
An Introduction to Quantum
Computing

Phillip Kaye
Raymond Laflamme
Michele Mosca

1

TEAM LinG

3
Great Clarendon Street, Oxford ox2 6dp

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,

and education by publishing worldwide in

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi

New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

c© Phillip R. Kaye, Raymond Laflamme and Michele Mosca, 2007

The moral rights of the authors have been asserted
Database right Oxford University Press (maker)

First published 2007

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,

without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate

reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,

Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose the same condition on any acquirer

British Library Cataloguing in Publication Data

Data available

Library of Congress Cataloging in Publication Data

Data available

Typeset by SPI Publisher Services, Pondicherry, India
Printed in Great Britain

on acid-free paper by
Biddles Ltd., King’s Lynn, Norfolk

ISBN 0-19-857000-7 978-0-19-857000-4
ISBN 0-19-857049-x 978-0-19-857049-3 (pbk)

1 3 5 7 9 10 8 6 4 2

TEAM LinG

Contents

Preface x

Acknowledgements xi

1 INTRODUCTION AND BACKGROUND 1

1.1 Overview 1

1.2 Computers and the Strong Church–Turing Thesis 2

1.3 The Circuit Model of Computation 6

1.4 A Linear Algebra Formulation of the Circuit Model 8

1.5 Reversible Computation 12

1.6 A Preview of Quantum Physics 15

1.7 Quantum Physics and Computation 19

2 LINEAR ALGEBRA AND THE DIRAC NOTATION 21

2.1 The Dirac Notation and Hilbert Spaces 21

2.2 Dual Vectors 23

2.3 Operators 27

2.4 The Spectral Theorem 30

2.5 Functions of Operators 32

2.6 Tensor Products 33

2.7 The Schmidt Decomposition Theorem 35

2.8 Some Comments on the Dirac Notation 37

3 QUBITS AND THE FRAMEWORK OF QUANTUM
MECHANICS 38

3.1 The State of a Quantum System 38

3.2 Time-Evolution of a Closed System 43

3.3 Composite Systems 45

3.4 Measurement 48

v
TEAM LinG

vi CONTENTS

3.5 Mixed States and General Quantum Operations 53

3.5.1 Mixed States 53

3.5.2 Partial Trace 56

3.5.3 General Quantum Operations 59

4 A QUANTUM MODEL OF COMPUTATION 61

4.1 The Quantum Circuit Model 61

4.2 Quantum Gates 63

4.2.1 1-Qubit Gates 63

4.2.2 Controlled-U Gates 66

4.3 Universal Sets of Quantum Gates 68

4.4 Efficiency of Approximating Unitary Transformations 71

4.5 Implementing Measurements with Quantum Circuits 73

5 SUPERDENSE CODING AND QUANTUM
TELEPORTATION 78

5.1 Superdense Coding 79

5.2 Quantum Teleportation 80

5.3 An Application of Quantum Teleportation 82

6 INTRODUCTORY QUANTUM ALGORITHMS 86

6.1 Probabilistic Versus Quantum Algorithms 86

6.2 Phase Kick-Back 91

6.3 The Deutsch Algorithm 94

6.4 The Deutsch–Jozsa Algorithm 99

6.5 Simon’s Algorithm 103

7 ALGORITHMS WITH SUPERPOLYNOMIAL
SPEED-UP 110

7.1 Quantum Phase Estimation and the Quantum Fourier Trans-
form 110

7.1.1 Error Analysis for Estimating Arbitrary Phases 117

7.1.2 Periodic States 120

7.1.3 GCD, LCM, the Extended Euclidean Algorithm 124

7.2 Eigenvalue Estimation 125

TEAM LinG

CONTENTS vii

7.3 Finding-Orders 130

7.3.1 The Order-Finding Problem 130

7.3.2 Some Mathematical Preliminaries 131

7.3.3 The Eigenvalue Estimation Approach to Order Find-
ing 134

7.3.4 Shor’s Approach to Order Finding 139

7.4 Finding Discrete Logarithms 142

7.5 Hidden Subgroups 146

7.5.1 More on Quantum Fourier Transforms 147

7.5.2 Algorithm for the Finite Abelian Hidden Subgroup
Problem 149

7.6 Related Algorithms and Techniques 151

8 ALGORITHMS BASED ON AMPLITUDE
AMPLIFICATION 152

8.1 Grover’s Quantum Search Algorithm 152

8.2 Amplitude Amplification 163

8.3 Quantum Amplitude Estimation and Quantum Counting 170

8.4 Searching Without Knowing the Success Probability 175

8.5 Related Algorithms and Techniques 178

9 QUANTUM COMPUTATIONAL COMPLEXITY THEORY
AND LOWER BOUNDS 179

9.1 Computational Complexity 180

9.1.1 Language Recognition Problems and Complexity
Classes 181

9.2 The Black-Box Model 185

9.2.1 State Distinguishability 187

9.3 Lower Bounds for Searching in the Black-Box Model: Hybrid
Method 188

9.4 General Black-Box Lower Bounds 191

9.5 Polynomial Method 193

9.5.1 Applications to Lower Bounds 194

9.5.2 Examples of Polynomial Method Lower Bounds 196

TEAM LinG

viii CONTENTS

9.6 Block Sensitivity 197

9.6.1 Examples of Block Sensitivity Lower Bounds 197

9.7 Adversary Methods 198

9.7.1 Examples of Adversary Lower Bounds 200

9.7.2 Generalizations 203

10 QUANTUM ERROR CORRECTION 204

10.1 Classical Error Correction 204

10.1.1 The Error Model 205

10.1.2 Encoding 206

10.1.3 Error Recovery 207

10.2 The Classical Three-Bit Code 207

10.3 Fault Tolerance 211

10.4 Quantum Error Correction 212

10.4.1 Error Models for Quantum Computing 213

10.4.2 Encoding 216

10.4.3 Error Recovery 217

10.5 Three- and Nine-Qubit Quantum Codes 223

10.5.1 The Three-Qubit Code for Bit-Flip Errors 223

10.5.2 The Three-Qubit Code for Phase-Flip Errors 225

10.5.3 Quantum Error Correction Without Decoding 226

10.5.4 The Nine-Qubit Shor Code 230

10.6 Fault-Tolerant Quantum Computation 234

10.6.1 Concatenation of Codes and the Threshold Theorem 237

APPENDIX A 241

A.1 Tools for Analysing Probabilistic Algorithms 241

A.2 Solving the Discrete Logarithm Problem When the Order of
a Is Composite 243

A.3 How Many Random Samples Are Needed to Generate
a Group? 245

A.4 Finding r Given k
r for Random k 247

A.5 Adversary Method Lemma 248

TEAM LinG

CONTENTS ix

A.6 Black-Boxes for Group Computations 250

A.7 Computing Schmidt Decompositions 253

A.8 General Measurements 255

A.9 Optimal Distinguishing of Two States 258

A.9.1 A Simple Procedure 258

A.9.2 Optimality of This Simple Procedure 258

Bibliography 260

Index 270

TEAM LinG

Preface

We have offered a course at the University of Waterloo in quantum comput-
ing since 1999. We have had students from a variety of backgrounds take the
course, including students in mathematics, computer science, physics, and engi-
neering. While there is an abundance of very good introductory papers, surveys
and books, many of these are geared towards students already having a strong
background in a particular area of physics or mathematics.

With this in mind, we have designed this book for the following reader. The
reader has an undergraduate education in some scientific field, and should par-
ticularly have a solid background in linear algebra, including vector spaces and
inner products. Prior familiarity with topics such as tensor products and spectral
decomposition is not required, but may be helpful. We review all the necessary
material, in any case. In some places we have not been able to avoid using notions
from group theory. We clearly indicate this at the beginning of the relevant sec-
tions, and have kept these sections self-contained so that they may be skipped by
the reader unacquainted with group theory. We have attempted to give a gentle
and digestible introduction of a difficult subject, while at the same time keeping
it reasonably complete and technically detailed.

We integrated exercises into the body of the text. Each exercise is designed to
illustrate a particular concept, fill in the details of a calculation or proof, or to
show how concepts in the text can be generalized or extended. To get the most
out of the text, we encourage the student to attempt most of the exercises.

We have avoided the temptation to include many of the interesting and im-
portant advanced or peripheral topics, such as the mathematical formalism of
quantum information theory and quantum cryptography. Our intent is not to
provide a comprehensive reference book for the field, but rather to provide stu-
dents and instructors of the subject with a reasonably brief, and very accessible
introductory graduate or senior undergraduate textbook.

x
TEAM LinG

Acknowledgements

The authors would like to extend thanks to the many colleagues and scientists
around the world that have helped with the writing of this textbook, including
Andris Ambainis, Paul Busch, Lawrence Ioannou, David Kribs, Ashwin Nayak,
Mark Saaltink, and many other members of the Institute for Quantum Comput-
ing and students at the University of Waterloo, who have taken our introductory
quantum computing course over the past few years.

Phillip Kaye would like to thank his wife Janine for her patience and support, and
his father Ron for his keen interest in the project and for his helpful comments.

Raymond Laflamme would like to thank Janice Gregson, Patrick and Jocelyne
Laflamme for their patience, love, and insights on the intuitive approach to error
correction.

Michele Mosca would like to thank his wife Nelia for her love and encouragement
and his parents for their support.

xi
TEAM LinG

This page intentionally left blank

TEAM LinG

1

INTRODUCTION
AND BACKGROUND

1.1 Overview

A computer is a physical device that helps us process information by executing
algorithms. An algorithm is a well-defined procedure, with finite description,
for realizing an information-processing task. An information-processing task can
always be translated into a physical task.

When designing complex algorithms and protocols for various information-
processing tasks, it is very helpful, perhaps essential, to work with some idealized
computing model. However, when studying the true limitations of a computing
device, especially for some practical reason, it is important not to forget the rela-
tionship between computing and physics. Real computing devices are embodied
in a larger and often richer physical reality than is represented by the idealized
computing model.

Quantum information processing is the result of using the physical reality that
quantum theory tells us about for the purposes of performing tasks that were
previously thought impossible or infeasible. Devices that perform quantum in-
formation processing are known as quantum computers. In this book we examine
how quantum computers can be used to solve certain problems more efficiently
than can be done with classical computers, and also how this can be done reliably
even when there is a possibility for errors to occur.

In this first chapter we present some fundamental notions of computation theory
and quantum physics that will form the basis for much of what follows. After
this brief introduction, we will review the necessary tools from linear algebra in
Chapter 2, and detail the framework of quantum mechanics, as relevant to our
model of quantum computation, in Chapter 3. In the remainder of the book we
examine quantum teleportation, quantum algorithms and quantum error correc-
tion in detail.

1
TEAM LinG

2 INTRODUCTION AND BACKGROUND

1.2 Computers and the Strong Church–Turing Thesis

We are often interested in the amount of resources used by a computer to solve a
problem, and we refer to this as the complexity of the computation. An important
resource for a computer is time. Another resource is space, which refers to the
amount of memory used by the computer in performing the computation. We
measure the amount of a resource used in a computation for solving a given
problem as a function of the length of the input of an instance of that problem.
For example, if the problem is to multiply two n bit numbers, a computer might
solve this problem using up to 2n2+3 units of time (where the unit of time may be
seconds, or the length of time required for the computer to perform a basic step).

Of course, the exact amount of resources used by a computer executing an algo-
rithm depends on the physical architecture of the computer. A different computer
multiplying the same numbers mentioned above might use up to time 4n3 +n+5
to execute the same basic algorithm. This fact seems to present a problem if we
are interested in studying the complexity of algorithms themselves, abstracted
from the details of the machines that might be used to execute them. To avoid
this problem we use a more coarse measure of complexity. One coarser measure
is to consider only the highest-order terms in the expressions quantifying re-
source requirements, and to ignore constant multiplicative factors. For example,
consider the two computers mentioned above that run a searching algorithm in
times 2n2 + 3 and 4n3 + n + 7, respectively. The highest-order terms are n2 and
n3, respectively (suppressing the constant multiplicative factors 2 and 4, respec-
tively). We say that the running time of that algorithm for those computers is
in O(n2) and O(n3), respectively.

We should note that O (f(n)) denotes an upper bound on the running time of the
algorithm. For example, if a running time complexity is in O(n2) or in O(log n),
then it is also in O(n3). In this way, expressing the resource requirements using
the O notation gives a hierarchy of complexities. If we wish to describe lower
bounds, then we use the Ω notation.

It often is very convenient to go a step further and use an even more coarse de-
scription of resources used. As we describe in Section 9.1, in theoretical computer
science, an algorithm is considered to be efficient with respect to some resource if
the amount of that resource used in the algorithm is in O(nk) for some k. In this
case we say that the algorithm is polynomial with respect to the resource. If an
algorithm’s running time is in O(n), we say that it is linear, and if the running
time is in O(log n) we say that it is logarithmic. Since linear and logarithmic
functions do not grow faster than polynomial functions, these algorithms are
also efficient. Algorithms that use Ω(cn) resources, for some constant c, are said
to be exponential, and are considered not to be efficient. If the running time of
an algorithm cannot be bounded above by any polynomial, we say its running
time is superpolynomial. The term ‘exponential’ is often used loosely to mean
superpolynomial.

TEAM LinG

COMPUTERS AND THE STRONG CHURCH–TURING THESIS 3

One advantage of this coarse measure of complexity, which we will elaborate
on, is that it appears to be robust against reasonable changes to the computing
model and how resources are counted. For example, one cost that is often ignored
when measuring the complexity of a computing model is the time it takes to
move information around. For example, if the physical bits are arranged along
a line, then to bring together two bits that are n-units apart will take time
proportional to n (due to special relativity, if nothing else). Ignoring this cost
is in general justifiable, since in modern computers, for an n of practical size,
this transportation time is negligible. Furthermore, properly accounting for this
time only changes the complexity by a linear factor (and thus does not affect the
polynomial versus superpolynomial dichotomy).

Computers are used so extensively to solve such a wide variety of problems, that
questions of their power and efficiency are of enormous practical importance,
aside from being of theoretical interest. At first glance, the goal of characterizing
the problems that can be solved on a computer, and to quantify the efficiency
with which problems can be solved, seems a daunting one. The range of sizes
and architectures of modern computers encompasses devices as simple as a single
programmable logic chip in a household appliance, and as complex as the enor-
mously powerful supercomputers used by NASA. So it appears that we would be
faced with addressing the questions of computability and efficiency for computers
in each of a vast number of categories.

The development of the mathematical theories of computability and compu-
tational complexity theory has shown us, however, that the situation is much
better. The Church–Turing Thesis says that a computing problem can be solved
on any computer that we could hope to build, if and only if it can be solved on a
very simple ‘machine’, named a Turing machine (after the mathematician Alan
Turing who conceived it). It should be emphasized that the Turing ‘machine’
is a mathematical abstraction (and not a physical device). A Turing machine is
a computing model consisting of a finite set of states, an infinite ‘tape’ which
symbols from a finite alphabet can be written to and read from using a mov-
ing head, and a transition function that specifies the next state in terms of the
current state and symbol currently pointed to by the head.

If we believe the Church–Turing Thesis, then a function is computable by a
Turing machine if and only if it is computable by some realistic computing device.
In fact, the technical term computable corresponds to what can be computed by
a Turing machine.

To understand the intuition behind the Church–Turing Thesis, consider some
other computing device, A, which has some finite description, accepts input
strings x, and has access to an arbitrary amount of workspace. We can write
a computer program for our universal Turing machine that will simulate the
evolution of A on input x. One could either simulate the logical evolution of A
(much like one computer operating system can simulate another), or even more

TEAM LinG

4 INTRODUCTION AND BACKGROUND

naively, given the complete physical description of the finite system A, and the
laws of physics governing it, our universal Turing machine could alternatively
simulate it at a physical level.

The original Church–Turing Thesis says nothing about the efficiency of com-
putation. When one computer simulates another, there is usually some sort of
‘overhead’ cost associated with the simulation. For example, consider two types
of computer, A and B. Suppose we want to write a program for A so that it
simulates the behaviour of B. Suppose that in order to simulate a single step of
the evolution of B, computer A requires 5 steps. Then a problem that is solved
by B in time O(n3) is solved by A in time in 5 ·O(n3) = O(n3). This simulation
is efficient. Simulations of one computer by another can also involve a trade-off
between resources of different kinds, such as time and space. As an example, con-
sider computer A simulating another computer C. Suppose that when computer
C uses S units of space and T units of space, the simulation requires that A use
up to O(ST2S) units of time. If C can solve a problem in time O(n2) using O(n)
space, then A uses up to O(n32n) time to simulate C.

We say that a simulation of one computer by another is efficient if the ‘overhead’
in resources used by the simulation is polynomial (i.e. simulating an O(f(n))
algorithm uses O(f(n)k) resources for some fixed integer k). So in our above
example, A can simulate B efficiently but not necessarily C (the running times
listed are only upper bounds, so we do not know for sure if the exponential
overhead is necessary).

One alternative computing model that is more closely related to how one typi-
cally describes algorithms and writes computer programs is the random access
machine (RAM) model. A RAM machine can perform elementary computational
operations including writing inputs into its memory (whose units are assumed to
store integers), elementary arithmetic operations on values stored in its memory,
and an operation conditioned on some value in memory. The classical algorithms
we describe and analyse in this textbook implicitly are described in log-RAM
model, where operations involving n-bit numbers take time n.

In order to extend the Church–Turing Thesis to say something useful about the
efficiency of computation, it is useful to generalize the definition of a Turing
machine slightly. A probabilistic Turing machine is one capable of making a ran-
dom binary choice at each step, where the state transition rules are expanded to
account for these random bits. We can say that a probabilistic Turing machine is
a Turing machine with a built-in ‘coin-flipper’. There are some important prob-
lems that we know how to solve efficiently using a probabilistic Turing machine,
but do not know how to solve efficiently using a conventional Turing machine
(without a coin-flipper). An example of such a problem is that of finding square
roots modulo a prime.

It may seem strange that the addition of a source of randomness (the coin-flipper)
could add power to a Turing machine. In fact, some results in computational
complexity theory give reason to suspect that every problem (including the

TEAM LinG

COMPUTERS AND THE STRONG CHURCH–TURING THESIS 5

“square root modulo a prime” problem above) for which probabilistic Turing
machine can efficiently guess the correct answer with high probability, can
be solved efficiently by a deterministic Turing machine. However, since we do
not have proof of this equivalence between Turing machines and probabilis-
tic Turing machines, and problems such as the square root modulo a prime
problem above are evidence that a coin-flipper may offer additional power, we
will state the following thesis in terms of probabilistic Turing machines. This
thesis will be very important in motivating the importance of quantum com-
puting.

(Classical) Strong Church–Turing Thesis: A probabilistic Turing machine can
efficiently simulate any realistic model of computation.

Accepting the Strong Church–Turing Thesis allows us to discuss the notion of the
intrinsic complexity of a problem, independent of the details of the computing
model.

The Strong Church–Turing Thesis has survived so many attempts to violate it
that before the advent of quantum computing the thesis had come to be widely
accepted. To understand its importance, consider again the problem of deter-
mining the computational resources required to solve computational problems.
In light of the strong Church–Turing Thesis, the problem is vastly simplified.
It will suffice to restrict our investigations to the capabilities of a probabilistic
Turing machine (or any equivalent model of computation, such as a modern per-
sonal computer with access to an arbitrarily large amount of memory), since any
realistic computing model will be roughly equivalent in power to it. You might
wonder why the word ‘realistic’ appears in the statement of the strong Church–
Turing Thesis. It is possible to describe special-purpose (classical) machines for
solving certain problems in such a way that a probabilistic Turing machine sim-
ulation may require an exponential overhead in time or space. At first glance,
such proposals seem to challenge the strong Church–Turing Thesis. However,
these machines invariably ‘cheat’ by not accounting for all the resources they
use. While it seems that the special-purpose machine uses exponentially less
time and space than a probabilistic Turing machine solving the problem, the
special-purpose machine needs to perform some physical task that implicitly re-
quires superpolynomial resources. The term realistic model of computation in
the statement of the strong Church–Turing Thesis refers to a model of compu-
tation which is consistent with the laws of physics and in which we explicitly
account for all the physical resources used by that model.

It is important to note that in order to actually implement a Turing machine
or something equivalent it, one must find a way to deal with realistic errors.
Error-correcting codes were developed early in the history of computation in
order to deal with the faults inherent with any practical implementation of a
computer. However, the error-correcting procedures are also not perfect, and
could introduce additional errors themselves. Thus, the error correction needs to
be done in a fault-tolerant way. Fortunately for classical computation, efficient

TEAM LinG

6 INTRODUCTION AND BACKGROUND

fault-tolerant error-correcting techniques have been found to deal with realistic
error models.

