.2.3 Loops You can loop over the elements of a list like this:
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[25]: animals = [’cat’, ’dog’, ’monkey’]
for animal in animals:

print(animal)

cat
dog
monkey

If you want access to the index of each element within the body of a loop, use the built-in enumerate
function:

[26]: animals = [’cat’, ’dog’, ’monkey’]
for idx, animal in enumerate(animals):

print(’#{}: {}’.format(idx + 1, animal))

#1: cat
#2: dog
#3: monkey

50.1.1.2.4 List comprehensions: When programming, frequently we want to transform one type of
data into another. As a simple example, consider the following code that computes square numbers:

[27]: nums = [0, 1, 2, 3, 4]
squares = []
for x in nums:

squares.append(x ** 2)
print(squares)

[0, 1, 4, 9, 16]

You can make this code simpler using a list comprehension:
[28]: nums = [0, 1, 2, 3, 4]

squares = [x ** 2 for x in nums]
print(squares)

[0, 1, 4, 9, 16]

List comprehensions can also contain conditions:
[29]: nums = [0, 1, 2, 3, 4]

even_squares = [x ** 2 for x in nums if x % 2 == 0]
print(even_squares)

[0, 4, 16]

50.1.1.2.5 Dictionaries A dictionary stores (key, value) pairs, similar to a Map in Java or an object
in Javascript. You can use it like this:

116



[30]: d = {}
d = {’cat’: ’cute’, ’dog’: ’furry’} # Create a new dictionary with

↪→some data

print(d[’cat’]) # Get an entry from a dictionary; prints "cute"
print(’cat’ in d) # Check if a dictionary has a given key; prints

↪→"True"

cute
True

[31]: d[’fish’] = ’wet’ # Set an entry in a dictionary
print(d[’fish’]) # Prints "wet"

wet

[32]: print(d[’monkey’]) # KeyError: ’monkey’ not a key of d

↪→---------------------------------------------------------------------------

KeyError Traceback (most
↪→recent call last)

[33]: print(d.get(’monkey’, ’N/A’)) # Get an element with a default;
↪→prints "N/A"

print(d.get(’fish’, ’N/A’)) # Get an element with a default;
↪→prints "wet"

N/A
wet

[34]: del d[’fish’] # Remove an element from a dictionary
print(d.get(’fish’, ’N/A’)) # "fish" is no longer a key; prints "N/A"

N/A

You can find all you need to know about dictionaries in the documentation.
It is easy to iterate over the keys in a dictionary:

[35]: d = {’person’: 2, ’cat’: 4, ’spider’: 8}
for animal, legs in d.items():

print(’A {} has {} legs’.format(animal, legs))
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A person has 2 legs
A cat has 4 legs
A spider has 8 legs

Add pairs to the dictionary
[36]: d[’bird’]=2

List keys
[37]: d.keys()

[37]: dict_keys(['person', 'cat', 'spider', 'bird'])

List Values
[38]: d.values()

[38]: dict_values([2, 4, 8, 2])

Query values from keys
[39]: d[’bird’]

[39]: 2

Dictionary comprehensions: These are similar to list comprehensions, but allow you to easily construct
dictionaries. For example:

[40]: nums = [0, 1, 2, 3, 4]
even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0}
print(even_num_to_square)

{0: 0, 2: 4, 4: 16}

Convert array to list

50.1.1.2.6 Sets (like dictionaries but with no values, add & remove)
A set is an unordered collection of distinct elements. As a simple example, consider the following:

[41]: animals = {’cat’, ’dog’}
print(’cat’ in animals) # Check if an element is in a set; prints

↪→"True"

print(’fish’ in animals) # prints "False"

True
False

[42]: animals.add(’fish’) # Add an element to a set
print(’fish’ in animals)
print(len(animals)) # Number of elements in a set;