The fundamental problem with the classical strong Church–Turing Thesis is that
it appears that classical physics is not powerful enough to efficiently simulate
quantum physics. The basic principle is still believed to be true; however, we need
a computing model capable of simulating arbitrary ‘realistic’ physical devices,
including quantum devices. The answer may be a quantum version of the strong
Church–Turing Thesis, where we replace the probabilistic Turing machine with
some reasonable type of quantum computing model. We describe a quantum
model of computing in Chapter 4 that is equivalent in power to what is known
as a quantum Turing machine.

Quantum Strong Church–Turing Thesis: A quantum Turing machine can effi-
ciently simulate any realistic model of computation.

1.3 The Circuit Model of Computation

In Section 1.2, we discussed a prototypical computer (or model of computation)
known as the probabilistic Turing machine. Another useful model of computa-
tion is that of a uniform families of reversible circuits. (We will see in Section 1.5
why we can restrict attention to reversible gates and circuits.) Circuits are net-
works composed of wires that carry bit values to gates that perform elementary
operations on the bits. The circuits we consider will all be acyclic, meaning that
the bits move through the circuit in a linear fashion, and the wires never feed
back to a prior location in the circuit. A circuit Cn has n wires, and can be
described by a circuit diagram similar to that shown in Figure 1.1 for n = 4.
The input bits are written onto the wires entering the circuit from the left side
of the diagram. At every time step t each wire can enter at most one gate G.
The output bits are read-off the wires leaving the circuit at the right side of the
diagram.

A circuit is an array or network of gates, which is the terminology often used
in the quantum setting. The gates come from some finite family, and they take

Fig. 1.1 A circuit diagram. The horizontal lines represent ‘wires’ carrying the bits,

and the blocks represent gates. Bits propagate through the circuit from left to right.

The input bits i1, i2, i3, i4 are written on the wires at the far left edge of the circuit,

and the output bits o1, o2, o3, o4 are read-off the far right edge of the circuit.

TEAM LinG

THE CIRCUIT MODEL OF COMPUTATION 7

information from input wires and deliver information along some output wires.
A family of circuits is a set of circuits {Cn|n ∈ Z+}, one circuit for each input
size n. The family is uniform if we can easily construct each Cn (say by an
appropriately resource-bounded Turing machine). The point of uniformity is so
that one cannot ‘sneak’ computational power into the definitions of the circuits
themselves. For the purposes of this textbook, it suffices that the circuits can
be generated by a Turing machine (or an equivalent model, like the log-RAM)
in time in O(nk|Cn|), for some non-negative constant k, where |Cn| denotes the
number of gates in Cn.

An important notion is that of universality. It is convenient to show that a finite
set of different gates is all we need to be able to construct a circuit for performing
any computation we want. This is captured by the following definition.

Definition 1.3.1 A set of gates is universal for classical computation if, for
any positive integers n,m, and function f : {0, 1}n → {0, 1}m, a circuit can be
constructed for computing f using only gates from that set.

A well-known example of a set of gates that is universal for classical computa-
tion is {nand, fanout}.1 If we restrict ourselves to reversible gates, we cannot
achieve universality with only one- and two-bit gates. The Toffoli gate is a re-
versible three-bit gate that has the effect of flipping the third bit, if and only
if the first two bits are both in state 1 (and does nothing otherwise). The set
consisting of just the Toffoli gate is universal for classical computation.2

In Section 1.2, we extended the definition of the Turing machine and defined
the probabilistic Turing machine. The probabilistic Turing machine is obtained
by equipping the Turing machine with a ‘coin-flipper’ capable of generating a
random binary value in a single time-step. (There are other equivalent ways of
formally defining a probabilistic Turing machine.) We mentioned that it is an
open question whether a probabilistic Turing machine is more powerful than a
deterministic Turing machine; there are some problems that we do not know how
to solve on a deterministic Turing machine but we know how to solve efficiently
on a probabilistic Turing machine. We can define a model of probabilistic circuits
similarly by allowing our circuits to use a ‘coin-flipping gate’, which is a gate that
acts on a single bit, and outputs a random binary value for that bit (independent
of the value of the input bit).

When we considered Turing machines in Section 1.2, we saw that the complexity
of a computation could be specified in terms of the amount of time or space the
machine uses to complete the computation. For the circuit model of computation
one natural measure of complexity is the number of gates used in the circuit Cn.
Another is the depth of the circuit. If we visualize the circuit as being divided

1The NAND gate computes the negation of the logical AND function, and the FANOUT
gate outputs two copies of a single input wire.

2For the Toffoli gate to be universal we need the ability to add ancillary bits to the circuit
that can be initialized to either 0 or 1 as required.

TEAM LinG

8 INTRODUCTION AND BACKGROUND

Fig. 1.2 A circuit of depth 5, space (width) 4, and having a total of 8 gates.

into a sequence of discrete time-slices, where the application of a single gate
requires a single time-slice, the depth of a circuit is its total number of time-
slices. Note that this is not necessarily the same as the total number of gates in
the circuit, since gates that act on disjoint bits can often be applied in parallel
(e.g. a pair of gates could be applied to the bits on two different wires during
the same time-slice). A third measure of complexity for a circuit is analogous to
space for a Turing machine. This is the total number of bits, or ‘wires’ in the
circuit, sometimes called the width or space of the circuit. These measures of
circuit complexity are illustrated in Figure 1.2.

1.4 A Linear Algebra Formulation of the Circuit Model

In this section we formulate the circuit model of computation in terms of vec-
tors and matrices. This is not a common approach taken for classical computer
science, but it does make the transition to the standard formulation of quan-
tum computers much more direct. It will also help distinguish the new notations
used in quantum information from the new concepts. The ideas and terminology
presented here will be generalized and recur throughout this book.

Suppose you are given a description of a circuit (e.g. in a diagram like Figure 1.1),
and a specification of some input bit values. If you were asked to predict the
output of the circuit, the approach you would likely take would be to trace
through the circuit from left to right, updating the values of the bits stored on
each of the wires after each gate. In other words, you are following the ‘state’ of
the bits on the wires as they progress through the circuit. For a given point in
the circuit, we will often refer to the state of the bits on the wires at that point
in the circuit simply as the ‘state of the computer’ at that point.

The state associated with a given point in a deterministic (non-probabilistic)
circuit can be specified by listing the values of the bits on each of the wires
in the circuit. The ‘state’ of any particular wire at a given point in a circuit,
of course, is just the value of the bit on that wire (0 or 1). For a probabilistic
circuit, however, this simple description is not enough.

Consider a single bit that is in state 0 with probability p0 and in state 1 with
probability p1. We can summarize this information by a 2-dimensional vector of
probabilities

TEAM LinG

A LINEAR ALGEBRA FORMULATION OF THE CIRCUIT MODEL 9(
p0

p1

)
. (1.4.1)

Note that this description can also be used for deterministic circuits. A wire in
a deterministic circuit whose state is 0 could be specified by the probabilities
p0 = 1 and p1 = 0, and the corresponding vector(

1
0

)
. (1.4.2)

Similarly, a wire in state 1 could be represented by the probabilities p0 = 0,
p1 = 1, and the vector (

0
1

)
. (1.4.3)

Since we have chosen to represent the states of wires (and collections of wires)
in a circuit by vectors, we would like to be able to represent gates in the circuit
by operators that act on the state vectors appropriately. The operators are con-
veniently described by matrices. Consider the logical not gate. We would like to
define an operator (matrix) that behaves on state vectors in a manner consistent
with the behaviour of the not gate. If we know a wire is in state 0 (so p0 = 1),
the not gate maps it to state 1 (so p1 = 1), and vice versa. In terms of the
vector representations of these states, we have

not

(
1
0

)
=
(

0
1

)
, not

(
0
1

)
=
(

1
0

)
. (1.4.4)

This implies that we can represent the not vector by the matrix

not ≡
[
0 1
1 0

]
. (1.4.5)

To ‘apply’ the gate to a wire in a given state, we multiply the corresponding
state vector on the left by the matrix representation of the gate:

not

(
p0

p1

)
=
[
0 1
1 0

](
p1

p0

)
. (1.4.6)

Suppose we want to describe the state associated with a given point in a proba-
bilistic circuit having two wires. Suppose the state of the first wire at the given
point is 0 with probability p0 and 1 with probability p1. Suppose the state of the
second wire at the given point is 0 with probability q0 and 1 with probability q1.
The four possibilities for the combined state of both wires at the given point are
{00,01,10,11} (where the binary string ij indicates that the first wire is in state
i and the second wire in state j). The probabilities associated with each of these

TEAM LinG

10 INTRODUCTION AND BACKGROUND

four states are obtained by multiplying the corresponding probabilities for each
of the four states:

prob(ij) = piqj . (1.4.7)

This means that the combined state of both wires can be described by the
4-dimensional vector of probabilities⎛⎜⎜⎝

p0q0

p0q1

p1q0

p1q1

⎞⎟⎟⎠ . (1.4.8)

As we will see in Section 2.6, this vector is the tensor product of the 2-dimensional
vectors for the states of the first and second wires separately:⎛⎜⎜⎝

p0q0

p0q1

p1q0

p1q1

⎞⎟⎟⎠ =
(

p0

p1

)
⊗
(

q0

q1

)
. (1.4.9)

Tensor products (which will be defined more generally in Section 2.6) arise nat-
urally when we consider probabilistic systems composed of two or more subsys-
tems.

We can also represent gates acting on more than one wire. For example, the
controlled-not gate, denoted cnot. This is a gate that acts on two bits, labelled
the control bit and the target bit. The action of the gate is to apply the not
operation to the target if the control bit is 0, and do nothing otherwise (the
control bit is always unaffected by the cnot gate). Equivalently, if the state of
the control bit is c, and the target bit is in state t the cnot gate maps the target
bit to t⊕ c (where ‘⊕’ represents the logical exclusive-or operation, or addition
modulo 2). The cnot gate is illustrated in Figure 1.3.

The cnot gate can be represented by the matrix

cnot ≡

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦ . (1.4.10)

Fig. 1.3 The reversible cnot gate flips the value of the target bit t if and only if the

control bit c has value 1.

TEAM LinG

A LINEAR ALGEBRA FORMULATION OF THE CIRCUIT MODEL 11

Consider, for example, a pair of wires such that the first wire is in state 1 and
the second in state 0. This means that the 4-dimensional vector describing the
combined state of the pair of wires is⎛⎜⎜⎝

0
0
1
0

⎞⎟⎟⎠ . (1.4.11)

Suppose we apply to the cnot gate to this pair of wires, with the first wire as the
control bit, and the second as the target bit. From the description of the cnot
gate, we expect the result should be that the control bit (first wire) remains in
state 1, and the target bit (second wire) flips to state 1. That is, we expect the
resulting state vector to be ⎛⎜⎜⎝

0
0
0
1

⎞⎟⎟⎠ . (1.4.12)

We can check that the matrix defined above for cnot does what we expect:

cnot

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ ≡
⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦
⎛⎜⎜⎝

0
0
1
0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ . (1.4.13)

It is also interesting to note that if the first bit is in the state⎛⎜⎝
1
2
1
2

⎞⎟⎠
and the second bit is in the state (

1
0

)
then applying the cnot will create the state⎛⎜⎜⎜⎜⎜⎝

1
2
0
0
1
2

⎞⎟⎟⎟⎟⎟⎠ .

This state cannot be factorized into the tensor product of two independent prob-
abilistic bits. The states of two such bits are correlated.

TEAM LinG

12 INTRODUCTION AND BACKGROUND

We have given a brief overview of the circuit model of computation, and presented
a convenient formulation for it in terms of matrices and vectors. The circuit model
and its formulation in terms of linear algebra will be generalized to describe
quantum computers in Chapter 4.

1.5 Reversible Computation

The theory of quantum computing is related to a theory of reversible computing.
A computation is reversible if it is always possible to uniquely recover the input,
given the output. For example, the not operation is reversible, because if the
output bit is 0, you know the input bit must have been 1, and vice versa. On
the other hand, the and operation is not reversible (see Figure 1.4).

As we now describe, any (generally irreversible) computation can be transformed
into a reversible computation. This is easy to see for the circuit model of compu-
tation. Each gate in a finite family of gates can be made reversible by adding some
additional input and output wires if necessary. For example, the and gate can be
made reversible by adding an additional input wire and two additional output
wires (see Figure 1.5). Note that additional information necessary to reverse the
operation is now kept and accounted for. Whereas in any physical implemen-
tation of a logically irreversible computation, the information that would allow
one to reverse it is somehow discarded or absorbed into the environment.

Fig. 1.4 The not and and gates. Note that the not gate is reversible while the and

gate is not.

Fig. 1.5 The reversible and gate keeps a copy of the inputs and adds the and of x0

and x1 (denoted x1 ∧ x2) to the value in the additional input bit. Note that by fixing

the additional input bit to 0 and discarding the copies of the x0 and x1 we can simulate

the non-reversible and gate.

TEAM LinG

REVERSIBLE COMPUTATION 13

Note that the reversible and gate which is in fact the Toffoli gate defined in
the previous section, is a generalization of the cnot gate (the cnot gate is
reversible), where there are two bits controlling whether the not is applied to
the third bit.

By simply replacing all the irreversible components with their reversible coun-
terparts, we get a reversible version of the circuit. If we start with the output,
and run the circuit backwards (replacing each gate by its inverse), we obtain the
input again. The reversible version might introduce some constant number of
additional wires for each gate. Thus, if we have an irreversible circuit with depth
T and space S, we can easily construct a reversible version that uses a total of
O(S + ST) space and depth T . Furthermore, the additional ‘junk’ information
generated by making each gate reversible can also be erased at the end of the
computation by first copying the output, and then running the reversible circuit
in reverse to obtain the starting state again. Of course, the copying has to be
done in a reversible manner, which means that we cannot simply overwrite the
value initially in the copy register. The reversible copying can be achieved by a
sequence of cnot gates, which xor the value being copied with the value ini-
tially in the copy register. By setting the bits in the copy register initially to 0,
we achieved the desired effect. This reversible scheme3 for computing a function
f is illustrated in Figure 1.6.

Exercise 1.5.1 A sequence of n cnot gates with the target bits all initialized to 0 is
the simplest way to copy an n-bit string y stored in the control bits. However, more
sophisticated copy operations are also possible, such as a circuit that treats a string
y as the binary representation of the integer y1 + 2y2 + 4y3 + · · · 2n−1yn and adds y
modulo 2n to the copy register (modular arithmetic is defined in Section 7.3.2).

Describe a reversible 4-bit circuit that adds modulo 4 the integer y ∈ {0, 1, 2, 3} repre-
sented in binary in the first two bits to the integer z represented in binary in the last
two bits.

If we suppress the ‘temporary’ registers that are 0 both before and after the
computation, the reversible circuit effectively computes

(x1, x2, x3), (c1, c2, c3) �−→ (x1, x2, x3), (c1 ⊕ y1, c2 ⊕ y2, c3 ⊕ y3), (1.5.1)

where f(x1, x2, x3) = (y1, y2, y3). In general, given an implementation (not
necessarily reversible) of a function f , we can easily describe a reversible
implementation of the form

(x, c) �−→ (x, c⊕ f(x))

3In general, reversible circuits for computing a function f do not need to be of this form,
and might require much fewer than twice the number of gates as a non-reversible circuit for
implementing f .

TEAM LinG

14 INTRODUCTION AND BACKGROUND

Input

Output

Workspace

Copy

Fig. 1.6 A circuit for reversibly computing f(x). Start with the input. Compute f(x)

using reversible logic, possibly generating some extra ‘junk’ bits j1 and j2. The block

labelled Cf represents a circuit composed of reversible gates. Then copy the output

y = f(x) to another register. Finally run the circuit for Cf backwards (replacing each

gate by its inverse gate) to erase the contents of the output and workspace registers.

Note we write the operation of the backwards circuit by C−1
f .

with modest overhead. There are more sophisticated techniques that can often be
applied to achieve reversible circuits with different time and space bounds than
described above. The approach we have described is intended to demonstrate that
in principle we can always find some reversible circuit for any given computation.

In classical computation, one could choose to be more environmentally friendly
and uncompute redundant or junk information, and reuse the cleared-up memory
for another computation. However, simply discarding the redundant information
does not actually affect the outcome of the computation. In quantum computa-
tion however, discarding information that is correlated to the bits you keep can
drastically change the outcome of a computation. For this reason, the theory of
reversible computation plays an important role in the development of quantum
algorithms. In a manner very similar to the classical case, reversible quantum
operations can efficiently simulate non-reversible quantum operations (and some-
times vice versa) so we generally focus attention on reversible quantum gates.
However, for the purposes of implementation or algorithm design, this is not al-
ways necessary (e.g. one can cleverly configure special families of non-reversible
gates to efficiently simulate reversible ones).

Example 1.5.1 As pointed out in Section 1.3, the computing model corresponding
to uniform families of acyclic reversible circuits can efficiently simulate any standard
model of classical computation. This section shows how any function that we know how
to efficiently compute on a classical computer has a uniform family of acyclic reversible
circuits that implements the function reversibly as illustrated in Equation 1.5.1.

Consider, for example, the arcsin function which maps [0, 1] �→ [0, π
2
] so that

sin(arcsin(x)) = x for any x ∈ [0, 1]. Since one can efficiently compute n-bit
TEAM LinG

A PREVIEW OF QUANTUM PHYSICS 15

D

Beam splitter
P

Fig. 1.7 Experimental setup with one beam splitter.

approximations of the arcsin function on a classical computer (e.g., using its Taylor
expansion), then there is a uniform family of acyclic reversible circuits, ARCSINn,m,
of size polynomial in n and m, that implement the function arcsinn,m : {0, 1}n �→
{0, 1}m which approximately computes the arcsin function in the following way. If
y = arcsinn,m (x), then ∣∣∣ arcsin

(x

2n

)
− πy

2m+1

∣∣∣ <
1

2m
.

The reversible circuit effectively computes

(x1, x2, . . . , xn), (c1, c2, c3, . . . , cm) �−→ (x1, x2, . . . , xn), (c1 ⊕ y1, c2 ⊕ y2, . . . , cm ⊕ ym)
(1.5.2)

where y = y1y2 . . . yn.

1.6 A Preview of Quantum Physics

Here we describe an experimental set-up that cannot be described in a natural
way by classical physics, but has a simple quantum explanation. The point we
wish to make through this example is that the description of the universe given
by quantum mechanics differs in fundamental ways from the classical description.
Further, the quantum description is often at odds with our intuition, which has
evolved according to observations of macroscopic phenomena which are, to an
extremely good approximation, classical.

Suppose we have an experimental set-up consisting of a photon source, a beam
splitter (which was once implemented using a half-silvered mirror), and a pair
of photon detectors. The set-up is illustrated in Figure 1.7.

Suppose we send a series of individual photons4 along a path from the photon
source towards the beam splitter. We observe the photon arriving at the detector
on the right on the beam splitter half of the time, and arriving at the detector
above the beam splitter half of the time, as illustrated in Figure 1.8. The simplest
way to explain this behaviour in a theory of physics is to model the beam splitter
as effectively flipping a fair coin, and choosing whether to transmit or reflect the

4When we reduce the intensity of a light source we observe that it actualy comes out in
discrete “chunks”, much like a faint beam of matter comes out one atom at a time. These
discrete quanta of light are called “photons”.

TEAM LinG

16 INTRODUCTION AND BACKGROUND

Fig. 1.8 Measurement statistics with one beam splitter.

Full mirror

Fig. 1.9 Setup with two beam splitters.

photon based on the result of the coin-flip, whose outcome determines whether
the photon is transmitted or reflected.

Now consider a modification of the set-up, shown in Figure 1.9, involving a pair
of beam splitters, and fully reflecting mirrors to direct the photons along either
of two paths. The paths are labelled 0 and 1 in Figure 1.9. It is important to
note that the length of paths 0 and 1 are equal, so the photons arrive at the
same time, regardless of which path is taken.

By treating the beam splitters as independently deciding at random whether to
transmit or reflect incident photons, classical physics predicts that each of the
detectors will register photons arriving 50 per cent of the time, on average. Here,
however, the results of experiments reveal an entirely different behaviour. The
photons are found arriving at only one of the detectors, 100 per cent of the time!
This is shown in Figure 1.10.

The result of the modified experiment is startling, because it does not agree
with our classical intuition. Quantum physics models the experiment in a way
that correctly predicts the observed outcomes. The non-intuitive behaviour
results from features of quantum mechanics called superposition and
interference. We will give a preview of the new framework introduced to explain
this interference.

TEAM LinG

A PREVIEW OF QUANTUM PHYSICS 17

Fig. 1.10 Measurement statistics with two beam splitters.