True
3
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[43]: animals.add(’cat’) # Adding an element that is already in the
↪→set does nothing

print(len(animals))
animals.remove(’cat’) # Remove an element from a set
print(len(animals))

3
2

Loops: Iterating over a set has the same syntax as iterating over a list; however since sets are unordered,
you cannot make assumptions about the order in which you visit the elements of the set:

[44]: animals = {’cat’, ’dog’, ’fish’}
for idx, animal in enumerate(animals):

print(’#{}: {}’.format(idx + 1, animal))

#1: fish
#2: dog
#3: cat

Set comprehensions: Like lists and dictionaries, we can easily construct sets using set comprehensions:
[45]: from math import sqrt

print({int(sqrt(x)) for x in range(30)})

{0, 1, 2, 3, 4, 5}

50.1.1.2.7 Tuples A tuple is an (immutable) ordered list of values. A tuple is in many ways similar to
a list; one of the most important differences is that tuples can be used as keys in dictionaries and as elements
of sets, while lists cannot. Here is a simple example:

[46]: d = {(x, x + 1): x for x in range(10)} # Create a dictionary with
↪→tuple keys

print(d)

tt = () # initialization of empty tuple
t1 = (66,) # initialization of tuple with a single value
t = (5, 6) # Create a tuple
tt = tt+t1+t
print("tt=",tt)
print("tt[2]=",tt[2])
print("tt[1:3]=",tt[1:3])
print("66 in tt", 66 in tt)

print(type(t))
print(d[t])
print(d[(1, 2)])
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{(0, 1): 0, (1, 2): 1, (2, 3): 2, (3, 4): 3, (4, 5): 4, (5, 6): 5, (6,
↪→7): 6,

(7, 8): 7, (8, 9): 8, (9, 10): 9}
tt= (66, 5, 6)
tt[2]= 6
tt[1:3]= (5, 6)
66 in tt True
<class 'tuple'>
5
1

[47]: t[0] = 1

↪→---------------------------------------------------------------------------

TypeError Traceback (most
↪→recent call last)

<ipython-input-47-c8aeb8cd20ae> in <module>()
----> 1 t[0] = 1

TypeError: 'tuple' object does not support item assignment

50.1.1.3 Functions Python functions are defined using the def keyword. For example:
[48]: def sign(x):

if x > 0:
return ’positive’

elif x < 0:
return ’negative’

else:
return ’zero’

for x in [-1, 0, 1]:
print(sign(x))

negative
zero
positive

We will often define functions to take optional keyword arguments, like this:
[49]: def hello(name, loud=False):

if loud:
print(’HELLO, {}’.format(name.upper()))
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else:
print(’Hello, {}!’.format(name))

hello(’Bob’)
hello(’Fred’, loud=True)

Hello, Bob!
HELLO, FRED

50.1.1.4 Classes A new class creates a new type of object, bounding data and functionality that allows
new instances of the type made. Each class instance can have attributes attached to it, so we can make class
instances as well as instances to variables and methods for maintaining the state of the class. Instances of the
method can have attributes and can modify the state of the class, as clearly described by the documentation.

The syntax for defining classes in Python is straightforward:
[50]: class Greeter:

""" My greeter class """
# Constructor (method of construction of class in a specific

↪→state)

v1 =’papa’ # class variable shared by all instances
def __init__(self, name_inp): # name_inp: argument given to

↪→Greeter for class instantiation

self.name = name_inp # Create an instance variable
↪→maintaining the state

# instance variables are unique to each
↪→instance

# Instance method
# note that the first argument of the function method is the

↪→instance object

def greet(self, loud=False):
if loud:

print(’HELLO, {}’.format(self.name.upper()))
self.name = ’Haote’

else:
print(’Hello, {}!’.format(self.name))
self.name = ’Victor’

# Class instantiation (returning a new instance of the class assigned
↪→to g):

# Constructs g of type Greeter & initialzes its state
# as defined by the class variables (does not execute methods)
g = Greeter(’Fred’)

# Call an instance method of the class in its current state:
# prints "Hello, Fred!" and updates state varible to ’Victor’ since

↪→loud=False
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g.greet() # equivalent to Greeter.greet(g) since the first arg of
↪→greet is g

# Call an instance method; prints "HELLO, VICTOR" and updates
↪→variable to ’Haote’

g.greet(loud=True) # equivalent to Greeter.greet(g,loud=True)
#since the first arg of greet is g

print(g.v1)
g.greet() # Call an instance method; prints "Hello, Haote!"