Fig. 1.11 The ‘0’ path.

Suppose for the moment that the second beam splitter were not present in the
apparatus. Then the photon follows one of two paths (according to classical
physics), depending on whether it is reflected or transmitted by the first beam
splitter. If it is transmitted through the first beam splitter, the photon arrives at
the top detector, and if it is reflected, the photon arrives at the detector on the
right. We can consider a photon in the apparatus as a 2-state system, letting
the presence of the photon in one path represent a ‘0’ and letting the presence of
the photon in the other path represent a ‘1’. The ‘0’ and ‘1’ paths are illustrated
in Figures 1.11 and 1.12, respectively.

For reasons that will become clear later, we denote the state of a photon in path
‘0’ by the vector (

1
0

)
(1.6.1)

and of a photon in path ‘1’ by the vector(
0
1

)
. (1.6.2)

The photon leaving the source starts out in the ‘0’ path. In a classical descrip-
tion, we model the beam splitter as randomly selecting whether the photon will

TEAM LinG

18 INTRODUCTION AND BACKGROUND

Fig. 1.12 The ‘1’ path.

continue along the ‘0’ path, or be reflected into the ‘1’ path. According to the
quantum mechanical description, the beam splitter causes the photon to go into
a superposition of taking both the ‘0’ and ‘1’ paths. Mathematically, we describe
such a superposition by taking a linear combination of the state vectors for the
‘0’ and ‘1’ paths, so the general path state will be described by a vector

α0

(
1
0

)
+ α1

(
0
1

)
=
(

α0

α1

)
. (1.6.3)

If we were to physically measure the photon to see which path it is in, we will find
it in path ‘0’ with probability |α0|2, and in path ‘1’ with probability |α1|2. Since
we should find the photon in exactly one path, we must have |α0|2 + |α1|2 = 1.

When the photon passes through the beam splitter, we multiply its ‘state vector’
by the matrix

1√
2

[
1 i
i 1

]
. (1.6.4)

So for the photon starting out in path ‘0’, after passing through the first beam
splitter it comes out in state

1√
2

[
1 i
i 1

](
1
0

)
=

1√
2

(
1
i

)
(1.6.5)

=
1√
2

(
1
0

)
+

i√
2

(
0
1

)
. (1.6.6)

This result corresponds with the observed behaviour that, after going through
the first beam splitter, we would measure the photon in path ‘0’ with probability
| 1√

2
|2 = 1

2 , and in path ‘1’ with probability | i√
2
|2 = 1

2 .

If we do not measure which path the photon is in, immediately after it passes
through the first beam splitter, then its state remains

1√
2

[
1
i

]
. (1.6.7)

TEAM LinG

QUANTUM PHYSICS AND COMPUTATION 19

Now if the photon is allowed to pass through the second beam splitter (before
making any measurement of the photon’s path), its new state vector is(

1√
2

[
1 i
i 1

])(
1√
2

[
1
i

])
=
[
0
i

]
. (1.6.8)

If we measure the path of the photon after the second beam splitter (e.g. by the
detectors shown in Figure 1.9), we find it coming out in the ‘1’ path with prob-
ability |i|2 = 1. Thus after the second beam splitter the photon is entirely in the
‘1’ path, which is what is observed in experiments (as illustrated in Figure 1.10).
In the language of quantum mechanics, the second beam splitter has caused the
two paths (in superposition) to interfere, resulting in cancelation of the ‘0’ path.
We see many more examples of quantum interference throughout this text.

It is not clear what it really ‘means’ for the photon to be in the state described
by a vector like

1√
2

(
1
i

)
, (1.6.9)

but this unusual mathematical infrastructure does allow us to explain how these
surprising interference patterns work and to make reliable predictions about the
outcomes of measurements.

This new mathematical framework is called quantum mechanics, and we describe
its postulates in more detail in Section 3.

1.7 Quantum Physics and Computation

We often think of information in terms of an abstract mathematical concept. To
get into the theory of what information is, and how it is quantified, would easily
take a whole course in itself. For now, we fall back on an intuitive understanding
of the concept of information. Whatever information is, to be useful it must
be stored in some physical medium and manipulated by some physical process.
This implies that the laws of physics ultimately dictate the capabilities of any
information-processing machine. So it is only reasonable to consider the laws of
physics when we study the theory of information processing and in particular
the theory of computation.

Up until the turn of the twentieth century, the laws of physics were thought
to be what we now call classical. Newton’s equations of motion and Maxwell’s
equations of electromagnetism predicted experimentally observed phenomena
with remarkable accuracy and precision.

At the beginning of the last century, as scientists were examining phenomena
on increasingly smaller scales, it was discovered that some experiments did not
agree with the predictions of the classical laws of nature. These experiments
involved observations of phenomena on the atomic scale, that had not been
accessible in the days of Newton or Maxwell. The work of Planck, Bohr, de
Broglie, Schrödinger, Heisenberg and others lead to the development of a new

TEAM LinG

20 INTRODUCTION AND BACKGROUND

theory of physics that came to be known as ‘quantum physics’. Newton’s and
Maxwell’s laws were found to be an approximation to this more general theory of
quantum physics. The classical approximation of quantum mechanics holds up
very well on the macroscopic scale of objects like planets, airplanes, footballs, or
even molecules. But on the ‘quantum scale’ of individual atoms, electrons, and
photons, the classical approximation becomes very inaccurate, and the theory of
quantum physics must be taken in to account.

A probabilistic Turing machine (described in Section 1.2) is implicitly a clas-
sical machine. We could build such a machine out of relatively large physical
components, and all the aspects of its behaviour relevant to its performing a
computation could be accurately predicted by the laws of classical physics.

One of the important classes of tasks that computers are used for is to simulate
the evolution of physical systems. When we attempt to use computers to simu-
late systems whose behaviour is explicitly quantum mechanical, many physicists
(including Richard Feynman) observed that we do not seem to be able to do so
efficiently. Any attempt to simulate the evolution of a generic quantum–physical
system on a probabilistic Turing machine seems to require an exponential over-
head in resources.

Feynman suggested that a computer could be designed to exploit the laws of
quantum physics, that is, a computer whose evolution is explicitly quantum
mechanical. In light of the above observation, it would seem that we would be
unable to simulate such a computer with a probabilistic Turing machine. If we
believe that such a quantum computer is ‘realistic’ then it seems to violate the
strong Church–Turing Thesis! The first formal model of a quantum computer was
given by David Deutsch, who proposed a model for a quantum Turing machine
as well as the quantum circuit model.

That it is possible to design a model of computation based explicitly on the
principles of quantum mechanics is very interesting in itself. What is truly ex-
traordinary is that important problems have been found that can be solved
efficiently on a quantum computer, but no efficient solution is known on a prob-
abilistic Turing machine! This implies that the theory of quantum computing
is potentially of enormous practical importance, as well as of deep theoretical
interest.

TEAM LinG

2

LINEAR ALGEBRA AND
THE DIRAC NOTATION

We assume the reader has a strong background in elementary linear algebra. In
this section we familiarize the reader with the algebraic notation used in quantum
mechanics, remind the reader of some basic facts about complex vector spaces,
and introduce some notions that might not have been covered in an elementary
linear algebra course.

2.1 The Dirac Notation and Hilbert Spaces

The linear algebra notation used in quantum computing will likely be familiar
to the student of physics, but may be alien to a student of mathematics or
computer science. It is the Dirac notation, which was invented by Paul Dirac
and which is used often in quantum mechanics. In mathematics and physics
textbooks, vectors are often distinguished from scalars by writing an arrow over
the identifying symbol: e.g. �a. Sometimes boldface is used for this purpose: e.g.
a. In the Dirac notation, the symbol identifying a vector is written inside a ‘ket’,
and looks like |a〉. We denote the dual vector for a (defined later) with a ‘bra’,
written as 〈a|. Then inner products will be written as ‘bra-kets’ (e.g. 〈a|b〉). We
now carefully review the definitions of the main algebraic objects of interest,
using the Dirac notation.

The vector spaces we consider will be over the complex numbers, and are finite-
dimensional, which significantly simplifies the mathematics we need. Such vector
spaces are members of a class of vector spaces called Hilbert spaces. Nothing
substantial is gained at this point by defining rigorously what a Hilbert space is,
but virtually all the quantum computing literature refers to a finite-dimensional
complex vector space by the name ‘Hilbert space’, and so we will follow this
convention. We will use H to denote such a space.

Since H is finite-dimensional, we can choose a basis and alternatively represent
vectors (kets) in this basis as finite column vectors, and represent operators with
finite matrices. As you see in Section 3, the Hilbert spaces of interest for quantum
computing will typically have dimension 2n, for some positive integer n. This is

21
TEAM LinG

22 LINEAR ALGEBRA AND THE DIRAC NOTATION

because, as with classical information, we will construct larger state spaces by
concatenating a string of smaller systems, usually of size two.

We will often choose to fix a convenient basis and refer to it as the computational
basis. In this basis, we will label the 2n basis vectors in the Dirac notation using
the binary strings of length n:

|00 . . . 00︸ ︷︷ ︸
n

〉 , |00 . . . 01〉 , . . . , |11 . . . 10〉 , |11 . . . 11〉. (2.1.1)

The standard way to associate column vectors corresponding to these basis vec-
tors is as follows:

|00 . . . 00〉 ⇐⇒

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
...
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
2n, |00 . . . 01〉 ⇐⇒

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
...
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, · · ·

· · · , |11 . . . 10〉 ⇐⇒

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
...
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, |11 . . . 11〉 ⇐⇒

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
...
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.1.2)

An arbitrary vector in H can be written either as a weighted sum of the basis
vectors in the Dirac notation, or as a single column matrix.

Example 2.1.1 In H of dimension 4, the vector√
2
3
|01〉 + i√

3
|11〉 =

√
2
3
|0〉 ⊗ |1〉 + i√

3
|1〉 ⊗ |1〉 (2.1.3)

in Dirac notation can be alternatively written as the column matrix⎛⎜⎜⎜⎝
0√

2
3

0
i√
3

⎞⎟⎟⎟⎠ . (2.1.4)

It is important to realize that these are simply alternative expressions for the same
vector, both with respect to the same basis (the computational basis).

TEAM LinG

DUAL VECTORS 23

You might wonder why one should go to the trouble of learning a strange-looking
new notation for vectors, when we could just as well use a column vector rep-
resentation. One answer is that writing vectors using the Dirac notation often
saves space. Particularly when writing sparse vectors (having few non-zero com-
ponents), the Dirac notation is very compact. An n-qubit basis state is described
by a 2n-dimensional vector. In the Dirac notation, we represent this vector by a
binary string of length n, but the column vector representation would have 2n

components. For states on 2 or 3 qubits this is not terribly significant, but imag-
ine writing an 8-qubit state using column vectors. The column vectors would
have 28 = 256 components, which could be somewhat cumbersome to write out.
The Dirac notation has other advantages, and these will begin to become ap-
parent once you start working with things like operators, and various types of
vector products.

2.2 Dual Vectors

Recall from linear algebra the definition of inner product. For the moment we
will not use the Dirac notation, and write vectors in boldface. For vectors over
the complex numbers, an inner product is a function which takes two vectors
from the same space and evaluates to a single complex number. We write the
inner product of vector v with w as 〈v,w〉. An inner product is such a function
having the following properties.

1. Linearity in the second argument

〈v,
∑

i

λiwi〉 =
∑

i

λi〈v,wi〉 (2.2.1)

2. Conjugate-commutativity

〈v,w〉 = 〈w,v〉∗ (2.2.2)

3. Non-negativity
〈v,v〉 ≥ 0 (2.2.3)

with equality if and only if v = 0.

Note that in Equation (2.2.2), we use the notation c∗ to denote the complex
conjugate1 of a complex number c, as will be our convention throughout this
book.

A familiar example of an inner product is the dot product for column vectors.
The dot product of v with w is written v ·w and is defined as follows.⎛⎜⎜⎜⎝

v1

v2

...
vn

⎞⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎝

w1

w2

...
wn

⎞⎟⎟⎟⎠ =
(
v∗
1 v∗

2 . . . v∗n
)
⎛⎜⎜⎜⎝

w1

w2

...
wn

⎞⎟⎟⎟⎠ =
n∑

i=1

v∗
i wi (2.2.4)

1The complex conjugate of c = a + bi (where a and b are real) is c∗ = a − bi.

TEAM LinG

24 LINEAR ALGEBRA AND THE DIRAC NOTATION

We now return to the Dirac notation, and define the dual vector space and dual
vectors.

Definition 2.2.1 Let H be a Hilbert space. The Hilbert space H∗ is defined as
the set of linear maps H → C.

We denote elements of H∗ by 〈χ|, where the action of 〈χ| is:
〈χ| : |ψ〉 �→ 〈χ|ψ〉 ∈ C, (2.2.5)

where 〈χ|ψ〉 is the inner-product of the vector |χ〉 ∈ H with the vector |ψ〉 ∈ H.

The set of maps H∗ is a complex vector space itself, and is called the dual vector
space associated with H. The vector 〈χ| is called the dual of |χ〉. In terms of
the matrix representation, 〈χ| is obtained from |χ〉 by taking the corresponding
row matrix, and then taking the complex conjugate of every element (i.e. the
‘Hermitean conjugate’ of the column matrix for |χ〉). Then the inner product
of |ψ〉 with |ϕ〉 is 〈ψ|ϕ〉, which in the matrix representation is computed as the
single element of the matrix product of the row matrix representing 〈ψ| with the
column matrix representing |ϕ〉. This is equivalent to taking the dot product of
the column vector associated with |ψ〉 with the column vector associated with
|ϕ〉.

Example 2.2.2 Using the standard basis we defined earlier, consider two vectors

|ψ〉 =
√

2
3
|01〉 + i√

3
|11〉 (2.2.6)

and

|ϕ〉 =
√

1
2
|10〉 +

√
1
2
|11〉. (2.2.7)

These are represented as column vectors⎛⎜⎜⎜⎝
0√

2
3

0
i√
3

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0
0√

1
2√
1
2

⎞⎟⎟⎟⎠ (2.2.8)

respectively. The dot product of these two column vectors is⎛⎜⎜⎜⎝
0√

2
3

0
i√
3

⎞⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎝
0
0√

1
2√
1
2

⎞⎟⎟⎟⎠ =
(
0
√

2
3

0 −i√
3

)⎛⎜⎜⎜⎝
0
0√

1
2√
1
2

⎞⎟⎟⎟⎠
= 0 · 0 +

√
2
3
· 0 + 0 ·

√
1
2

+ −i√
3

√
1
2

=
−i√

6
(2.2.9)

TEAM LinG

DUAL VECTORS 25

and so the inner product of |ψ〉 with |ϕ〉 is

〈ψ|ϕ〉 =
−i√

6
. (2.2.10)

Two vectors are said to be orthogonal if their inner product is zero. The norm of
a vector |ψ〉, denoted ‖|ψ〉‖, is the square root of the inner product of |ψ〉 with
itself. That is, ∥∥|ψ〉∥∥ ≡√

〈ψ|ψ〉. (2.2.11)

The quantity ‖|ψ〉‖ is called the Euclidean norm of |ψ〉. A vector is called a unit
vector if it has norm 1. A set of unit vectors that are mutually orthogonal is
called an orthonormal set.

The Kronecker delta function, δi,j , is defined to be equal to 1 whenever i = j,
and 0 otherwise. We use the Kronecker delta function in our definition of an
orthonormal basis.

Definition 2.2.3 Consider a Hilbert space H of dimension 2n. A set of 2n vec-
tors B = {|bm〉} ⊆ H is called an orthonormal basis for H if

〈bn|bm〉 = δn,m ∀bm, bn ∈ B (2.2.12)

and every |ψ〉 ∈ H can be written as

|ψ〉 =
∑

bn∈B

ψn|bn〉, for some ψn ∈ C. (2.2.13)

The values of ψn satisfy ψn = 〈bn|ψ〉, and are called the ‘coefficients of |ψ〉 with
respect to basis {|bn〉}’.

Example 2.2.4 Consider H of dimension 4. One example of an orthonormal basis for
H is the computational basis which we saw earlier. The basis vectors are

|00〉, |01〉, |10〉 and |11〉. (2.2.14)

These basis vectors are represented by the following column vectors.⎛⎜⎝1
0
0
0

⎞⎟⎠ ,

⎛⎜⎝0
1
0
0

⎞⎟⎠ ,

⎛⎜⎝0
0
1
0

⎞⎟⎠ ,

⎛⎜⎝0
0
0
1

⎞⎟⎠ . (2.2.15)

It is easy to check that the inner product of any two of these vectors is 0, and that the
norm of each of these vectors is 1. In other words

TEAM LinG

26 LINEAR ALGEBRA AND THE DIRAC NOTATION

〈bn|bm〉 = δn,m (2.2.16)

for bn and bm from the set of 4 computational basis vectors above.

Example 2.2.5 The inner product calculated using the matrix representation in Ex-
ample 2.2.2 can also be calculated directly using the Dirac notation. We use the fact
that the computational basis is an orthonormal basis (see Example 2.2.4).

〈ψ|ϕ〉 =

(√
2
3
〈01| + −i√

3
〈11|

)(√
1
2
|10〉 +

√
1
2
|11〉

)
=

(√
2
3

)(√
1
2

)
〈01|10〉︸ ︷︷ ︸

=0

+

(√
2
3

)(√
1
2

)
〈01|11〉︸ ︷︷ ︸

=0

+
(

−i√
3

)(√
1
2

)
〈11|10〉︸ ︷︷ ︸

=0

+
(

−i√
3

)(√
1
2

)
〈11|11〉︸ ︷︷ ︸

=1

=
−i√

6
.

Example 2.2.6 This time consider H of dimension 2. The computational basis is not
the only orthonormal basis for H (there are infinitely many). An important example is
the so-called Hadamard basis. We denote the basis vectors of the Hadamard basis as
|+〉 and |−〉. We can express these basis vectors in terms of the familiar computational
basis as follows.

|+〉 = 1√
2

(
|0〉 + |1〉

)
|−〉 = 1√

2

(
|0〉 − |1〉

)
. (2.2.17)

It is easy to check the normality and orthogonality of these basis vectors by doing
the computation with the column vector representation in terms of the computational
basis. For example,

〈+|−〉 = 1
2

(
〈0| + 〈1|

)(
|0〉 − |1〉

)
= 1

2

(
1
1

)
·
(

1
−1

)
= 0 (2.2.18)

and

‖|+〉‖2 = 〈+|+〉
= 1

2

(
〈0| + 〈1|

)(
|0〉 + |1〉

)
= 1

2

(
1
1

)
·
(

1
1

)
= 1

=⇒ ‖|+〉‖ = 1. (2.2.19)

TEAM LinG

OPERATORS 27

Note that if we express |ψ〉 =
∑

i αi|φi〉 with respect to any orthonormal basis
{|φi〉}, then ‖|ψ〉‖ =

∑
i |αi|2.

We state the following useful result, without proof.

Theorem 2.2.7 The set {〈bn|} is an orthonormal basis for H∗ called the dual
basis.

2.3 Operators

Recall from linear algebra the following definition.

Definition 2.3.1 A linear operator on a vector space H is a linear transforma-
tion T : H → H of the vector space to itself (i.e. it is a linear transformation
which maps vectors in H to vectors in H).

Just as the inner product of two vectors |ψ〉 and |ϕ〉 is obtained by multiplying
|ψ〉 on the left by the dual vector 〈ϕ|, an outer product is obtained by multiplying
|ψ〉 on the right by 〈ϕ|. The meaning of such an outer product |ψ〉〈ϕ| is that it
is an operator which, when applied to |γ〉, acts as follows.(

|ψ〉〈ϕ|
)
|γ〉 = |ψ〉

(
〈ϕ|γ〉

)
=
(
〈ϕ|γ〉

)
|ψ〉. (2.3.1)

The outer product of a vector |ψ〉 with itself is written |ψ〉〈ψ| and defines a linear
operator that maps

|ψ〉〈ψ||ϕ〉 �→ |ψ〉〈ψ|ϕ〉 = 〈ψ|ϕ〉|ψ〉. (2.3.2)

That is, the operator |ψ〉〈ψ| projects a vector |ϕ〉 in H to the 1-dimensional
subspace of H spanned by |ψ〉. Such an operator is called an orthogonal projector
(Definition 2.3.7). You will see operators of this form when we examine density
operators in Section 3.5, and measurements in Section 3.4.

Theorem 2.3.2 Let B = {|bn〉} be an orthonormal basis for a vector space H.
Then every linear operator T on H can be written as

T =
∑

bn,bm∈B

Tn,m|bn〉〈bm| (2.3.3)

where Tn,m = 〈bn|T |bm〉.

We know that the set of all linear operators on a vector space H forms a new
complex vector space L(H) (‘vectors’ in L(H) are the linear operators on H).
Notice that Theorem 2.3.2 essentially constructs a basis for L(H) out of the
given basis for H. The basis vectors for L(H) are all the possible outer products
of pairs of basis vectors from B, that is {|bn〉〈bm|}.

TEAM LinG

28 LINEAR ALGEBRA AND THE DIRAC NOTATION

The action of T is then

T : |ψ〉 �→
∑

bn,bm∈B

Tn,m|bn〉〈bm|ψ〉 =
∑

bn,bm∈B

Tn,m〈bm|ψ〉|bn〉. (2.3.4)

In terms of the matrix representation of T , Tn,m is the matrix entry in the nth

row and mth column.

Example 2.3.3 Consider the operator Z that maps the computational basis states as
follows:

|0〉 �→ |0〉 (2.3.5)

|1〉 �→ −|1〉. (2.3.6)

This operator can be written as

|0〉〈0| − |1〉〈1| (2.3.7)

and has the following matrix representation with respect to the basis {|0〉, |1〉}:[
1 0
0 −1

]
. (2.3.8)

For any orthonormal basis B = {|bn〉}, the identity operator can be written as

1 =
∑

bn∈B

|bn〉〈bn|. (2.3.9)

Equation (2.3.9) is called the resolution of the identity in the basis B.

Notice that, for an operator T on H, and |ψ〉 ∈ H, the map

|ψ〉 �→ 〈ϕ|(T |ψ〉) (2.3.10)

is a linear map fromH to C, and thus belongs toH∗. Each map inH∗ corresponds
to some vector 〈ϕ′|. The adjoint of the operator T , denoted T †, is defined as the
linear map that sends |ϕ〉 �→ |ϕ′〉, where 〈φ|(T |ψ〉) = 〈φ′|ψ〉 for all |ψ〉. The
adjoint is captured in the following definition.

Definition 2.3.4 Suppose T is an operator on H. Then the adjoint of T , de-
noted T †, is defined as that linear operator on H∗ that satisfies(

〈ψ|T †|ϕ〉
)∗ = 〈ϕ|T |ψ〉 , ∀|ψ〉, |ϕ〉 ∈ H. (2.3.11)

In the standard matrix representation, the matrix for T † is the complex conju-
gate transpose (also called the ‘Hermitean conjugate’, or ‘adjoint’) of the matrix
for T .

TEAM LinG

OPERATORS 29

The following definition is important, because (as we see in Section 3) it gives
the class of operators which describe the time-evolution of the quantum states
of closed systems.

Definition 2.3.5 An operator U is called unitary if U† = U−1, where U−1 is
the inverse of U .

Note that U† = U−1 implies U†U = I, where I is the identity operator. The
unitary operators preserve inner products between vectors, and in particular,
preserve the norm of vectors.

We also define a class of operators that describes the Hamiltonian of a system as
well as the observables, which correspond to an important type of measurement
in quantum mechanics (see Section 3.4).

Definition 2.3.6 An operator T in a Hilbert space H is called Hermitean (or
self-adjoint) if

T † = T (2.3.12)

(i.e. it is equal to its own Hermitean conjugate).

Definition 2.3.7 A projector on a vector space H is a linear operator P that
satisfies P 2 = P . An orthogonal projector is a projector that also satisfies
P † = P .

Recall the following definition from basic linear algebra.

Definition 2.3.8 A vector |ψ〉 is called an eigenvector of an operator T if

T |ψ〉 = c|ψ〉 (2.3.13)

for some constant c. The constant c is called the eigenvalue of T corresponding
to the eigenvector |ψ〉.

The following result is relevant to measurements in quantum mechanics.

Theorem 2.3.9 If T = T † and if T |ψ〉 = λ|ψ〉 then λ ∈ R. In other words, the
eigenvalues of a Hermitean operator are real.

In linear algebra one learns that the trace of a square matrix is obtained by
adding the elements on the main diagonal. We give a more abstract definition of
trace.

Definition 2.3.10 The trace of an operator A acting on a Hilbert space H is

Tr(A) =
∑
bn

〈bn|A|bn〉 (2.3.14)

where {|bn〉} is any orthonormal basis for H.

TEAM LinG

30 LINEAR ALGEBRA AND THE DIRAC NOTATION

Exercise 2.3.2 shows that indeed Tr(A) does not depend on the choice of ortho-
normal basis, and thus is well defined.

Exercise 2.3.1 Prove that the trace has the cyclic property Tr(ABC) = Tr(BCA).

Exercise 2.3.2 Using the result of the previous exercise, together with the fact
that a change of orthonormal basis can be written as a unitary operator, show that
Tr(A) is independent of the basis in which it is expressed. Notice that in the
matrix representation, Tr(A) equals the sum of the diagonal entries of the square matrix
representing A.

2.4 The Spectral Theorem

The spectral theorem is a central result in linear algebra, because it is often very
convenient to be able to specify a basis in which a given operator is diagonal
(i.e. to diagonalize the operator). The spectral theorem applies to a wide class
of operators which we now define.

Definition 2.4.1 A normal operator A is a linear operator that satifies

AA† = A†A. (2.4.1)

Notice that both unitary and Hermitean operators are normal. So most of the
operators that are important for quantum mechanics, and quantum computing,
are normal. Since in this book we are only interested in Hilbert spaces having
finite dimensions, we will only consider the spectral theorem in this special case
(where it is slightly simpler).

Theorem 2.4.2 (Spectral Theorem) For every normal operator T acting on a
finite-dimensional Hilbert space H, there is an orthonormal basis of H consisting
of eigenvectors |Ti〉 of T .

Note that T is diagonal in its own eigenbasis: T =
∑

i Ti|Ti〉〈Ti|, where Ti are
the eigenvalues corresponding to the eigenvectors |Ti〉. We sometimes refer to
T written in its own eigenbasis as the spectral decomposition of T . The set of
eigenvalues of T is called the spectrum of T .

The Spectral Theorem tells us that we can always diagonalize normal operators
(in finite dimensions). Recall from linear algebra that the diagonalization can be
accomplished by a change of basis (to the basis consisting of eigenvectors). The
change of basis is accomplished by conjugating the operator T with a unitary
operator P . With respect to the matrix representation for the operator T , we
can restate the Spectral Theorem in a form which may be more familiar.

TEAM LinG

THE SPECTRAL THEOREM 31

Theorem 2.4.3 (Spectral Theorem) For every finite-dimensional normal ma-
trix T , there is a unitary matrix P such that T = PΛP †, where Λ is a diagonal
matrix.

The diagonal entries of Λ are the eigenvalues of T , and the columns of P encode
the eigenvectors of T .

Example 2.4.4 Consider the operator X which acts as follows on the computational
basis states.

X|0〉 = |1〉 (2.4.2)

X|1〉 = |0〉 (2.4.3)

The matrix representation for this operator is

X ≡
[
0 1
1 0

]
. (2.4.4)

We have the following diagonalization of X.[
0 1
1 0

]
=

[
1√
2

1√
2

1√
2
− 1√

2

] [
1 0
0 −1

] [1√
2

1√
2

1√
2
− 1√

2

]
(2.4.5)

So we have

P =

[
1√
2

1√
2

1√
2
− 1√

2

]
(2.4.6)

and

Λ =

[
1 0
0 −1

]
. (2.4.7)

Thus the eigenvalues of X are 1 and −1, and the corresponding eigenvectors of X are(
1√
2

1√
2

)
(2.4.8)

and (
1√
2

− 1√
2

)
. (2.4.9)

In the Dirac notation, we have

X = |0〉〈1| + |1〉〈0| (2.4.10)

P = |+〉〈0| + |−〉〈1| (2.4.11)

= 1√
2
|0〉〈0| + 1√

2
|0〉〈1| + 1√

2
|1〉〈0| − 1√

2
|1〉〈1| (2.4.12)

Λ = |0〉〈0| − |1〉〈1| (2.4.13)

and the eigenvectors are
|+〉 ≡ 1√

2
|0〉 + 1√

2
|1〉 (2.4.14)

TEAM LinG

32 LINEAR ALGEBRA AND THE DIRAC NOTATION

and
|−〉 ≡ 1√

2
|0〉 − 1√

2
|1〉. (2.4.15)

Note that these eigenvectors are the basis vectors |+〉 and |−〉 of the Hadamard basis
described in Example 2.2.6.

2.5 Functions of Operators

One of the reasons why the Spectral Theorem is important is that it allows us
to simplify the expressions for functions of operators. By the Spectral Theorem,
we can write every normal operator T in the diagonal form

T =
∑

i

Ti|Ti〉〈Ti|. (2.5.1)

First, note that since each |Ti〉〈Ti| is a projector,(
|Ti〉〈Ti|

)m = |Ti〉〈Ti| (2.5.2)

for any integer m. Also noting that the eigenvectors are orthonormal, we have

〈Ti|Tj〉 = δi,j , (2.5.3)

where δi,j is the Dirac delta function which equals 1 if i = j, and equals 0
otherwise.

So this means that computing a power of T (in diagonal form) is equivalent to
computing the powers of the diagonal entries of T :(∑

i

Ti|Ti〉〈Ti|
)m

=
∑

i

Tm
i |Ti〉〈Ti|. (2.5.4)

The Taylor series for a function f : C→ C, has the form

f(x) =
∞∑

m=0

amxm. (2.5.5)

For example, the Taylor series for ex is
∑∞

m=0
1

m!x
m. The range of values of x for

which the Taylor series converges is called the interval of convergence. For any
point x in the interval of convergence, the Taylor series of a function f converges
to the value of f(x).

Using the Taylor series for a function f , we can define the action of f on operators
over C (provided the relevant Taylor series converges). For example, we would
define the exponential function so that, for an operator T , we have

eT =
∑
m

1
m!

Tm. (2.5.6)

TEAM LinG

TENSOR PRODUCTS 33

In general, the Taylor series for any function f acting on an operator T will have
the form

f(T) =
∑
m

amTm. (2.5.7)

If T is written in diagonal form, then the expression simplifies:

f(T) =
∑
m

amTm

=
∑
m

am

(∑
i

Ti|Ti〉〈Ti|
)m

=
∑
m

am

∑
i

Tm
i |Ti〉〈Ti|

=
∑

i

(∑
m

amTm
i

)
|Ti〉〈Ti|

=
∑

i

f(Ti)|Ti〉〈Ti|. (2.5.8)

So when T is written in diagonal form, f(T) is computed by applying f separately
to the diagonal entries of T . In general, the procedure for computing a function
f of an operator T is to first diagonalize T (the Spectral Theorem tells us we
can do this for most of the operators that will be important to us), and then
compute f individually on the diagonal entries.

2.6 Tensor Products

The tensor product is a way of combining spaces, vectors, or operators together.
Suppose H1 and H2 are Hilbert spaces of dimension n and m respectively. Then
the tensor product space H1 ⊗ H2 is a new, larger Hilbert space of dimension
n×m. Suppose {|bi〉}i∈{1,...,n} is an orthonormal basis forH1 and {|cj〉}j∈{1,...,m}
is an orthonormal basis for H2. Then

{|bi〉 ⊗ |cj〉}i∈{1,...,n},j∈{1,...,m} (2.6.1)

is an orthonormal basis for the space H1⊗H2. The tensor product of two vectors
|ψ1〉 and |ψ2〉 from spaces H1 and H2, respectively, is a vector in H1⊗H2, and is
written |ψ1〉⊗ |ψ2〉. The tensor product is characterized by the following axioms:

1. For any c ∈ C, |ψ1〉 ∈ H1, and |ψ2〉 ∈ H2,

c
(
|ψ1〉 ⊗ |ψ2〉

)
=
(
c|ψ1〉

)
⊗ |ψ2〉 = |ψ1〉 ⊗

(
c|ψ2〉

)
. (2.6.2)

2. For any |ψ1〉, |ϕ1〉 ∈ H1, and |ψ2〉 ∈ H2,(
|ψ1〉+ |ϕ1〉

)
⊗ |ψ2〉 = |ψ1〉 ⊗ |ψ2〉+ |ϕ1〉 ⊗ |ψ2〉. (2.6.3)

TEAM LinG

34 LINEAR ALGEBRA AND THE DIRAC NOTATION

3. For any |ψ1〉 ∈ H1, and |ψ2〉, |ϕ2〉 ∈ H2,

|ψ1〉 ⊗
(
|ψ2〉+ |ϕ2〉

)
= |ψ1〉 ⊗ |ψ2〉+ |ψ1〉 ⊗ |ϕ2〉. (2.6.4)

Suppose A and B are linear operators on H1 and H2 respectively. Then A⊗ B
is the linear operator on H1 ⊗H2 defined by

(A⊗B)
(
|ψ1〉 ⊗ |ψ2〉

)
≡ A|ψ1〉 ⊗B|ψ2〉. (2.6.5)

This definition extends linearly over the elements of H1 ⊗H2:

(A⊗B)

⎛⎝∑
ij

λij |bi〉 ⊗ |cj〉

⎞⎠ ≡∑
ij

λijA|bi〉 ⊗B|cj〉. (2.6.6)

We have presented the tensor product using the Dirac notation. In the matrix
representation, this translates as follows. Suppose A is an m×n matrix and B a
p× q matrix, then the left Kronecker product of A with B is the mp×nq matrix

A⊗B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11B11 . . . A11B1q A1nB11 . . . A1nB1q

...
...

...
...

...
...

...
...

A11Bp1 . . . A11Bpq A1nBp1 . . . A1nBpq

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Am1B11 . . . Am1B1q AmnB11 . . . AmnB1q

...
...

...
...

...
...

...
...

Am1Bp1 . . . Am1Bpq AmnBp1 . . . AmnBpq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.6.7)

This matrix is sometimes written more compactly in ‘block form’ as

A⊗B =

⎡⎢⎢⎢⎣
A11[B] A12[B] . . . A1n[B]
A21[B] A22[B] . . . A2n[B]

...
...

...
...

Am1[B] Am2[B] . . . Amn[B]

⎤⎥⎥⎥⎦ . (2.6.8)

Here, [B] represents the p× q submatrix B. Then each block entry Aij [B] above
is the matrix [B] multiplied by the single entry in row i, column j, of matrix A.

Aij [B] =

⎡⎢⎢⎢⎣
AijB11 AijB12 . . . AijB1q

AijB21 AijB22 . . . AijB2q

...
...

...
...

AijBp1 AijBp2 . . . AijBpq

⎤⎥⎥⎥⎦ . (2.6.9)

The matrix representation for the tensor product of two vectors, or two operators,
is the left Kronecker product of the matrix representation of the two vectors or

TEAM LinG

THE SCHMIDT DECOMPOSITION THEOREM 35

operators being ‘tensored’ together. For example, the matrix representation of(
α0|0〉+ α1|1〉

)
⊗
(
β0|0〉+ β1|1〉

)
is

(
α0

α1

)
⊗
(

β0

β1

)
=

⎛⎜⎜⎝
α0β0

α0β1

α1β0

α1β1

⎞⎟⎟⎠ . (2.6.10)

A final important word about notation. We often leave the ⊗ symbol out of
expressions, and thus |ψ〉⊗ |ϕ〉 is often written as just |ψ〉|ϕ〉, or sometimes even
|ψϕ〉.

2.7 The Schmidt Decomposition Theorem

Here we present an important result for quantum information: the Schmidt de-
composition theorem. We begin by stating the theorem, and then provide some
examples illustrating it. Then we will describe an application of the theorem.

Theorem 2.7.1 (Schmidt decomposition) If |ψ〉 is a vector in a tensor product
space HA ⊗HB , then there exists an orthonormal basis

{
|ϕA

i 〉
}

for HA, and an

orthonormal basis
{
|ϕB

i 〉
}

for HB , and non-negative real numbers {pi} so that

|ψ〉 =
∑

i

√
pi|ϕA

i 〉|ϕB
i 〉. (2.7.1)

The coefficients
√

pi are called Schmidt coefficients. To understand what this
theorem is saying, suppose

{
|ϕA

i 〉
}

and
{
|ϕB

i 〉
}

were chosen to be any arbitrary
orthonormal bases for HA and HB respectively. Then, as we saw in Section 2.6,
the basis states for the space HA⊗HB are |ϕA

i 〉⊗|ϕB
j 〉 (often written |ϕA

i 〉|ϕB
j 〉).

The general vector |ψ〉 in HA ⊗HB is then

|ψ〉 =
∑
i,j

αi,j |ϕA
i 〉|ϕB

j 〉 (2.7.2)

where the coefficients αi,j = eiφi,j
√

pi,j are in general complex numbers. Note
that we have had to use different indices on the two sets of basis vectors to ac-
count for all the ‘cross-terms’. If HA has dimension m and HB has dimension n,
this general vector is a superposition of mn basis vectors. The Schmidt decom-
position tells us that we can always find some pair of bases {|ϕA

i 〉} and {|ϕB
i 〉}

such that all the ‘cross terms’ vanish, and the general vector simplifies to a sum
over one set of indices

|ψ〉 =
∑

i

√
pi|ϕA

i 〉|ϕB
i 〉 (2.7.3)

and the coefficients can be assumed to be real (since any phase factors can be
absorbed into the definitions of the basis elements). The number of terms in this
sum will be (at most) the minimum of m and n.

TEAM LinG

36 LINEAR ALGEBRA AND THE DIRAC NOTATION

Example 2.7.2 As a trivial example of the Schmidt decomposition theorem, consider
the following vector in a 4-dimensional Hilbert space HA ⊗HB where HA and HB each
have dimension 2:

|ψ〉 = |11〉. (2.7.4)

This vector is already written in terms of Schmidt bases (for each of HA and HB the
Schmidt basis is the computational basis). That is,{

|ϕA
0 〉 = |0〉, |ϕA

1 〉 = |1〉
}
, (2.7.5)

{
|ϕB

0 〉 = |0〉, |ϕB
1 〉 = |1〉

}
. (2.7.6)

The Schmidt coefficients are p0 = 0, p1 = 1.

Example 2.7.3 As a slightly less trivial example, consider the following state on the
same 4-dimensional space HA ⊗HB as in the previous example:

|ψ〉 = 1
2
|00〉 + 1

2
|01〉 + 1

2
|10〉 + 1

2
|11〉. (2.7.7)

In this example, the computational basis is not a Schmidt basis for either HA or HB .
Notice that we can rewrite the vector as

|ψ〉 =
(

1√
2
|0〉 + 1√

2
|1〉

) (
1√
2
|0〉 + 1√

2
|1〉

)
. (2.7.8)

So we choose Schmidt bases to be{
|ϕA

0 〉 = 1√
2
|0〉 + 1√

2
|1〉, |ϕA

1 〉 = 1√
2
|0〉 − 1√

2
|1〉

}
, (2.7.9)

{
|ϕB

0 〉 = 1√
2
|0〉 + 1√

2
|1〉, |ϕB

1 〉 = 1√
2
|0〉 − 1√

2
|1〉

}
(2.7.10)

and the Schmidt coefficients are p0 = 1, p1 = 0.

The Schmidt bases for the two parts of the composite space will not always be
the same. Consider the following example.

Example 2.7.4

|ψ〉 = 1+
√

6

2
√

6
|00〉 + 1−

√
6

2
√

6
|01〉 +

√
2−

√
3

2
√

6
|10〉 +

√
2+

√
3

2
√

6
|11〉. (2.7.11)

For this vector Schmidt bases are{
|ϕA

0 〉 = 1√
3
|0〉 +

√
2√
3
|1〉, |ϕA

1 〉 =
√

2√
3
|0〉 − 1√

3
|1〉

}
, (2.7.12)

{
|ϕB

0 〉 = 1√
2
|0〉 + 1√

2
|1〉, |ϕB

1 〉 = 1√
2
|0〉 − 1√

2
|1〉

}
(2.7.13)

and the Schmidt coefficients are p0 = 1
4
, p1 = 3

4
.

TEAM LinG

SOME COMMENTS ON THE DIRAC NOTATION 37

In all the above examples, the bipartite space was one in which each subspace
had dimension 2. The Schmidt decomposition theorem can be applied to more
complicated bipartite vector space, even in cases where the two subspaces have
different dimensions. We will examine a method for computing Schmidt decom-
positions in Section 3.5.2.