# A method object is created by packing
↪→(pointers to) the

# instance object g and the function object greet

g2 = Greeter(’Lea’) # Class instance reinitializes variable to ’Lea’

g2.greet() # Call an instance method; prints "Hello, Lea!"
g2.__doc__
g2.x=20 # Data attributes spring into existence upon

↪→assignment

print(g2.x)
del g2.x # Deletes attribute
g2.v1

Hello, Fred!
HELLO, VICTOR
papa
Hello, Haote!
Hello, Lea!
20

[50]: 'papa'

For loops (iterators). Behind the scenes, the for statement calls iter() on the container object.
[51]: for element in [1,2,3]: # elements of list

print(element)
for element in (1,2,3): # elements of tuple
print(element)

for key in {’first’:1, ’second’:2, ’third’:3}: # elements of
↪→dictionary

print(’key=’,key)
for char in ’1234’:
print(char)

#for line in open(’’myfile.txt)
# print(line,end=’’)

1
2
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3
1
2
3
key= first
key= second
key= third
1
2
3
4

50.1.1.5 Modules A module is a .py file containing Python definitions and statements that can be im-
ported into a Python script, as described in the Python documentation.

As an example, after mounting your Google drive as described by the Navigating_tutorial.ipynb Jupyter
notebook, use a text editor and write a module with the line:

[52]: greeting = "Good Morning!"

Save the document with the name mymod.py
Next, go the the folder where you saved that file and open a notebook with the lines:

[ ]: import mymod as my
print(my.greeting)

you will see that the notebook has imported the variable greetingfrom the module mymod.py and has
invoked the variable as an attribute of the module mymod that was imported as my when printing Good
Morning!!.

Modules are very convenient since they allow you to import variables, functions and classes that you
might have developed for previous projects, without having to copy them into each program. So, you can
build from previous projects, or split your work into several files for easier maintenance.

Within a module, the module’s name (as a string) is available as the value of the global variable
__name__.

50.1.2 Numpy

Numpy is the core library for scientific computing in Python. It provides a high-performance multidimen-
sional array object, and tools for working with these arrays. If you are already familiar with MATLAB, you
might find this tutorial useful to get started with Numpy.

To use Numpy, we first need to import the numpy package:
[54]: import numpy as np

50.1.2.1 Arrays A numpy array is a grid of values, all of the same type, and is indexed by a tuple of
nonnegative integers. The number of dimensions is the rank of the array; the shape of an array is a tuple of
integers giving the size of the array along each dimension.

We can initialize numpy arrays from nested Python lists, and access elements using square brackets:
[55]: a = np.array([1, 2, 3]) # Create a rank 1 array

print(type(a), a.shape, a[0], a[1], a[2])
a[0] = 5 # Change an element of the array
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print(a)

<class 'numpy.ndarray'> (3,) 1 2 3
[5 2 3]

[56]: b = np.array([[1,2,3],[4,5,6]]) # Create a rank 2 array
print(b)

[[1 2 3]
[4 5 6]]

[57]: print(b.shape)
print(b[0, 0], b[0, 1], b[1, 0])

(2, 3)
1 2 4

Numpy also provides many functions to create arrays:
[58]: a = np.zeros((2,2)) # Create an array of all zeros

print(a)

[[0. 0.]
[0. 0.]]

[59]: b = np.ones((1,2)) # Create an array of all ones
print(b)

[[1. 1.]]

[60]: c = np.full((2,2), 7) # Create a constant array
print(c)

[[7 7]
[7 7]]

[61]: d = np.eye(2) # Create a 2x2 identity matrix
print(d)

[[1. 0.]
[0. 1.]]

[62]: e = np.random.random((2,2)) # Create an array filled with random
↪→values

print(e)

[[0.32071297 0.96986179]
[0.32331846 0.50510489]]
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50.1.2.2 Array indexing Numpy offers several ways to index into arrays.
Slicing: Similar to Python lists, numpy arrays can be sliced. Since arrays may be multidimensional, you

must specify a slice for each dimension of the array:
[63]: import numpy as np

# Create the following rank 2 array with shape (3, 4)
# [[ 1 2 3 4]
# [ 5 6 7 8]
# [ 9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

# Use slicing to pull out the subarray consisting of the first 2 rows
# and columns 1 and 2; b is the following array of shape (2, 2):
# [[2 3]
# [6 7]]
b = a[:2, 1:3]
print(b)

[[2 3]
[6 7]]

A slice of an array is a view into the same data, so modifying it will modify the original array.
[64]: print(a[0, 1])

b[0, 0] = 77 # b[0, 0] is the same piece of data as a[0, 1]
print(a[0, 1])

2
77

You can also mix integer indexing with slice indexing. However, doing so will yield an array of lower
rank than the original array. Note that this is quite different from the way that MATLAB handles array
slicing:

[65]: # Create the following rank 2 array with shape (3, 4)
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
print(a)

[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]

Two ways of accessing the data in the middle row of the array. Mixing integer indexing with slices
yields an array of lower rank, while using only slices yields an array of the same rank as the original array:

[66]: row_r1 = a[1, :] # Rank 1 view of the second row of a
row_r2 = a[1:2, :] # Rank 2 view of the second row of a
row_r3 = a[[1], :] # Rank 2 view of the second row of a
print(row_r1, row_r1.shape)
print(row_r2, row_r2.shape)
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print(row_r3, row_r3.shape)

[5 6 7 8] (4,)
[[5 6 7 8]] (1, 4)
[[5 6 7 8]] (1, 4)

[67]: # We can make the same distinction when accessing columns of an array:
col_r1 = a[:, 1]
col_r2 = a[:, 1:2]
print(col_r1, col_r1.shape)
print()
print(col_r2, col_r2.shape)

[ 2 6 10] (3,)

[[ 2]
[ 6]
[10]] (3, 1)

Integer array indexing: When you index into numpy arrays using slicing, the resulting array view will
always be a subarray of the original array. In contrast, integer array indexing allows you to construct arbitrary
arrays using the data from another array. Here is an example:

[68]: a = np.array([[1,2], [3, 4], [5, 6]])

# An example of integer array indexing.
# The returned array will have shape (3,) and
print(a[[0, 1, 2], [0, 1, 0]])

# The above example of integer array indexing is equivalent to this:
print(np.array([a[0, 0], a[1, 1], a[2, 0]]))

[1 4 5]
[1 4 5]

[69]: # When using integer array indexing, you can reuse the same
# element from the source array:
print(a[[0, 0], [1, 1]])

# Equivalent to the previous integer array indexing example
print(np.array([a[0, 1], a[0, 1]]))

[2 2]
[2 2]

One useful trick with integer array indexing is selecting or mutating one element from each row of a
matrix:
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[70]: # Create a new array from which we will select elements
a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
print(a)

[[ 1 2 3]
[ 4 5 6]
[ 7 8 9]
[10 11 12]]

[71]: # Create an array of indices
b = np.array([0, 2, 0, 1])

# Select one element from each row of a using the indices in b
print(a[np.arange(4), b]) # Prints "[ 1 6 7 11]"

[ 1 6 7 11]