2.8 Some Comments on the Dirac Notation

Juggling bras and kets can be somewhat confusing if you are not familiar with
working in the Dirac notation. Now we discuss a convention that potentially
adds to this confusion. When we write tensor products of subsystems, we usu-
ally identify which vectors correspond to which subsystems by the order in which
the respective tensor factors appear. For example, if system 1 is in state |i〉 and
system 2 in state |j〉, we would write |i〉⊗ |j〉, or more simply |i〉|j〉, or even |ij〉.
If we wanted to be completely unambiguous we could label the states with sub-
scripts indexing the systems, and would write the above state as |i〉1|j〉2. When
computing the conjugate transpose, following the standard matrix convention
we would write (

|i〉1|j〉2
)† = 〈i|1〈j|2. (2.8.1)

Physicists more commonly order this differently, and write(
|i〉1|j〉2

)† = 〈j|2〈i|1. (2.8.2)

According to this convention, we can compute inner products in the following
way (now omitting the subscripts):(

|i〉|j〉
)†|k〉|l〉 = 〈j|〈i||k〉|l〉

= 〈j|〈i|k〉|l〉
= 〈i|k〉〈j||l〉
= 〈i|k〉〈j|l〉. (2.8.3)

Now we derive a useful identity involving tensor products of operators written
in outer-product form. This is a useful exercise to gain practice and confidence
in working with the Dirac notation. In what follows, we will not be using the
convention described in Equation (2.8.2).

Identity: (
|i〉
1
⊗ |j〉

2

)(
〈k|
1
⊗ 〈l|

2

)
≡ |i〉

1
〈k|
1
⊗ |j〉

2
〈l|
2

. (2.8.4)

In the above, we have written the ⊗ symbol everywhere, for clarity. However, in
practice we often leave this symbol out, and sometimes write the labels of the
factors inside a single ket (or bra). So the above identity could be more concisely
written

|ij〉〈kl| = |i〉〈k| ⊗ |j〉〈l|. (2.8.5)

TEAM LinG

3

QUBITS AND THE
FRAMEWORK OF
QUANTUM MECHANICS

In this section we introduce the framework of quantum mechanics as it pertains
to the types of systems we will consider for quantum computing. Here we also
introduce the notion of a quantum bit or ‘qubit’, which is a fundamental concept
for quantum computing.

At the beginning of the twentieth century, it was believed by most that the laws
of Newton and Maxwell were the correct laws of physics. By the 1930s, however,
it had become apparent that these classical theories faced serious problems in
trying to account for the observed results of certain experiments. As a result, a
new mathematical framework for physics called quantum mechanics was formu-
lated, and new theories of physics called quantum physics were developed in this
framework. Quantum physics includes the physical theories of quantum electro-
dynamics and quantum field theory, but we do not need to know these physical
theories in order to learn about quantum information. Quantum information is
the result of reformulating information theory in this quantum framework.1

3.1 The State of a Quantum System

We saw in Section 1.6 an example of a two-state quantum system: a photon that
is constrained to follow one of two distinguishable paths. We identified the two
distinguishable paths with the 2-dimensional basis vectors(

1
0

)
and

(
0
1

)
(3.1.1)

and then noted that a general ‘path state’ of the photon can be described by a
complex vector (

α0

α1

)
(3.1.2)

1It is worth noting that the term quantum mechanics is also often used to refer to that part
of quantum physics that deals with a special limit of quantum field theory.

38
TEAM LinG

THE STATE OF A QUANTUM SYSTEM 39

with |α0|2 + |α1|2 = 1. This simple example captures the essence of the first pos-
tulate, which tells us how physical states are represented in quantum mechanics.

State Space Postulate

The state of a system is described by a unit vector in a Hilbert space H.

Depending on the degree of freedom (i.e. the type of state) of the system being
considered, H may be infinite-dimensional. For example, if the state refers to the
position of a particle that is free to occupy any point in some region of space, the
associated Hilbert space is usually taken to be a continuous (and thus infinite-
dimensional) space. It is worth noting that in practice, with finite resources,
we cannot distinguish a continuous state space from one with a discrete state
space having a sufficiently small minimum spacing between adjacent locations.
For describing realistic models of quantum computation, we will typically only
be interested in degrees of freedom for which the state is described by a vector in
a finite-dimensional (complex) Hilbert space.2 In particular, we will primarily be
interested in composite systems composed of individual two-level systems. The
state of each two-level system is described by a vector in a 2-dimensional Hilbert
space. We can encode a qubit in such a two-level system. We would choose a
basis for the corresponding 2-dimensional space. We would label one of the basis
vectors with |0〉 and the other basis vector with |1〉. This is analogous to what
is done for classical computation. For a classical computer, the two-level system
may be the voltage level on a wire, which could be zero, or some positive value
(say +5 mV). We might encode a classical bit in such a system by assigning
the binary value ‘0’ to the state in which the voltage on the wire is 0, and the
value ‘1’ to the state in which the voltage on the wire is + 5 mV. The {|0〉, |1〉}
basis for the state of a qubit is commonly referred to as the computational
basis.

A quantum mechanical two-level system might be a single photon that can be
found in one of two distinct paths, as we saw in the introduction. Another ex-
ample of a quantum two-level system is the presence or absence of a photon in
a particular location or path.

The state of this system is described by a vector in a 2-dimensional Hilbert space.
A convenient basis for this space consists of a unit vector for the state in which
a photon is not present, and an orthogonal unit vector for the state in which a
photon is present. We can label these states with |0〉 and |1〉, respectively. Then
the general state of the system is expressed by the vector

α0|0〉+ α1|1〉 (3.1.3)

where α0 and α1 are complex coefficients, often called the amplitudes of the
basis states |0〉 and |1〉, respectively. Note that a complex amplitude α can be

2However, it is common to use infinite dimensional state spaces to model the physical systems
used to implement quantum (as well as classical) information processing.

TEAM LinG

40 QUBITS AND THE FRAMEWORK OF QUANTUM MECHANICS

decomposed unique as a product eiθ|α| where |α| is the non-negative real number
corresponding to the magnitude of α, and eiθ = α

|α| has norm 1. The value θ is
known as the ‘phase’, and we refer to the value eiθ as a ‘phase factor’.

The condition that the state is described by a unit vector means that |α0|2 +
|α1|2 = 1. This condition is sometimes called the normalization constraint, and
it is necessary for consistency with the way quantum measurements behave, as
we will see in the Measurement Postulate. The general state of the system is a
superposition of a photon being present, and a photon not being present.

Another example of a two-level quantum mechanical system is the spin state
of certain types of particles. According to quantum physics, particles have a
degree of freedom called spin, which does not exist in a classical description.
Many particles fall into the category of so-called spin- 1

2 particles. For these, the
spin state is indeed described by a vector in a 2-dimensional Hilbert space H.
A convenient basis for this space consists of a unit vector for the ‘spin-up’ state
of the particle, and an orthogonal unit vector for the ‘spin-down’ state of the
particle. We can label these basis vectors by |0〉 and |1〉, respectively. The general
spin state of a spin-1

2 particle is a superposition of spin-up and spin-down.

As another example of a physical system whose state can be described by a vector
in a 2-dimensional Hilbert space, consider an electron orbiting a nucleus. Suppose
we choose energy as the degree of freedom of interest. There is a theoretically
infinite number of possible energy levels for the electron, and so the Hilbert space
would have infinite dimension. From quantum mechanics we know that these
energy levels are quantized. That is, instead of a continuous range of possible
energies, the electron is restricted to have energies from a discrete set. It is
possible to have such a system for which the electron can easily be found in the
ground state (lowest energy level), or the first excited state, but the amount of
energy required to excite the system to higher energy levels is so high we are
almost certain never to find energy levels higher than the first two. In such cases
we can choose to ignore the subspace spanned by all energies higher than the first
excited state, and for all practical purposes we have a two-level system described
by a 2-dimensional vector in the space spanned by the lowest two energy levels.

An important point about state vectors is the following. The state described by
the vector eiθ|ψ〉 is equivalent to the state described by the vector |ψ〉, where eiθ

is any complex number of unit norm. For example, the state

|0〉+ |1〉 (3.1.4)

is equivalent to the state described by the vector

eiθ|0〉+ eiθ|1〉. (3.1.5)

On the other hand, relative phase factors between two orthogonal states in
superposition are physically significant, and the state described by the vector

|0〉+ |1〉 (3.1.6)

TEAM LinG

THE STATE OF A QUANTUM SYSTEM 41

is physically different from the state described by the vector

|0〉+ eiθ|1〉. (3.1.7)

Technically we could describe quantum states by equivalence classes of unit vec-
tors, but we will simply specify a unit vector, with the understanding that any
two vectors that are related by a global phase are equivalent. We will moti-
vate the fact that |ψ〉 and eiθ|ψ〉 are equivalent after we have introduced the
Measurement Postulate.

So the State Space Postulate, together with the observation of the previous
paragraph, tells us that we can describe the most general state |ψ〉 of a single
qubit by a vector of the form

|ψ〉 = cos
(

θ
2

)
|0〉+ eiϕ sin

(
θ
2

)
|1〉 (3.1.8)

(we take θ
2 instead of just θ to be consistent with the angle θ appearing in

Figure 3.3, which will be discussed shortly). Consider the analogous situation
for a deterministic classical bit. The state of a classical bit can be described by
a single binary value ψ, which can be equal to either 0 or 1. This description
could be expressed in terms of the diagram shown in Figure 3.1. In this figure,
the state can be indicated by a point in one of two positions, indicated by the
two points labelled 0 and 1.

Next consider the slightly more complicated situation of a classical bit whose
value is not known exactly, but is known to be either 0 or 1 with corresponding
probabilities p0 and p1. We might call this a probabilistic classical bit. The state
of such a probabilistic bit is described by the probabilities p0 and p1, which
satisfy p0 + p1 = 1 (reflecting the fact that we know the bit has to be either
0 or 1). As we saw in Section 1.4, we can represent these two probabilities by
the 2-dimensional unit vector (

p0

p1

)
(3.1.9)

whose entries are restricted to be real and non-negative. This description could
be expressed in terms of the diagram shown in Figure 3.2. In this figure, the

Fig. 3.1 The state of a deterministic classical bit can be represented as one of two

points, labelled ‘0’ and ‘1’.

TEAM LinG

42 QUBITS AND THE FRAMEWORK OF QUANTUM MECHANICS

Fig. 3.2 A probabilistic classical bit. Here the probabilities p0 and p1 of the bit being

0 and 1, respectively, are represented by the position of a point on the line segment

between the points representing 0 and 1.

state could be drawn as a point on the line between the positions 0 and 1. We
suppose this line has unit length, and the position of the point on the line is
determined by the probabilities p0 and p1.

Note that with only one copy of such a probabilistic bit, we cannot determine p0

and p1 exactly. If we are given a means to obtain several independent copies of
the probabilistic bit (where each copy independently outputs 0 with probability
p0 and 1 with probability p1), then we could accumulate statistics about the
values p0 and p1. Otherwise, we cannot in general ‘clone’ this bit and get two or
more independent copies that would allow us to obtain arbitrarily good estimates
of p0 and p1.

Now return to the state of a quantum bit, which is described by a complex unit
vector |ψ〉 in a 2-dimensional Hilbert space. Up to a (physically insignificant)
global phase factor, such a vector can always be written in the form

|ψ〉 = cos
(

θ
2

)
|0〉+ eiϕ sin

(
θ
2

)
|1〉. (3.1.10)

Such a state vector is often depicted as a point on the surface of a 3-dimensional
sphere, known as the Bloch sphere, as shown in Figure 3.3. Two real parameters θ
and ϕ are sufficient to describe a state vector, since state vectors are constrained
to have norm 1 and are equivalent up to global phase. Points on the surface of
the Bloch sphere can also be expressed in Cartesian coordinates as

(x, y, z) = (sin θ cos ϕ, sin θ sin ϕ, cos θ). (3.1.11)

We will also explain the meaning of points within the Bloch sphere when we
consider density matrices in Section 3.5.

Figure 3.4 summarizes the graphical representations of the states of a classical
bit, a probabilistic classical bit, and a quantum bit.

TEAM LinG

TIME-EVOLUTION OF A CLOSED SYSTEM 43

Fig. 3.3 State of a qubit on the Bloch sphere.

Fig. 3.4 States of deterministic classical, probabilistic classical, and quantum bits.

3.2 Time-Evolution of a Closed System

A physical system changes in time, and so the state vector |ψ〉 of a system
will actually be a function of time, |ψ(t)〉. Quantum theory postulates that the
evolution of the state vector of a closed quantum system is linear. In other words,
if we know that some fixed transformation, let us call it U , maps |ψi〉 to U |ψi〉
then

U
∑

i

αi|ψi〉 =
∑

i

αiU |ψi〉. (3.2.1)

For example, as we saw in the introduction, if |0〉 evolves to 1√
2
|0〉+ i√

2
|1〉, and

|1〉 evolves to i√
2
|0〉+ 1√

2
|1〉, then α0|0〉+ α1|1〉 evolves to

α0

(
1√
2
|0〉+ i√

2
|1〉

)
+ α1

(
i√
2
|0〉+ 1√

2
|1〉

)
(3.2.2)

=
α0 + iα1√

2
|0〉+ iα0 + α1√

2
|1〉. (3.2.3)

TEAM LinG

44 QUBITS AND THE FRAMEWORK OF QUANTUM MECHANICS

As we have mentioned briefly already, and will elaborate on in Section 3.4, the
coefficients αi of a state vector satisfy

∑
i |αi|2 = 1. The only linear operators

that preserve such norms of vectors are the unitary operators (see Section 2.3).
This brings us to the Evolution Postulate.

Evolution Postulate

The time-evolution of the state of a closed quantum system is described by a
unitary operator. That is, for any evolution of the closed system there exists
a unitary operator U such that if the initial state of the system is |ψ1〉, then
after the evolution the state of the system will be

|ψ2〉 = U |ψ1〉. (3.2.4)

In quantum computing, we refer to a unitary operator U acting on a single-qubit
as a 1-qubit (unitary) gate. We can represent operators on the 2-dimensional
Hilbert space of a single qubit as 2 × 2 matrices. A linear operator is specified
completely by its action on a basis. For example, consider the quantum not gate
which is a unitary operator mapping |0〉 to |1〉, and mapping |1〉 to |0〉. Being a
linear operator, it will map a linear combination of inputs to the corresponding
linear combination of outputs, and so the not gate maps the general state

α0|0〉+ α1|1〉 (3.2.5)

to the state
α0|1〉+ α1|0〉. (3.2.6)

Recall that the basis vectors have a representation as column matrices. In terms
of this matrix representation, the action of the not gate on the basis vectors is

not :
(

1
0

)
�→

(
0
1

)
,

(
0
1

)
�→

(
1
0

)
. (3.2.7)

From this information, we can construct the matrix for the not gate (in the
computational basis): [

0 1
1 0

]
. (3.2.8)

The gate acts on the state of a qubit by matrix multiplication from the left:

not|0〉 ≡
[
0 1
1 0

](
1
0

)
=
(

0
1

)
≡ |1〉. (3.2.9)

The not gate is often identified with the symbol X, and is one of the four Pauli
gates:

σ0 ≡ I ≡
[
1 0
0 1

]
σ1 ≡ σx ≡ X ≡

[
0 1
1 0

]
σ2 ≡ σy ≡ Y ≡

[
0 −i
i 0

]
σ3 ≡ σz ≡ Z ≡

[
1 0
0 −1

]
. (3.2.10)

TEAM LinG

COMPOSITE SYSTEMS 45

As we will see in Chapter 4, the Pauli gates X,Y , and Z correspond to rotations
about the x-, y- and z-axes of the Bloch sphere, respectively. One reason why
the Pauli gates are important for quantum computing is that they span the
vector space formed by all 1-qubit operators. In particular, this means that any
1-qubit unitary operator can be expressed as a linear combination of the Pauli
gates.

It is worth noting that the unitarity of quantum evolution implies reversibility.
This reversibility is a consequence of restricting attention to closed systems. We
saw in Section 1.5 that any irreversible classical computation can be efficiently
simulated by a reversible classical computation. The same holds for quantum
computation (this is described in more detail in Section 3.5.3).

In a typical first course in quantum physics, one learns that the continuous time-
evolution of a closed quantum mechanical system (ignoring special relativity)
follows the Schrödinger equation

i�
d|ψ(t)〉

dt
= H(t)|ψ(t)〉 (3.2.11)

where � is a physical constant known as Planck’s constant and H(t) is a Hermitean
operator known as the Hamiltonian of the system. The Hamiltonian is an oper-
ator which represents the total energy function for the system. It may in general
be a function of time, but for convenience, let us consider Hamiltonians that are
constant. In this case the solution to the Schrödinger equation for fixed times t1
and t2 is

|ψ(t2)〉 = e−i�H(t2−t1)|ψ(t1)〉. (3.2.12)

Exercise 3.2.1 Show that (3.2.12) is a solution of the time-independent Schrödinger
equation.

For Hermitean operators H, the operator e−iH(t2−t1) is a unitary operator. So
for the case of (non-relativistic and continuous time) constant Hamiltonians,
one can easily show that the Evolution Postulate follows from the Schrödinger
equation.

3.3 Composite Systems

So far we have discussed the postulates for the case of a single system only,
in particular a qubit. If all we ever needed to know was how isolated qubits
behave when they are never allowed to interact with each other, then this would
be sufficient. If we want to study potentially useful quantum computations we
will need to understand how quantum mechanics works for systems composed of
several qubits interacting with each other. That is, we would like to know how
to describe the state of a closed system of n qubits, how such a state evolves

TEAM LinG

46 QUBITS AND THE FRAMEWORK OF QUANTUM MECHANICS

in time, and what happens when we measure it. Treating a larger system as a
composition of subsystems (of bounded size) allows for an exponentially more
efficient description of operations acting on a small number of subsystems.

The way we represent composite quantum systems is in fact analogous to the way
we treated composite classical probabilistic systems in Section 1.4. This brings
us to our third postulate.

Composition of Systems Postulate

When two physical systems are treated as one combined system, the state
space of the combined physical system is the tensor product space H1 ⊗H2 of
the state spaces H1,H2 of the component subsystems. If the first system is in
the state |ψ1〉 and the second system in the state |ψ2〉, then the state of the
combined system is

|ψ1〉 ⊗ |ψ2〉. (3.3.1)

As mentioned in Section 2.6, we often omit the ‘⊗’ symbol and write the joint
state like |ψ1〉|ψ2〉, or sometimes even more compactly as |ψ1ψ2〉.
One can apply the Composition of Systems Postulate inductively to show that
the state space of system composed of n distinct subsystems is the tensor product
space of the state spaces of the n subsystems. For convenience, we will consider
the subsystems to be of dimension 2, but it is straightforward to generalize to
larger dimensional subsystems.

It is important to note that the state of a 2-qubit composite system cannot
always be written in the product form |ψ1〉 ⊗ |ψ2〉. If the 2 qubits are prepared
independently, and kept isolated, then each qubit forms a closed system, and the
state can be written in the product form. However, if the qubits are allowed to
interact, then the closed system includes both qubits together, and it may not
be possible to write the state in the product form. When this is the case, we
say that the qubits are entangled. From an algebraic point of view, the state
of the composite system is a vector in the 4-dimensional tensor-product space
of the 2 constituent qubits. The 4-dimensional state vectors that are formed by
taking the tensor product of two 2-dimension state vectors form a sparse subset
of all the 4-dimensional state vectors. In this sense, ‘most’ 2-qubit states are
entangled.

Exercise 3.3.1 Consider the 2-qubit state

|ψ〉 = 1√
2
|0〉|0〉 + 1√

2
|1〉|1〉. (3.3.2)

Show that this state is entangled by proving that there are no possible values α0, α1, β0,
β1 such that

|ψ〉 =
(
α0|0〉 + α1|1〉

)(
β0|0〉 + β1|1〉

)
. (3.3.3)

TEAM LinG

COMPOSITE SYSTEMS 47

(Note, the state |ψ〉 above is called an EPR pair, named for Einstein, Podolsky, and
Rosen, who considered such states in their investigations of quantum mechanics.)

Suppose we have a 2-qubit composite system, and we apply the not gate X
to the first qubit. We implicitly apply the identity operator I to the second
qubit at the same time. Thus the 2-qubit input |ψ1〉 ⊗ |ψ2〉 gets mapped to
X|ψ1〉⊗I|ψ2〉 = (X⊗I)(|ψ1〉⊗|ψ2〉). That is, the linear operator describing this
operation on the composite system is

X ⊗ I (3.3.4)

which has the matrix representation

[
0 1
1 0

]
⊗
[
1 0
0 1

]
=

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤⎥⎥⎦ . (3.3.5)

Although it acts on the composite 2-qubit system, since it acts non-trivially on
only one of the qubits, a gate such as this one is really a 1-qubit gate.

If our system was the composition of n qubits, then applying the X gate to the
first qubit corresponds to applying the operation X ⊗ I ⊗ I ⊗ · · · ⊗ I (with I
repeated n− 1 times) to the entire system. Note that if we ignore the subsystem
structure and just treat the n-qubit system as a 2n-dimensional system, we would
need a 2n × 2n dimensional matrix to describe this simple operation.