[72]: # Mutate one element from each row of a using the indices in b
a[np.arange(4), b] += 10
print(a)

[[11 2 3]
[ 4 5 16]
[17 8 9]
[10 21 12]]

Boolean array indexing: Boolean array indexing lets you pick out arbitrary elements of an array. Fre-
quently this type of indexing is used to select the elements of an array that satisfy some condition. Here is
an example:

[73]: import numpy as np

a = np.array([[1,2], [3, 4], [5, 6]])

bool_idx = (a > 2) # Find the elements of a that are bigger than 2;
# this returns a numpy array of Booleans of the

↪→same

# shape as a, where each slot of bool_idx tells
# whether that element of a is > 2.

print(bool_idx)

[[False False]
[ True True]
[ True True]]
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[74]: # We use boolean array indexing to construct a rank 1 array
# consisting of the elements of a corresponding to the True values
# of bool_idx
print(a[bool_idx])

# We can do all of the above in a single concise statement:
print(a[a > 2])

[3 4 5 6]
[3 4 5 6]

For brevity we have left out a lot of details about numpy array indexing; if you want to know more you
should read the documentation.

50.1.2.3 Datatypes Every numpy array is a grid of elements of the same type. Numpy provides a large
set of numeric datatypes that you can use to construct arrays. Numpy tries to guess a datatype when you
create an array, but functions that construct arrays usually also include an optional argument to explicitly
specify the datatype. Here is an example:

[75]: x = np.array([1, 2]) # Let numpy choose the datatype
y = np.array([1.0, 2.0]) # Let numpy choose the datatype
z = np.array([1, 2], dtype=np.int64) # Force a particular datatype

print(x.dtype, y.dtype, z.dtype)

int64 float64 int64

You can read all about numpy datatypes in the documentation.

50.1.2.4 Array math Basic mathematical functions operate elementwise on arrays, and are available
both as operator overloads and as functions in the numpy module:

[76]: x = np.array([[1,2],[3,4]], dtype=np.float64)
y = np.array([[5,6],[7,8]], dtype=np.float64)

# Elementwise sum; both produce the array
print(x + y)
print(np.add(x, y))

[[ 6. 8.]
[10. 12.]]
[[ 6. 8.]
[10. 12.]]

[77]: # Elementwise difference; both produce the array
print(x - y)
print(np.subtract(x, y))
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[[-4. -4.]
[-4. -4.]]
[[-4. -4.]
[-4. -4.]]

[78]: # Elementwise product; both produce the array
print(x * y)
print(np.multiply(x, y))

[[ 5. 12.]
[21. 32.]]
[[ 5. 12.]
[21. 32.]]

[79]: # Elementwise division; both produce the array
# [[ 0.2 0.33333333]
# [ 0.42857143 0.5 ]]
print(x / y)
print(np.divide(x, y))

[[0.2 0.33333333]
[0.42857143 0.5 ]]
[[0.2 0.33333333]
[0.42857143 0.5 ]]

[80]: # Elementwise square root; produces the array
# [[ 1. 1.41421356]
# [ 1.73205081 2. ]]
print(np.sqrt(x))

[[1. 1.41421356]
[1.73205081 2. ]]

Note that unlike MATLAB, * is elementwise multiplication, not matrix multiplication. We instead use
the dot function to compute inner products of vectors, to multiply a vector by a matrix, and to multiply
matrices. dot is available both as a function in the numpy module and as an instance method of array
objects:

[81]: x = np.array([[1,2],[3,4]])
y = np.array([[5,6],[7,8]])

v = np.array([9,10])
w = np.array([11, 12])

# Inner product of vectors; both produce 219
print(v.dot(w))
print(np.dot(v, w))
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219
219

You can also use the @ operator which is equivalent to numpy’s dot operator.
[82]: print(v @ w)

219

[83]: # Matrix / vector product; both produce the rank 1 array [29 67]
print(x.dot(v))
print(np.dot(x, v))
print(x @ v)

[29 67]
[29 67]
[29 67]

[84]: # Matrix / matrix product; both produce the rank 2 array
# [[19 22]
# [43 50]]
print(x.dot(y))
print(np.dot(x, y))
print(x @ y)

[[19 22]
[43 50]]
[[19 22]
[43 50]]
[[19 22]
[43 50]]

Numpy provides many useful functions for performing computations on arrays; one of the most useful
is sum:

[85]: x = np.array([[1,2],[3,4]])

print(np.sum(x)) # Compute sum of all elements; prints "10"
print(np.sum(x, axis=0)) # Compute sum of each column; prints "[4 6]"
print(np.sum(x, axis=1)) # Compute sum of each row; prints "[3 7]"

10
[4 6]
[3 7]

You can find the full list of mathematical functions provided by numpy in the documentation.
Apart from computing mathematical functions using arrays, we frequently need to reshape or other-

wise manipulate data in arrays. The simplest example of this type of operation is transposing a matrix; to
transpose a matrix, simply use the T attribute of an array object:
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[86]: print(x)
print("transpose\n", x.T)

[[1 2]
[3 4]]
transpose
[[1 3]
[2 4]]

[87]: v = np.array([[1,2,3]])
print(v )
print("transpose\n", v.T)

[[1 2 3]]
transpose
[[1]
[2]
[3]]

50.1.2.5 Broadcasting Broadcasting is a powerful mechanism that allows numpy to work with arrays
of different shapes when performing arithmetic operations. Frequently we have a smaller array and a larger
array, and we want to use the smaller array multiple times to perform some operation on the larger array.

For example, suppose that we want to add a constant vector to each row of a matrix. We could do it like
this:

[88]: # We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = np.empty_like(x) # Create an empty matrix with the same shape

↪→as x

# Add the vector v to each row of the matrix x with an explicit loop
for i in range(4):

y[i, :] = x[i, :] + v

print(y)

[[ 2 2 4]
[ 5 5 7]
[ 8 8 10]
[11 11 13]]

This works; however when the matrix x is very large, computing an explicit loop in Python could be
slow. Note that adding the vector v to each row of the matrix x is equivalent to forming a matrix vv by
stacking multiple copies of v vertically, then performing elementwise summation of x and vv. We could
implement this approach like this:
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[89]: vv = np.tile(v, (4, 1)) # Stack 4 copies of v on top of each other
print(vv) # Prints "[[1 0 1]

# [1 0 1]
# [1 0 1]
# [1 0 1]]"

[[1 0 1]
[1 0 1]
[1 0 1]
[1 0 1]]

[90]: y = x + vv # Add x and vv elementwise
print(y)

[[ 2 2 4]
[ 5 5 7]
[ 8 8 10]
[11 11 13]]

Numpy broadcasting allows us to perform this computation without actually creating multiple copies of
v. Consider this version, using broadcasting:

[91]: import numpy as np

# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = x + v # Add v to each row of x using broadcasting
print(y)

[[ 2 2 4]
[ 5 5 7]
[ 8 8 10]
[11 11 13]]

The line y = x + v works even though x has shape (4, 3) and v has shape (3,) due to broad-
casting; this line works as if v actually had shape (4, 3), where each row was a copy of v, and the sum
was performed elementwise.

Broadcasting two arrays together follows these rules:

1. If the arrays do not have the same rank, prepend the shape of the lower rank array with 1s until both
shapes have the same length.

2. The two arrays are said to be compatible in a dimension if they have the same size in the dimension,
or if one of the arrays has size 1 in that dimension.

3. The arrays can be broadcast together if they are compatible in all dimensions.
4. After broadcasting, each array behaves as if it had shape equal to the elementwise maximum of shapes

of the two input arrays.
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5. In any dimension where one array had size 1 and the other array had size greater than 1, the first array
behaves as if it were copied along that dimension

If this explanation does not make sense, try reading the explanation from the documentation or this
explanation.