Just as there are 2-qubit states that cannot be written as the product of two
1-qubit states, there are 2-qubit gates (acting non-trivially on both qubits) that
cannot be written as a tensor product of two 1-qubit gates. An important exam-
ple is the quantum controlled-not, or cnot gate (recall the classical version of
this gate defined in Section 1.4). In terms of its action on the basis states of the
2-qubit system, the cnot gate behaves as follows:

|00〉 �→ |00〉, |01〉 �→ |01〉, |10〉 �→ |11〉, |11〉 �→ |10〉. (3.3.6)

(recall |00〉 ≡ |0〉⊗|0〉). In the computational basis, the cnot gate flips the state
of the second qubit if the first qubit is in state |1〉, and does nothing otherwise.
As with all unitary operators, the cnot gate acts linearly over superpositions.
The matrix representation for the cnot gate is⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦ . (3.3.7)

TEAM LinG

48 QUBITS AND THE FRAMEWORK OF QUANTUM MECHANICS

Recall in Section 1.4, we saw that the tensor product is the mathematical tool
to get a single description for a composite system composed of two or more sub-
systems. The Composition of Systems Postulate tells us that the same approach
can be used to describe composite quantum mechanical systems.

3.4 Measurement

We have seen how the state of a single-qubit system is represented in quan-
tum mechanics as a vector in a Hilbert space, and we have seen how such a
state evolves according to a unitary operator. Notice that the Evolution Postu-
late assumes that the quantum system is closed, meaning that it is not allowed
to interact with its environment. Ultimately we will be interested in measur-
ing some properties of a system, and so at some point we must allow the sys-
tem to interact with the measurement apparatus of some observer. When this
happens the original system is no longer closed, and the Evolution Postulate
is no longer appropriate for describing its evolution. It is possible to combine
the system and any other part of the environment interacting with the sys-
tem, including the measurement apparatus, into a larger closed quantum sys-
tem. Such a fully quantum treatment of the interaction between observer and
system would take us into controversial territory and distract from the main
point of this text. It is convenient, conventional, and sufficient to introduce
a measurement postulate and rely on more familiar notions of classical prob-
ability theory. The evolution of the state of a system during a measurement
process is not unitary, and we add this additional postulate to describe such
processes.

Suppose we have a system with N distinguishable states |0〉, |1〉, . . . , |N − 1〉,
and some apparatus that will reliably distinguish these N states. Without loss
of generality, let us say the apparatus will output the (classical) label ‘i’ to-
gether with the observed state |i〉 when |i〉 is provided as input. In other words,
the measurement apparatus provides a classical description of the measurement
outcome (which we simply denote as i where we indexed the possible measure-
ment outcomes using the indices i; the values i do not need to be integers), along
with some quantum state. Traditionally, the classical description or label is often
described as a needle pointing to some value on a dial. But if we assume only
finite resolution we can just as well assume a digital display with sufficiently
many digits.

Quantum mechanics tells us that if the state
∑

i αi|i〉 is provided as input to
this apparatus, it will output label i with probability |αi|2 and leave the system
in state |i〉. This is the essence of the Measurement Postulate. However, we will
state a slightly more general version that can be derived from the above simple
version together with the Evolution Postulate. Then we will discuss other com-
mon formulations of the measurement postulate and some of their well-known
features.

TEAM LinG

MEASUREMENT 49

Measurement Postulate

For a given orthonormal basis B = {|ϕi〉} of a state space HA for a system
A, it is possible to perform a Von Neumann measurement on system HA with
respect to the basis B that, given a state

|ψ〉 =
∑

i

αi|ϕi〉, (3.4.1)

outputs a label i with probability |αi|2 and leaves the system in state |ϕi〉.
Furthermore, given a state |ψ〉 =

∑
i αi|ϕi〉|γi〉 from a bipartite state space

HA ⊗HB (the |ϕi〉 are orthonormal; the |γi〉 have unit norm but are not nec-
essarily orthogonal), then performing a Von Neumann measurement on system
A will yield outcome i with probability |αi|2 and leave the bipartite system in
state |ϕi〉|γi〉.

For the state |ψ〉 =
∑

i αi|ϕi〉, note that αi = 〈ϕi||ψ〉 = 〈ϕi|ψ〉, and thus

|αi|2 = α∗
i αi = 〈ψ|ϕi〉〈ϕi|ψ〉. (3.4.2)

We can see that two states |ψ〉 and eiθ|ψ〉 (differing only by a global phase)
are equivalent. Consider the state eiθ|ψ〉 =

∑
i αie

iθ|ψi〉 immediately before a
measurement. The result i will occur with probability

p(i) = α∗
i e

−iθαie
iθ = α∗

i αi = |αi|2 (3.4.3)

and thus the resulting probability is the same as it would be for the state |ψ〉.
The statistics of any measurements we could perform on the state eiθ|ψ〉 are
exactly the same as they would be for the state |ψ〉. This explains our earlier
claim that global phases have no physical significance.

Suppose we measure both qubits of a composite system in state

|ψ〉 =
√

1
11 |0〉|0〉+

√
5
11 |0〉|1〉+

√
2
11 |1〉|0〉+

√
3
11 |1〉|1〉. (3.4.4)

When we measure the two qubits in the computational basis, the probability of
getting the result 00 is 1

11 , the probability of getting 01 is 5
11 , the probability

of getting 10 is 2
11 , and the probability of getting 11 is 3

11 . Thus the probability
of measuring 0 in the first qubit is thus 1

11 + 5
11 = 6

11 . To see what happens if we
just measure the first qubit, it is convenient to rewrite |ψ〉 as

2Notice that here we use subscripts (e.g. |ϕi〉) to index different terms in a superposition
of states on a single system. This is different from our usage in Section 3.3 where we used
subscripts on |ψ1〉 and |ψ2〉 to index states on different subsystems of a bipartite system
(factors in a tensor product). Both conventions are commonly used, and the meaning should
always be clear from the context.

TEAM LinG

50 QUBITS AND THE FRAMEWORK OF QUANTUM MECHANICS

|ψ〉 =
√

6
11 |0〉

(√
1
6 |0〉+

√
5
6 |1〉

)
+
√

5
11 |1〉

(√
2
5 |0〉+

√
3
5 |1〉

)
. (3.4.5)

The measurement of just the first qubit gives 0 with probability 6
11 , and in this

case the state of the second qubit is left in the superposition
(√

1
6 |0〉+

√
5
6 |1〉

)
.

One will find a variety of formulations of the Measurement Postulate in text-
books. They can all be derived from the simple postulates that have been out-
lined.

In Section 4.5, we will see how to implement a Von Neumann measurement with
respect to an arbitrary basis {|ψi〉} given the means to perform a Von Neumann
measurement in the computational basis {|i〉} and the ability to perform unitary
transformations.

Combining the Measurement Postulate above with the other postulates, we can
derive more general notions of measurement. In particular, if one wishes to mea-
sure a pure state |ψ〉 one can add an ancillary register3 of arbitrary size initialized
to some fixed state, say |00 . . . 0〉. One can then perform a unitary operation on
the joint system, followed by a Von Neumann measurement on some subsystem
of the joint system to obtain a label i. Depending on what is done with the rest
of the system (i.e. the part of the system that was not measured), one can derive
a variety of generalized notions of quantum measurement (see Appendix A.8). In
this section, we will only discuss one slight generalization of the Von Neumann
measurements that can be derived in this way.

A Von Neumann measurement is a special kind of projective measurement.4

Recall that an orthogonal projection is an operator P with the property that
P † = P and P 2 = P . For any decomposition of the identity operator I =

∑
i Pi

into orthogonal projectors Pi, there exists a projective measurement that outputs
outcome i with probability p(i) = 〈ψ|Pi|ψ〉 and leaves the system in the re-
normalized state Pi|ψ〉√

p(i)
. In other words, this measurement projects the input

state |ψ〉 into one of the orthogonal subspaces corresponding to the projection
operators Pi, with probability equal to the square of the size of the amplitude of
the component of |ψ〉 in that subspace.

Exercise 3.4.1

(a) Prove that if the operators Pi satisfy P †
i = Pi and P 2

i = Pi, then PiPj = 0 for all
i = j.

(b) Prove that any pure state |ψ〉 can be decomposed as |ψ〉 =
∑

i αi|ψi〉 where αi =√
p(i), p(i) = 〈ψ|Pi|ψ〉, and |ψi〉 = Pi|ψ〉√

p(i)
.

3We will often refer to a register of ancillary qubits as simply an ‘ancilla’.
4Also known as a Lüders measurement. The term ‘Von Neumann measurement’ is also often

used to denote this more general notion of projective measurement.

TEAM LinG

MEASUREMENT 51

Also prove that 〈ψi|ψj〉 = δi,j .

(c) Prove that any decomposition I =
∑

i Pi of the identity operator on a Hilbert space
of dimension N into a sum of nonzero projectors Pi can have at most N terms in the
sum.

Note that the Von Neumann measurement as described in the Measurement
Postulate (which can be described as a ‘complete’ or ‘maximal’ measurement)
is the special case of a projective measurement where all the projectors Pi

have rank one (in other words, are of the form |ψi〉〈ψi| for a normalized state
|ψi〉).
The simplest example of a complete Von Neumann measurement is a complete
measurement in the computational basis. This can be viewed as a projective
measurement with respect to the following decomposition of the identity

I =
∑

i∈{0,1}n

Pi

where Pi = |i〉〈i|.
A simple example of an incomplete projective measurement is a ‘parity’ mea-
surement, where P0 =

∑
parity(x)=0 |x〉〈x| and P1 =

∑
parity(x)=1 |x〉〈x|, where P0

sums over all strings with an even number of 1s and P1 with an odd number of
1s (Section 4.5 shows how to implement this projective measurement).

Projective measurements are often described in terms of an observable. An ob-
servable is a Hermitean operator M acting on the state space of the system.
Since M is Hermitean, it has a spectral decomposition

M =
∑

i

miPi (3.4.6)

where Pi is the orthogonal projector on the eigenspace of M with real eigenvalue
mi. Measuring the observable corresponds to performing a projective measure-
ment with respect to the decomposition I =

∑
i Pi where the measurement

outcome i corresponds to the eigenvalue mi.

Example 3.4.1 Consider the Pauli observable Z. Recall from Section 3.2 that the
Pauli operator Z is defined by

Z ≡
[
1 0
0 −1

]
. (3.4.7)

In that section, we interpreted Z as a quantum gate. But it is easy to see that Z
is a Hermitean operator, and so can be interpreted as an observable. The spectral
decomposition for Z is

Z = |0〉〈0| − |1〉〈1|, (3.4.8)

TEAM LinG

52 QUBITS AND THE FRAMEWORK OF QUANTUM MECHANICS

and so the eigenvalues of Z are 1 and −1, corresponding to eigenvectors |0〉 and |1〉
respectively. So the measurement operators are the projectors |0〉〈0| and |1〉〈1|, and
thus a measurement of the Pauli observable Z is a measurement in the computa-
tional basis, with eigenvalue +1 corresponding to |0〉 and eigenvalue −1 corresponding
to |1〉.

Exercise 3.4.2 Show that measuring the observable |1〉〈1| is equivalent to measuring
the observable Z up to a relabelling of the measurement outcomes.

Exercise 3.4.3 Verify that a measurement of the Pauli observable X is equivalent to

a complete measurement with respect to the basis
{

1√
2

(
|0〉 + |1〉

)
, 1√

2

(
|0〉 − |1〉

)}
basis.

Exercise 3.4.4

(a) Prove that performing a projective measurement with respect to P0 and P1 (defined
above) on an n-qubit state is equivalent to measuring the observable Z⊗n.

(b) Explain why performing a complete Von Neumann measurement with respect to
the computation basis, and then outputting the parity of the resulting string is not
equivalent to performing a projective measurement of the parity.

Exercise 3.4.5 The observable formalism gives a convenient way to describe the ex-
pected value of a quantum measurement, where the eigenvalues mi correspond to some
relevant physical quantity. Such expectation values are particularly relevant for quan-
tum experiments (particularly the early ones) where one does not measure individual
quantum systems, but rather an ensemble of many independent and identically pre-
pared systems, and where the measurement apparatus provides only cumulative results
(e.g. the net magnetic field induced by an ensemble of nuclear spins). Consider a pro-
jective measurement described by projectors Pi, and suppose we measure the state |ψ〉.
Show that the expected value of mi is

E(mi) = Tr(M |ψ〉〈ψ|).

We have now seen how quantum measurements behave, starting with a postu-
late that describes a particular class of measurements, called (complete) Von
Neumann measurements. The Measurement Postulate also described the behav-
iour of a measurement when we measure a subsystem of a larger composite
quantum system. The Von Neumann measurement can be combined with other
basic quantum operations to provide more general types of measurements,
including general projective measurements, which canalso be phrased in terms

TEAM LinG

MIXED STATES AND GENERAL QUANTUM OPERATIONS 53

of measuring an observable (which can be any Hermitean operator on the state
space).

3.5 Mixed States and General Quantum Operations

In the preceding, we have always assumed that the state of a system has a
definite state vector. Such a state is commonly referred to as a pure state. There
are important situations, as we shall see, for which all we can say is that the
qubit is described by one of a specific set of state vectors, with corresponding
probabilities (the probabilities must add to 1). For example, suppose we know
that a qubit is in the pure state |ψ1〉 = 1√

2
|0〉+ 1√

2
|1〉 with probability 1/3, and is

in the pure state |ψ2〉 = 1√
2
|0〉− 1√

2
|1〉 with probability 2/3. The state described

by this probability distribution is called a mixture or ensemble of the states |ψ1〉
and |ψ2〉. We refer to the state of a system in such a situation as being a mixed
state. In this section, we will define the standard mathematical tools used to
describe mixed states and operations on mixed states. We will also discuss the
partial trace operation, which will in general map a pure state to a mixed state,
and a more general class of operations, which we call superoperators, that can
be derived from the partial trace.

3.5.1 Mixed States

We can have mixed states on an ensemble of any number n of qubits. One way
of representing a general mixed state on n qubits is as the ensemble{(

|ψ1〉, p1

)
,
(
|ψ2〉, p2

)
, . . . ,

(
|ψk〉, pk

)}
(3.5.1)

which means that the system is in the pure (n-qubit) state |ψi〉 with probability
pi, for i = 1, 2, . . . , k. Note that a pure state can be seen as a special case of a
mixed state, when all but one of the pi equal zero.

To use a representation such as (3.5.1) in all our calculations would be quite
cumbersome. There is an alternative, very useful, representation of mixed states
in terms of operators on the Hilbert spaceH. These are called density operators.5

The matrix representation of a density operator is called a density matrix.

The density operator for a pure state |ψ〉 is defined as

ρ = |ψ〉〈ψ|. (3.5.2)

If we apply the unitary operator U to state |ψ〉 we get the state U |ψ〉 which has
density operator U |ψ〉〈ψ|U †. Consider measuring the state with density operator

5It might seem unusual at first to use an ‘operator’ to describe a state. Nonetheless, it is
useful to use such a mathematical object to describe the state of a system.

TEAM LinG

54 QUBITS AND THE FRAMEWORK OF QUANTUM MECHANICS

ρ = |ψ〉〈ψ| in the computational basis. Recalling Equation (3.4.2), the probability
of getting 0 is given by

〈0|ψ〉〈ψ|0〉 = 〈0|ρ|0〉. (3.5.3)

Notice that 〈0|ψ〉〈ψ|0〉 evaluates to a real number. Since any number is the trace
of a corresponding 1× 1 matrix (whose only entry is that complex number), we
can also write the probability of the measurement giving result 0 as

〈0|ψ〉〈ψ|0〉 = Tr
(
〈0|ψ〉〈ψ|0〉

)
= Tr

(
|0〉〈0||ψ〉〈ψ|

)
(3.5.4)

where the last step follows from the cyclicity of trace (i.e. Tr(ABC) =
Tr(BCA) = Tr(CAB)).

Similarly, if we measure a qubit in a state with density operator ρ = |ψ〉〈ψ|, the
probability of obtaining the outcome |1〉 is Tr

(
|1〉〈1||ψ〉〈ψ|

)
. If only dealing with

pure states, this notation is unnecessarily redundant; however, if we also consider
mixed states it is a much more concise notation than used above in Equation
(3.5.1).

The density operator for an ensemble of pure states such as (3.5.1) is

ρ =
k∑

i=1

pi|ψi〉〈ψi| (3.5.5)

and captures all the relevant information about the state of the system.

For example, if we apply the unitary operator U to mixed state described in
(3.5.1), we would get the mixed state{(

U |ψ1〉, p1

)
,
(
U |ψ2〉, p2

)
, . . . ,

(
U |ψk〉, pk

)}
(3.5.6)

which has density operator

k∑
i=1

piU |ψi〉〈ψi|U† = U

(
k∑

i=1

pi|ψi〉〈ψi|
)

U † (3.5.7)

= UρU†. (3.5.8)

Note that the output density operator can be computed from the input density
operator and the unitary U without knowing the precise decomposition of the
input density operator.

Given the mixed state described by the density operator ρ of Equation (3.5.5), if
we measure in the computational basis the probability of obtaining the outcome
|0〉, for example, is

TEAM LinG

MIXED STATES AND GENERAL QUANTUM OPERATIONS 55

∑
i

piTr
(
|0〉〈0||ψi〉〈ψi|

)
(3.5.9)

= Tr
∑

i

pi|0〉〈0||ψi〉〈ψi| (3.5.10)

= Tr

(
|0〉〈0|

∑
i

pi|ψi〉〈ψi|
)

(3.5.11)

= Tr
(
|0〉〈0|ρ

)
. (3.5.12)

For computing the statistics associated with measuring any observable property
of a system, all that matters is the density operator itself, and not the precise
decomposition of the density operator. In other words, two mixtures with the
same density matrices are indistinguishable or equivalent (analogous to the way
two pure states that differ only by a global phase are equivalent).

Exercise 3.5.1 Find the density matrices of the following states:

(a)
{(

|0〉, 1
2

)
,
(
|1〉, 1

2

)}
.

(b) 1√
2
|0〉 + 1√

2
|1〉.

(c)
{(

1√
2
|0〉 + 1√

2
|1〉, 1

2

)
,
(

1√
2
|0〉 − 1√

2
|1〉, 1

2

)}
.

Exercise 3.5.2

(a) Prove that the density operator ρ for an ensemble of pure states satisfies the fol-
lowing conditions:

(i) Tr(ρ) = 1.
(ii) ρ is a positive operator (i.e. for any |v〉, 〈v|ρ|v〉 is real and non-negative; equiv-
alently, the eigenvalues of ρ are non-negative).

(b) Show that for any matrix ρ satisfying conditions 1 and 2, there exists a finite list
of probabilities pi and pure states |ψi〉 such that ρ is the density matrix of the mixed
state {(

|ψ1〉, p1

)
,
(
|ψ2〉, p2

)
, . . . ,

(
|ψk〉, pk

)}
. (3.5.13)

Exercise 3.5.3 Consider any linear transformation T on a Hilbert space H of dimen-
sion N . This linear transformation T induces a transformation ρ �→ TρT † on the set of
linear operators on the Hilbert space H. Prove that the above transformation is also
linear.

TEAM LinG

56 QUBITS AND THE FRAMEWORK OF QUANTUM MECHANICS

Mixed States and the Bloch Sphere

Recall from Section 3.1 that pure states of a qubit can be represented by points
on the surface of the Bloch sphere. Mixed states correspond to points in the
interior of the Bloch sphere, which can be seen as follows. If ρ =

∑
i pi|ψi〉〈ψi|

and if the Bloch vector for |ψi〉 is (αx,i, αy,i, αz,i), then the Bloch vector for
the mixed state ρ is

ρ =
∑

i

pi(αx,i, αy,i, αz,i) =

(∑
i

piαx,i,
∑

i

piαy,i,
∑

i

piαz,i

)
. (3.5.14)

There are of course many different convex combinations of points on the sur-
face of the Bloch sphere that correspond to the same mixed state. One can
compute the Bloch vector for a mixed state directly from its density matrix
as follows. Recall in Section 3.2 we observed that any operator on a single
qubit can be written as a linear combination of operators from {I,X, Y, Z}.
The operators X,Y, Z all have trace 0. Since a density matrix must have trace
1 (Exercise 3.5.2), this means that any density operator for a single qubit can
be written as

ρ = 1
2I + αxX + αyY + αzZ. (3.5.15)

The vector (αx, αy, αz) gives the coordinates for the point in the Bloch sphere
corresponding to the state ρ. For example, the totally mixed state (the ensemble
{(|0〉〈0|, 1

2), (|1〉〈1|, 1
2)} corresponds to the point at the centre of the Bloch

sphere.

3.5.2 Partial Trace

One of the most important uses for the density operator formulation is as a tool
for describing the state of a subsystem of a composite system. Consider a pure
state |ψ〉AB ∈ HA ⊗ HB of two qubits. Recall that the general state of such
a system may be entangled, and so it may not be possible to factor out the
state vector |ψ〉A ∈ HA for the state of the first qubit. However, the state of
the first qubit can in general be described as a mixed state. This means that it
can be described by a density operator ρA on HA, sometimes called a reduced
density operator. The mathematical operation for calculating the reduced density
operator is the partial trace. The reduced density operator ρA is defined in terms
of the density operator ρAB for the full 2-qubit system by

ρA ≡ TrB

(
ρAB

)
, (3.5.16)

where TrB is the partial trace over system B, defined as the linear extension of
the operator defined on basis states by

TrB

(
|a1〉〈a2| ⊗ |b1〉〈b2|

)
≡ |a1〉〈a2|Tr

(
|b1〉〈b2|

)
. (3.5.17)

TEAM LinG

MIXED STATES AND GENERAL QUANTUM OPERATIONS 57

Since
Tr
(
|b1〉〈b2|

)
= Tr

(
〈b2|b1〉

)
= 〈b2|b1〉, (3.5.18)

Equation (3.5.17) can be simplified to

TrB

(
|a1〉〈a2| ⊗ |b1〉〈b2|

)
= |a1〉〈a2|〈b2|b1〉. (3.5.19)

The operation of computing TrB is sometimes referred to as tracing-out system
B. As an example, we illustrate the partial trace operation by tracing out the
second qubit of the 2-qubit entangled state

1√
2

(
|00〉+ |11〉

)
. (3.5.20)

The density matrix for this state is

ρ = 1
2

(
|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|

)
. (3.5.21)

We compute the reduced density operator for the first qubit by tracing out qubit
B.

ρA = TrB(ρ)

= 1
2Tr2

(
|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|

)
= 1

2Tr2
(
|0〉〈0| ⊗ |0〉〈0|+ |0〉〈1| ⊗ |0〉〈1|+ |1〉〈0| ⊗ |1〉〈0|+ |1〉〈1| ⊗ |1〉〈1|

)
= 1

2

(
|0〉〈0|Tr

(
|0〉〈0|

)
+ |0〉〈1|Tr

(
|0〉〈1|

)
+ |1〉〈0|Tr

(
|1〉〈0|

)
+ |1〉〈1|Tr

(
|1〉〈1|

))
= 1

2

(
|0〉〈0|〈0|0〉+ |0〉〈1|〈1|0〉+ |1〉〈0|〈0|1〉+ |1〉〈1|〈1|1〉

)
= 1

2

(
|0〉〈0|+ |1〉〈1|

)
. (3.5.22)

Reduced density operators can be computed for composite systems consisting of
more than two qubits in an analogous way.

In Section 3.5.3, we see that the partial trace can be combined with the other
operations on quantum states that we have seen in order to induce a more general
type of transformation on quantum states, which we call superoperators.

We conclude this section on partial trace by showing that the partial trace is very
straightforward to compute when the joint state of the system being discarded
and the system being kept is expressed in Schmidt form.

Exercise 3.5.4

(a) Given a bipartite state on HA ⊗HB , suppose we want to apply a unitary operation
U on A, and then trace-out system B to give the resulting state for system A. Show
that applying the unitary U on system A commutes with tracing-out system B. In
other words, TrB((U ⊗ I)ρ(U† ⊗ I)) = U(TrBρ)U†.

(b) Prove that one way to compute TrB is to assume that someone has measured system
B in any orthonormal basis but does not tell you the measurement outcome.

TEAM LinG

58 QUBITS AND THE FRAMEWORK OF QUANTUM MECHANICS

Note: Part (b) shows that if some qubits in a computation will be discarded or ignored,
one can assume for the sake of analysing the state of the remaining qubits that the
discarded qubits have been measured. This is done, for example, in the analysis of the
algorithms in Sections 6.5, 7.3.3, 7.4, and 7.5.

Exercise 3.5.5

(a) Find a pure state ρAB ∈ HAB of a bipartite system AB, such that
ρAB = TrB (ρAB) ⊗ TrA (ρAB).

Note: The partial trace TrB(ρ) contains all the relevant information about system A
if system B is discarded. Similarly TrA(ρ) contains all the relevant information about
system B if system A is discarded. These local descriptions do not in general contain
enough information to reconstruct the state of the whole system.

(b) Show that for any density operator ρ on a system A, there exists a pure state ψ on
some larger system A ⊗ B such that ρ = TrB |ψ〉〈ψ| and dim(A) ≥ dim(B).

Partial Trace and the Schmidt Decomposition

When a bipartite vector is written in the Schmidt basis, it is very easy to compute
the partial trace of either subsystem. For example, consider the following pure
state on system AB, written in Schmidt form:

|ψ〉 =
∑

i

√
pi|ϕA

i 〉|ϕB
i 〉 (3.5.23)

where we recall that {|ϕA
i 〉} is a basis for HA and {|ϕB

i 〉} for HB . The density
matrix for |ψ〉 is

|ψ〉〈ψ| =
(∑

i

√
pi|ϕA

i 〉|ϕB
i 〉
)⎛⎝∑

j

√
pj〈ϕA

j |〈ϕB
j |

⎞⎠
=
∑
i,j

√
pi
√

pj |ϕA
i 〉|ϕB

i 〉〈ϕA
j |〈ϕB

j |

=
∑
i,j

√
pi
√

pj |ϕA
i 〉〈ϕA

j |ϕB
i 〉〈ϕB

j |.

Now let us trace-out system B.

TrB |ψ〉〈ψ| =
∑
i,j

√
pi
√

pj TrB |ϕA
i 〉〈ϕA

j ||ϕB
i 〉〈ϕB

j |

=
∑
i,j

√
pi
√

pj |ϕA
i 〉〈ϕA

j |〈ϕB
i |ϕB

j 〉

=
∑
i,j

√
pi
√

pj |ϕA
i 〉〈ϕA

j |δi,j

=
∑

i

pi|ϕA
i 〉〈ϕA

i |. (3.5.24)

Similarly, TrA|ψ〉〈ψ| =
∑

i pi|ϕB
i 〉〈ϕB

i |. TEAM LinG

MIXED STATES AND GENERAL QUANTUM OPERATIONS 59

Notice that in the Schmidt basis both reduced density operators are in diagonal
form, and that their spectra (i.e. sets of eigenvalues) are the same. This sug-
gest a method for computing the Schmidt decomposition, which is explained in
Appendix A.7.

3.5.3 General Quantum Operations

We initially stated the postulates of quantum mechanics for closed systems,
which involves pure states and unitary evolution. As we saw in the previous
section, if we allow our system to interact with an external system, it is often
appropriate to use mixed states to describe the state of our system. There is also
a corresponding more general framework for describing quantum operations that
involve external systems. Since we describe the behaviour of these more general
operations on the density operators describing mixed states, we often call these
operations superoperators. We will restrict attention to superoperators that do
not require measurements.6

A superoperator or a ‘general quantum operation’ can take as input a system
described by a density operator ρin corresponding to a Hilbert space of dimension
N , add an ancilla of arbitrary size (in fact, it can be shown, using Caratheodory’s
Theorem, that the dimension of the ancilla never needs to be larger than N2 and
that we can assume without loss of generality that the ancilla is initialized to
some fixed pure state), perform a unitary operation U on the joint system, and
then discard some subsystem.7

More explicitly, this can be described as the map:

ρin �→ ρout = TrB(U(ρin ⊗ |00 . . . 0〉〈00 . . . 0|)U †) (3.5.25)

where the state |00 . . . 0〉 is an ancilla state of arbitrary size (but without loss of
generality has dimension at most N2), U is a unitary operation acting on the
joint system, and B is some subsystem of the joint system. We illustrate these
operations using circuit diagrams in Figure 4.2 after we define quantum circuits
in Section 4.1. If B is the original ancilla system, then the superoperator does
not change the Hilbert space of the system. In general, we can describe states
that change the dimension of the state space. In Exercise 10.4.2 it is shown that
action of such a superoperator (restricting attention to operators that do not
change the Hilbert space) can be described by a finite sum8

ρin �→
∑

i

AiρinA†
i (3.5.26)

6A more general notion of quantum operations also involving measurements are discussed
briefly in Appendix A.8.

7It is important that the discarded system is never used again. Equivalently, it could be reset
to some generic state. Otherwise, the partial trace does not capture all the relevant information
about the state of system A.

8Since we are restricting to finite-dimensional ancillas, the number of terms one would derive
would be finite. In general, one can consider an infinite number of Ai terms, but the resulting
superoperator would have an equivalent formulation in terms of at most N2 other Kraus terms.TEAM LinG

60 QUBITS AND THE FRAMEWORK OF QUANTUM MECHANICS

where the Ai are called Kraus operators, which are linear operators9 on the same
Hilbert space as ρin and satisfy ∑

i

A†
iAi = I. (3.5.27)

Conversely, every set of Kraus operators satisfying the completeness condition
(Equation 3.5.26) can be realized by a map of the form in Equation 3.5.25 for
some unitary U (which is unique up to a final unitary on the system that is
traced out).

It it easy to verify that these superoperators are ‘trace-preserving completely
positive maps’, because (see Exercise 3.5.7) they are maps that:

• map positive operators (in Exercise 3.5.2 we saw that density operators are
positive) to positive operators (hence the term ‘positive’ map)
• when tensored with the identity operation, they still map positive operators

to positive operators (e.g. the transpose map is positive but not completely
positive; see Exercise 3.5.6)
• preserve the trace of the density operator (this equates to preserving the

sum of the probabilities of the outcomes of a measurement).

Exercise 3.5.6 Prove that the transpose map, which maps ρ �→ ρT is positive, but
not completely positive.

Exercise 3.5.7 Prove that superoperators, as defined in Equation 3.5.25, are trace-
preserving completely positive maps.

It can be proved, using the Stinespring dilation theorem, that any linear map
from operators on one (finite-dimensional) Hilbert space to operators on an-
other (finite-dimensional) Hilbert space that is trace-preserving and completely
positive is equivalent to a superoperator of the form described above. Thus, lin-
ear trace-preserving completely positive maps exactly characterize the notion of
‘general quantum operation’ we have described.

9In general, the Ai could be linear transformations from H (of dimension N) to some other
Hilbert space H′ of dimension D.

TEAM LinG

4

A QUANTUM MODEL
OF COMPUTATION

4.1 The Quantum Circuit Model

In Section 1.3, we introduced the circuit model of (classical) computation. We re-
stricted attention to reversible circuits since they can simulate any non-reversible
circuit with modest overhead. This model can be generalized to a model of quan-
tum circuits. In the quantum circuit model, we have logical qubits carried along
‘wires’, and quantum gates that act on the qubits. A quantum gate acting on
n qubits has the input qubits carried to it by n wires, and n other wires carry
the output qubits away from the gate. A quantum circuit is often illustrated
schematically by a circuit diagram as shown in Figure 4.1. The wires are shown
as horizontal lines, and we imagine the qubits propagating along the wires from
left to right in time. The gates are shown as rectangular blocks. For convenience,
we will restrict attention to unitary quantum gates1 (which are also reversible).
Recall from Section 3.5.3 that non-unitary (non-reversible) quantum operations
can be simulated by unitary (reversible) quantum gates if we allow the possibil-
ity of adding an ancilla and of discarding some output qubits. A circuit diagram
describing a superoperator being implemented using a unitary operator is illus-
trated in Figure 4.2.

In the example of Figure 4.1, the 4-qubit state |ψi〉 = |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 en-
ters the circuit at the left (recall we often write this state as |ψi〉 = |0〉|0〉|0〉|0〉
or |ψi〉 = |0000〉.) These qubits are processed by the gates U1, U2, U3, and U4.
At the output of the circuit we have the collective (possibly entangled) 4-qubit
state |ψf 〉. A measurement is then made of the resulting state. The measure-
ment will often be a simple qubit-by-qubit measurement in the computational
basis, but in some cases may be a more general measurement of the joint state.
A measurement of a single qubit in the computational basis is denoted on a
circuit diagram by a small triangle, as shown in Figure 4.1 (there are other

1We could consider measurements to be a special kind of gate that extracts or outputs some
classical information about the quantum system. However, in this text we will restrict use of
the word ‘gate’ to refer to operations that do not output such classical information. Thus the
most general kind of operation implementable by a gate is a superoperator. Furthermore, for
convenience, we will restrict attention to unitary gates.

61
TEAM LinG

62 A QUANTUM MODEL OF COMPUTATION

Fig. 4.1 A quantum circuit. The 4-qubit state |0〉|0〉|0〉|0〉 enters the circuit on the left.

The boxes labelled U1, U2, U3, U4 represent quantum gates applied to the qubits (in the

order indicated from left to right). The joint (possibly entangled) 4-qubit state after

the gates are applied is |ψf 〉. The small triangles at the right side of the circuit indicate

that each of the four qubits of the final state are measured in the computational basis

to provide the output of the circuit.

Garbage

Ancilla

Fig. 4.2 A general (possibly irreversible) quantum operation or superoperator can be

realized using a unitary operation by adding an ancilla and tracing out part of the

output. Thus, we can restrict attention to unitary gates.

symbols used in the literature, but we adopt this one). The triangle symbol will
be modified for cases in which there is a need to indicate different types of mea-
surements. Recall that the measurement postulate stated that a measurement
outputs a classical label ‘i’ indicating the outcome of the measurement and a
quantum state |φi〉. Thus, we could in general draw our measurement symbol
with a ‘quantum’ wire carrying the quantum state resulting from the measure-
ment, together with a classical wire carrying the classical label, as depicted in
Figure 4.3.

Quite often, the quantum outcome is discarded or ignored, and we are only
interested in the classical information telling us which outcome occurred. In
such cases, we will not draw the quantum wire coming out of the measure-
ment symbol. We will usually omit the classical wire from circuit diagrams
as well.

TEAM LinG

QUANTUM GATES 63

Classical
display

Fig. 4.3 The measurement of the quantum state α0|0〉 + α1|1〉 results in a quantum

output |b〉 with probability |αb|2 (b ∈ {0, 1}) together with a classical label ‘b’ indicating

which outcome was obtained. If the quantum output is discarded or ignored, we usually

omit to draw the quantum wire on the right side of the measurement symbol. The

classical wire carrying the output label is also usually omitted.

Fig. 4.4 The NOT gate rotating the state |0〉 to the state |1〉.

4.2 Quantum Gates

4.2.1 1-Qubit Gates

In Section 3.2, we said that any unitary operator acting on a 2-dimensional quan-
tum system (a qubit) is called a ‘1-qubit quantum gate’. We gave the quantum
not gate (sometimes called the Pauli X gate) as an example (and mentioned the
other Pauli gates). Recall the Bloch sphere from Section 3.1. Every 1-qubit pure
state is represented as a point on the surface of the Bloch sphere, or equivalently
as a unit vector whose origin is fixed at the centre of the Bloch sphere. A 1-qubit
quantum gate U transforms a quantum state |ψ〉 into another quantum state
U |ψ〉. In terms of the Bloch sphere, the action of U on |ψ〉 can be thought of as
a rotation of the Bloch vector for |ψ〉 to the Bloch vector for U |ψ〉. For example,
the not gate takes the state |0〉 to the state |1〉 (and takes |1〉 to |0〉). In terms
of the Bloch sphere, this action can be visualized as a rotation through an angle
π about the x axis, as illustrated in Figure 4.4.

Recall in Section 2.5 we saw how to compute the exponential (and other func-
tions) of operators. If we exponentiate the Pauli gates, we get unitary operators
corresponding to very important classes of 1-qubit gates. These are the rotation

TEAM LinG

64 A QUANTUM MODEL OF COMPUTATION

gates, which correspond to rotations about the x-,y-, and z- axes of the Bloch
sphere. They are defined in terms of the Pauli gates, and so for convenience, we
remind you now of the definitions of the Pauli gates:

I ≡
[
1 0
0 1

]
X ≡

[
0 1
1 0

]
Y ≡

[
0 −i
i 0

]
Z ≡

[
1 0
0 −1

]
. (4.2.1)

The rotation gates are defined as follows:

Rx(θ) ≡ e
−iθX

2

Ry(θ) ≡ e
−iθY

2

Rz(θ) ≡ e
−iθZ

2 . (4.2.2)

Exercise 4.2.1 Let x be a real number and A a matrix such that A2 = I. Show that

eiAx = cos(x)I + i sin(x)A.

It is easy to check that the Pauli operators X,Y , and Z satisfy the conditions
X2 = I, Y 2 = I, and Z2 = I, and so using the result of Exercise 4.2.7 we can
write the rotation gates as:

Rx(θ) ≡ e
−iθX

2 = cos
(

θ
2

)
I − i sin

(
θ
2

)
X

Ry(θ) ≡ e
−iθY

2 = cos
(

θ
2

)
I − i sin

(
θ
2

)
Y

Rz(θ) ≡ e
−iθZ

2 = cos
(

θ
2

)
I − i sin

(
θ
2

)
Z. (4.2.3)

Knowing the matrices for I,X, Y , and Z in the computational basis, we can now
write the rotation gates as matrices in the computational basis:

Rx(θ) =
[

cos
(

θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos

(
θ
2

)]

Ry(θ) =
[
cos

(
θ
2

)
− sin

(
θ
2

)
sin

(
θ
2

)
cos

(
θ
2

)]

Rz(θ) =

[
e−i θ

2 0
0 ei θ

2

]
. (4.2.4)

TEAM LinG

QUANTUM GATES 65

Consider an arbitrary 1-qubit state, written in terms of its Bloch vector angles
σ and τ :

cos
(σ

2

)
|0〉+ eiτ sin

(σ

2

)
|1〉. (4.2.5)

In the computational basis, this can be written as the column vector(
cos

(
σ
2

)
eiτ sin

(
σ
2

)) . (4.2.6)

The effect of applying Rz(θ) on this state can be seen by performing a matrix
multiplication:[

e−i θ
2 0

0 ei θ
2

](
cos

(
σ
2

)
eiτ sin

(
σ
2

)) =

(
e−i θ

2 cos
(

σ
2

)
ei θ

2 eiτ sin
(

σ
2

))

= e−i θ
2

(
cos

(
σ
2

)
eiθeiτ sin

(
σ
2

))
= e−i θ

2

(
cos

(σ

2

)
|0〉+ ei(τ+θ) sin

(σ

2

)
|1〉

)
. (4.2.7)

Since a global phase is insignificant, we have the state

cos
(σ

2

)
|0〉+ ei(τ+θ) sin

(σ

2

)
|1〉. (4.2.8)

We see that effect of Rz(θ) has been to change the angle τ to τ + θ, which is a
rotation of θ about the z-axis of the Bloch sphere. To see that Rx(θ) and Ry(θ)
implement rotations about the x- and y-axes of the Bloch sphere is trickier,
because such rotations involve changes to both angles σ and τ .

Exercise 4.2.2 Show that Rx(θ) and Ry(θ) implement rotations through an angle θ
about the x- and y-axes of the Bloch sphere, respectively.

It will be useful to show how to decompose any given 1-qubit gate into a sequence
of rotations about the main axes of the Bloch sphere. The following theorem tells
us that we can decompose any 1-qubit gate into a sequence of two rotations about
the z-axis and one rotation about the y-axis, along with a suitable phase factor.

Theorem 4.2.1 Suppose U is a 1-qubit unitary gate. Then there exist real
numbers α, β, γ, and δ such that

U = eiαRz(β)Ry(γ)Rz(δ). (4.2.9)

The proof of this follows from the fact that U is unitary, and the definition of the
rotation matrices. There is nothing special about the y- and z-axes of the Bloch
sphere. We can also give decompositions of 1-qubit gates in terms of rotations
about any other two non-parallel axes of the Bloch sphere.

TEAM LinG

66 A QUANTUM MODEL OF COMPUTATION

Theorem 4.2.2 Suppose U is a 1-qubit unitary gate. Let l and m be any two
non-parallel axes of the Bloch sphere. Then there exist real numbers α, β, γ, and
δ such that

U = eiαRl(β)Rm(γ)Rl(δ). (4.2.10)

The following corollary of Theorem 4.2.1 will be used in the next section.

Corollary 4.2.1 Any 1-qubit gate U can be written in the form

U = eiαAXBXC, (4.2.11)

where A,B,C are unitary operators satisfying ABC = I. (Recall that the Pauli
gate X is the NOT gate.)

Exercise 4.2.3

(a) Prove XRy(θ)X = Ry(−θ) and XRz(θ)X = Rz(−θ).