Functions that support broadcasting are known as universal functions. You can find the list of all univer-
sal functions in the documentation.

Here are some applications of broadcasting:
[92]: # Compute outer product of vectors

v = np.array([1,2,3]) # v has shape (3,)
w = np.array([4,5]) # w has shape (2,)
# To compute an outer product, we first reshape v to be a column
# vector of shape (3, 1); we can then broadcast it against w to yield
# an output of shape (3, 2), which is the outer product of v and w:

print(np.reshape(v, (3, 1)) * w)

[[ 4 5]
[ 8 10]
[12 15]]

[93]: # Add a vector to each row of a matrix
x = np.array([[1,2,3], [4,5,6]])
# x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3),
# giving the following matrix:

print(x + v)

[[2 4 6]
[5 7 9]]

[94]: # Add a vector to each column of a matrix
# x has shape (2, 3) and w has shape (2,).
# If we transpose x then it has shape (3, 2) and can be broadcast
# against w to yield a result of shape (3, 2); transposing this result
# yields the final result of shape (2, 3) which is the matrix x with
# the vector w added to each column. Gives the following matrix:

print((x.T + w).T)

[[ 5 6 7]
[ 9 10 11]]

[95]: # Another solution is to reshape w to be a row vector of shape (2, 1);
# we can then broadcast it directly against x to produce the same
# output.
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print(x + np.reshape(w, (2, 1)))

[[ 5 6 7]
[ 9 10 11]]

[96]: # Multiply a matrix by a constant:
# x has shape (2, 3). Numpy treats scalars as arrays of shape ();
# these can be broadcast together to shape (2, 3), producing the
# following array:
print(x * 2)

[[ 2 4 6]
[ 8 10 12]]

Broadcasting typically makes your code more concise and faster, so you should strive to use it where
possible.

This brief overview has touched on many of the important things that you need to know about numpy,
but is far from complete. Check out the numpy reference to find out much more about numpy.

50.1.3 Matplotlib

Matplotlib is a plotting library. In this section give a brief introduction to the matplotlib.pyplot
module, which provides a plotting system similar to that of MATLAB.

[97]: import matplotlib.pyplot as plt

By running this special iPython command, we will be displaying plots inline:
[98]: %matplotlib inline

50.1.3.1 Plotting The most important function in matplotlib is plot, which allows you to plot 2D
data. Here is a simple example:

[99]: # Compute the x and y coordinates for points on a sine curve
x = np.arange(0, 3 * np.pi, 0.1)
y = np.sin(x)

# Plot the points using matplotlib
plt.plot(x, y)

[99]: [<matplotlib.lines.Line2D at 0x7f78639a1748>]
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With just a little bit of extra work we can easily plot multiple lines at once, and add a title, legend, and
axis labels:

[100]: y_sin = np.sin(x)
y_cos = np.cos(x)

# Plot the points using matplotlib
plt.plot(x, y_sin)
plt.plot(x, y_cos)
plt.xlabel(’x axis label’)
plt.ylabel(’y axis label’)
plt.title(’Sine and Cosine’)
plt.legend([’Sine’, ’Cosine’])

[100]: <matplotlib.legend.Legend at 0x7f78634f2860>
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50.1.3.2 Subplots You can plot different things in the same figure using the subplot function. Here is an
example:

[101]: # Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)

# Set up a subplot grid that has height 2 and width 1,
# and set the first such subplot as active.
plt.subplot(2, 1, 1)

# Make the first plot
plt.plot(x, y_sin)
plt.title(’Sine’)

# Set the second subplot as active, and make the second plot.
plt.subplot(2, 1, 2)
plt.plot(x, y_cos)
plt.title(’Cosine’)

# Show the figure.
plt.show()
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You can read much more about the subplot function in the documentation.
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