(b) Prove Corollary 4.2.1.

Hint: Using Theorem 4.2.1 we can write

U = eiαRz(β)Ry(γ)Rz(δ). (4.2.12)

Then take A ≡ Rz(β)Ry(γ/2), B ≡ Ry(−γ/2)Rz(−(δ +β)/2), and C ≡ Rz((δ−β)/2).

4.2.2 Controlled-U Gates

Recall in Section 3.3 we introduced the controlled-not (cnot) gate. This is a
2-qubit quantum gate that conditionally applies the not gate on the second
(target) qubit when the first (control qubit) is in state |1〉. Remember that such
a gate acts on quantum states in quantum superposition.

Exercise 4.2.4 Describe the effect of the cnot gate with respect to the following
bases.

(a) B1 =
{

|0〉
(

|0〉+|1〉√
2

)
, |0〉

(
|0〉−|1〉√

2

)
, |1〉

(
|0〉+|1〉√

2

)
, |1〉

(
|0〉−|1〉√

2

) }
(b) B2 =

{ (
|0〉+|1〉√

2

) (
|0〉+|1〉√

2

)
,
(

|0〉+|1〉√
2

) (
|0〉−|1〉√

2

)
,
(

|0〉−|1〉√
2

) (
|0〉+|1〉√

2

)
,(

|0〉−|1〉√
2

) (
|0〉−|1〉√

2

) }
Express your answers both using Dirac notation, and also with matrix notation.

TEAM LinG

QUANTUM GATES 67

Given any 1-qubit gate U , we can similarly define a controlled-U gate, denoted
c-U , which will be a 2-qubit gate corresponding to the following operation:

c-U |0〉|ψ〉 = |0〉|ψ〉
c-U |1〉|ψ〉 = |1〉U |ψ〉. (4.2.13)

Exercise 4.2.5 Prove that the c-U gate corresponds to the operator

|0〉〈0| ⊗ I + |1〉〈1| ⊗ U.

Exercise 4.2.6 We know that U and eiθU are equivalent since they only differ by a
global phase. However, prove that c-U = c-(eiθU) for θ not equal to an integer multiple
of 2π.

The symbol commonly used for the c-U gate in a quantum circuit diagram is
shown in Figure 4.5.

Exercise 4.2.7 For a given 1-qubit gate U , use the result of Corollary 4.2.1 to con-
struct a circuit for implementing a c-U gate using only cnot gates, and single-qubit
gates.

Hint: Use the fact that the controlled application of eiαI to the target qubit is equivalent
to a 1-qubit phase rotation gate acting on the control qubit.

The construction of a controlled-U for any 1-qubit gate U is the subject of Ex-
ercise 4.2.7. This can be generalized to allow the implementation of a controlled
version of any quantum circuit implementing a unitary operation U . Suppose we
are given a circuit CU implementing a unitary U , and we wish to implement a
circuit for the controlled-U operation. The basic technique is to replace every
gate G in CU by a controlled gate c-G, as shown in Figure 4.6.

For 1-qubit gates G, the controlled gate c-G can be constructed using the method
of Exercise 4.2.7. As we will see in Section 4.3, we can assume without loss of
generality that CU consists only of 1-qubit gates and cnot gates. So the only
thing that remains is to construct a controlled version of the cnot gate. Recall

Fig. 4.5 The c-U gate.

TEAM LinG

68 A QUANTUM MODEL OF COMPUTATION

Fig. 4.6 Given a circuit CU implementing a unitary U , to implement a circuit for the

controlled-U operation we replace every gate G in CU by a controlled gate c-G.

Fig. 4.7 Suppose that at some point in a computation there is some qubit that will

only be used as a control qubit in subsequent controlled-Ub operations before being

discarded. The same result is obtained if one measures the qubit in the computational

basis and then classically controls the Ub gates.

from Section 1.3 that a controlled-cnot gate is called a Toffoli gate. As we shall
see in Section 4.3, the Toffoli gate can be implemented by a circuit containing
cnot gates and some 1-qubit gates. So we can use this replacement for each
of the Toffoli gates generated in our construction of the controlled-U circuit.
This completes the construction of a circuit for implementing the controlled-U
operation.

Exercise 4.2.8 Suppose that at some point in a computation there is some qubit
that will only be used as a control qubit in subsequent controlled-Ub operations before
being discarded. By controlled-Ub we mean the transformation applies some unitary
U0 on some other qubit(s) in the computation if the control qubit is in state |0〉 (in
the previous examples of controlled-gates, U0 = I) and applies some unitary U1 if the
control qubit is in state |1〉. Prove that one obtains the same result if one measures the
qubit in the computational basis and then classically controls whether to apply U0 or
U1. (This is illustrated in Figure 4.7.)

4.3 Universal Sets of Quantum Gates

The gates we have seen so far have acted on either a single qubit, or on two
qubits. An interesting quantum algorithm would, in general, be some complicated
unitary operator acting non-trivially on n-qubits. In classical computing, we
implement complicated operations as a sequence of much simpler operations. In
practice, we want to be able to select these simple operations from some set
of elementary gates. In quantum computing, we do the same thing. The goal
is to choose some finite set of gates so that, by constructing a circuit using

TEAM LinG

UNIVERSAL SETS OF QUANTUM GATES 69

only gates from that set, we can implement non-trivial and interesting quantum
computations.

When we use a circuit of quantum gates to implement some desired unitary
operation, in practice, it suffices to have an implementation that approximates
the desired unitary to some specified level of accuracy. We need to make precise
the notion of the quality of an approximation of a unitary transformation. Sup-
pose we approximate a desired unitary transformation U by some other unitary
transformation V . The error in the approximation is defined to be

E(U, V) ≡ max
|ψ〉

∥∥(U − V)|ψ〉
∥∥ (4.3.1)

(recall Equation (2.2.11) for the definition of the norm). When we say that an
operator U can be ‘approximated to arbitrary accuracy’, we mean that if we are
given any error tolerance ε > 0, we can implement some unitary V such that
E(U, V) < ε.

Exercise 4.3.1 Show that

E(U2U1, V2V1) ≤ E(U2, V2) + E(U1, V1). (4.3.2)

From Exercise 4.3.1 it follows that

E(UnUn−1 . . . U1, VnVn−1 . . . V1) ≤ E(Un, Vn)+E(Un−1, Vn−1)+ · · ·+E(U1, V1).
(4.3.3)

Definition 4.3.1 A set of gates is said to be universal if for any integer n ≥ 1,
any n-qubit unitary operator can be approximated to arbitrary accuracy by a
quantum circuit using only gates from that set.

Finding convenient universal sets of gates is of great practical importance as well
as of theoretical interest. Since a universal set of gates must be able to implement,
for example, the cnot, it will have to contain at least one non-trivial gate on
two or more qubits.

Definition 4.3.2 A 2-qubit gate is said to be an entangling gate if for some
input product state |ψ〉|φ〉 the output of the gate is not a product state (i.e. the
output qubits are entangled).

The following universality result is a useful starting point.

Theorem 4.3.3 A set composed of any 2-qubit entangling gate, together with
all 1-qubit gates, is universal.

TEAM LinG

70 A QUANTUM MODEL OF COMPUTATION

Theorem 4.3.3 implies, for example, that the cnot gate together with all
1-qubit gates is universal.2 The theorem gives sets that are universal in a stronger
sense required by Definition 4.3.1. With an entangling 2-qubit gate and all
1-qubit gates, we can implement any n-qubit unitary exactly. A shortcoming
of Theorem 4.3.3 is that the universal sets of gates it provides are infinite. It
is useful to find a finite set of gates that is universal. A natural starting point
in this direction is to look for a finite set of 1-qubit gates that can be used to
approximate any 1-qubit gate to arbitrary accuracy.

Definition 4.3.4 A set of gates is said to be universal for 1-qubit gates if any
1-qubit unitary gate can be approximated to arbitrary accuracy by a quantum
circuit using only gates from that set.

Theorem 4.2.2 states that for any two non-parallel axes l and m of the Bloch
sphere, the set consisting of the rotation gates Rl(β) and Rm(γ) for all
β, γ ∈ [0, 2π) is universal for 1-qubit gates. This implies the following corollary
(see Exercise 4.3.2).

Theorem 4.3.5 If a set of two 1-qubit gates (rotations) G = {Rl(β), Rm(γ)}
satisfies the conditions

(i) l and m are non-parallel axes of the Bloch sphere, and

(ii) β, γ ∈ [0, 2π) are real numbers such that β
π and γ

π are not rational

then G is universal for 1-qubit gates.

Exercise 4.3.2 Let Rm(θ1), Rm(θ2) be 1-qubit rotations about the same axis.

(a) Show that distance between Rm(θ1) and Rm(θ2) satisfies E(Rm(θ1), Rm(θ2)) ≤∣∣eiθ1 − eiθ2
∣∣ ≤ |θ1 − θ2|.

(b) Let β ∈ [0, 2π) is such that β
π

is not rational. Prove that for any ε > 0, and for any
θ ∈ [0, 2π), there exists an integer n such that E(Rn

m(β), Rm(θ)) ≤ ε.

Hint: Use the pigeon-hole principle, which states the following. If N > M , then par-
titioning N elements into M disjoint sets, gives at least one set with more than 1
element.

As a concrete example, we give a simple set satisfying the conditions of Theo-
rem 4.3.5. In this direction, we first take a short detour to introduce two impor-
tant 1-qubit gates.

The Hadamard gate, H, is defined as that gate mapping the computational basis
states as follows:

2Recall that for reversible classical computation, 1- and 2-bit reversible gates were not
universal.

TEAM LinG

EFFICIENCY OF APPROXIMATING UNITARY TRANSFORMATIONS 71

H|0〉 = 1√
2

(
|0〉+ |1〉

)
H|1〉 = 1√

2

(
|0〉 − |1〉

)
. (4.3.4)

The Hadamard gate has the following matrix representation (with respect to the
computational basis):

1√
2

[
1 1
1 −1

]
. (4.3.5)

One useful property of the Hadamard gate is that it is self-inverse, meaning
H = H−1, and so

H
(

1√
2

(
|0〉+ |1〉

))
= |0〉

H
(

1√
2

(
|0〉 − |1〉

))
= |1〉. (4.3.6)

Another 1-qubit gate that will be important for us is the π
8 -phase gate, T , which

acts on the computational basis states as follows:

T |0〉 = |0〉
T |1〉 = ei π

4 |1〉. (4.3.7)

The π
8 -phase gate has the following matrix representation:

T =
[
1 0
0 ei π

4

]
. (4.3.8)

Note that T is equivalent to [
e−i π

8 0
0 ei π

8

]
(4.3.9)

(up to global phase), which is why we call it a π
8 -gate.

The following result holds.

Lemma 4.3.6 The set G = {HTHT, THTH} satisfies the conditions of Theo-
rem 4.3.5.

This immediately gives the following corollary.

Corollary 4.3.1 The set {H,T} is universal for 1-qubit gates.

Recalling Lemma 4.3.3, we now have the following universality result.

Theorem 4.3.7 The set {cnot,H, T} is a universal set of gates.

4.4 Efficiency of Approximating Unitary Transformations

In the previous section, we have stated that an arbitrary unitary transformation
can be simulated using gates from a fixed universal set, such as {H,cnot, T}

TEAM LinG

72 A QUANTUM MODEL OF COMPUTATION

(Theorem 4.3.7). We have said nothing about how efficiently this can be done
however. If we wish to implement a given unitary transformation U (correspond-
ing to some computation), we would be interested in being able to do this using
a polynomial number of gates from our universal set. Here, ‘polynomial’ is taken
to mean ‘polynomial in 1

ε and in the number of qubits n’, where ε is the desired
quality of the estimate of U .

In fact, most unitary transformations cannot be efficiently approximated using
gates from our universal set; this can be shown by counting arguments (since
there are many more transformations than efficient circuits).

The difficulty in efficiently implementing some unitary transformations does not
lie in the complexity of simulating arbitrary 1-qubit gates from a finite set of
1-qubit gates, since the decomposition described in Exercise 4.3.2 can be done
in time polynomial in 1

ε provided n-bit approximations3 of all the coefficients
of the gates can be computed in time polynomial in n. A result known as the
Solovay–Kitaev theorem promises that we can do much better and find a set G
of 1-qubit gates such that any arbitrary 1-qubit gate can be approximated to
arbitrary accuracy using a sequence of a poly-logarithmic number of gates from
G. In other words, if we want to approximate a given unitary with error less than
ε, we can do so using a number of gates that is polynomial in log(1

ε).

It is worth discussing some of the consequences of the Solovay–Kitaev theorem.
Suppose we are given a quantum circuit consisting of several cnot gates, and m
1-qubit gates, and we wish to approximate this circuit using only gates from the
universal set {cnot} ∪ G. Suppose we approximate each 1-qubit gate in the cir-
cuit with error at most ε

m . Then the overall error in the approximation of the
circuit is bounded by ε (recall Equation 4.3.3). So, if we want to approximate
the circuit using only gates from our universal set {cnot} ∪ G, and if we want
the total error in the approximation to be at most ε, we should aim to approx-
imate each 1-qubit gate in the circuit with error at most ε

m . We are now faced
with the following question of efficiency: ‘how many gates from G are required
to approximate each 1-qubit gate with error at most ε

m?’ A special case of the
Solovay–Kitaev theorem answers this question.

Theorem 4.4.1 (Solovay–Kitaev) If G is a finite set of 1-qubit gates satisfying
the conditions of Theorem 4.3.5 and also

(iii) for any gate g ∈ G, its inverse g−1 can be implemented exactly by a finite
sequence of gates in G,

then any 1-qubit gate can be approximated with error at most ε using O
(
logc

(
1
ε

))
gates from G, where c is a positive constant.

3By n-bit approximation, we mean a rational approximation of the form x
2n with error at

most 1
2n .

TEAM LinG

IMPLEMENTING MEASUREMENTS WITH QUANTUM CIRCUITS 73

Thus, according to the Solovay–Kitaev theorem, any 1-qubit gate can be ap-
proximated with error at most ε

m using O
(
logc

(
m
ε

))
gates from a finite set G

that is universal for 1-qubit gates, and that contains its own inverses (or whose
inverses can be constructed exactly from a finite sequence of gates from G). It
is worth noting that if n-bit approximations of the coefficients of the gates in G
can be computed in time polynomial in n, then the efficient decompositions can
be found in time polynomial in log(1

ε).

Notice that the set {H,T} satisfies these conditions. For a circuit having m
1-qubit gates, the approximation of these gates requires at most

O
(
m logc

(m

ε

))
(4.4.1)

gates from a universal set. This is a poly-logarithmic increase over the size of the
original circuit.

4.5 Implementing Measurements with Quantum Circuits

In this section we examine how quantum circuits diagrams can be used to de-
scribe and implement the various types of quantum measurements described in
Section 3.4, using only measurements of qubits with respect to the computational
basis, and a universal set of unitary gates (for simplicity, in this section, we will
assume that we can implement any unitary operation exactly).

After some examples of measuring simple two-state systems, we stated Postulate
4 in terms of a Von Neumann measurement with respect to some orthonormal
basis B = {|ϕj〉}. Such ‘complete’ projective measurements are used commonly
in quantum computing and quantum communication. In the next section, the
superdense coding and quantum teleportation protocols will rely on the ability
to perform certain Von Neumann measurements.

Given an orthonormal basis |ϕj〉, suppose we have a state |ψ〉, which we write
in this basis:

|ψ〉 =
∑

j

αj |ϕj〉. (4.5.1)

Recall that a Von Neumann measurement of |ψ〉 with respect to the basis {|ϕj〉}
is described by the orthogonal projectors {|ϕj〉〈ϕj |}, and will output the result
‘j’ with probability

Tr
(
|ψ〉〈ψ||ϕj〉〈ϕj |

)
= Tr

(
〈ϕj |ψ〉〈ψ|ϕj〉

)
= 〈ϕj |ψ〉〈ψ|ϕj〉
=
∣∣〈ϕj |ψ〉

∣∣2
=
∣∣αj

∣∣2. (4.5.2)

Given a device that will measure individual qubits in the computational basis,
we can use a quantum circuit to implement Von Neumann measurements of

TEAM LinG

74 A QUANTUM MODEL OF COMPUTATION

W

Fig. 4.8 Circuit implementing a Von Neumann measurement with respect to the basis

{|φj〉}. First U is applied to perform a basis change to the computational basis. Then

a measurement is made in the computational basis, obtaining a specific (classical)

outcome ‘j’ with probability |αj |2. The state of the system after this measurement is |j〉.
Finally U−1 is applied to change back to the {|ψj〉}-basis, leaving the post-measurement

state |ψj〉.

W

Fig. 4.9 Another circuit implementing the Von Neumann measurement. This time

instead of directly measuring the state after the basis change effected by U , the mea-

surement result is written to an ancillary register, creating the state
∑

j αj |j〉|j〉. The

inverse basis change U−1 leaves the state
∑

j |φj〉|j〉. A measurement of the ancillary

register in the computational basis gives the result ‘j’ with probability |αj |2 and leaves

the main register in the state |φj〉.

a multi-qubit register with respect to any orthonormal basis {|ϕj〉}. This can
be done as follows. First, we construct a quantum circuit that implements the
unitary transformation

U |ϕj〉 = |j〉 (4.5.3)

(where the index j is assumed to be written in n-bit binary, |j〉 is the corre-
sponding n-qubit computational basis state). The operator U performs a basis
change from the {|ϕj〉}-basis to the computational basis. Given a general state∑

j αj |ϕj〉, we use the circuit to perform the basis change U , and then make
a measurement of the register in the computational basis. Finally, we perform
the inverse basis change U−1 (by running the circuit for U backwards, replacing
each gate by its inverse). This network is shown in Figure 4.8. An alternative
approach is illustrated in Figure 4.9. In the alternative approach, we do not di-
rectly measure the state (with respect to the computational basis) after the basis

TEAM LinG

IMPLEMENTING MEASUREMENTS WITH QUANTUM CIRCUITS 75

Fig. 4.10 A circuit implementing a basis change from the computational basis to the

Bell basis.

change, but instead we ‘copy’4 the values onto an ancillary register, which we
then measure in the computational basis.

As an example of how to implement the unitary basis change U , suppose we want
to implement a Von Neumann measurement of a 2-qubit state, with respect to
the orthonormal basis {|β00〉, |β01〉, |β10〉, |β11〉} where

|β00〉 = 1√
2
|00〉+ 1√

2
|11〉 |β01〉 = 1√

2
|01〉+ 1√

2
|10〉

|β10〉 = 1√
2
|00〉 − 1√

2
|11〉 |β11〉 = 1√

2
|01〉 − 1√

2
|10〉. (4.5.4)

This basis is known as the Bell basis, and the four states |β00〉, |β01〉, |β10〉, |β11〉
are called the Bell states (also called EPR pairs). These states arise often in
the study of quantum computation. A circuit that implements the basis change
from the computational basis to the Bell basis is shown in Figure 4.10 (for the
basis change from the Bell basis to the computational basis, we could run this
circuit backwards). Suppose the input to the circuit in Figure 4.10 is the basis
state |ϕ1〉 = |00〉. Consider the state as it passes through the circuit. After the
Hadamard gate, the state is

|ϕ2〉 = 1√
2

(
|0〉+ |1〉

)
|0〉 (4.5.5)

= 1√
2

(
|00〉+ |10〉

)
. (4.5.6)

Note that the order of the qubits has been maintained in the above. Next, the
controlled-not gate transforms this state into

|ϕ3〉 = 1√
2
(|00〉+ |11〉). (4.5.7)

We have |ϕ3〉 = |β00〉, and so we have verified that the circuit performs the basis
change correctly on the input state |00〉. Similarly, the circuit performs the basis
change correctly for the remaining three computational basis states |01〉, |10〉,
and |11〉, transforming them to |β01〉, |β10〉, and |β11〉, respectively.

In order to implement a ‘Bell measurement’ (i.e. a Von Neumann measurement
with respect to the Bell basis), one could implement the circuit in Figure 4.9

4By ‘copy’ we mean that we perform the reversible (unitary) transformation that copies
computational basis states. We are not cloning arbitrary superpositions.

TEAM LinG

76 A QUANTUM MODEL OF COMPUTATION

Bell

Fig. 4.11 A measurement with respect to the Bell basis can be implemented by the

above circuit. Here we assume that we discard (or ignore) the resulting quantum state,

and only output one of four labels 00, 01, 10, or 11 indicating the measurement outcome.

Note that these two measurements are only equivalent in terms of their net result. In

general, a Bell measurement does not require implementing a cnot gate.

backwards, measure in the computational basis, and then apply the circuit in
Figure 4.9 forwards again. If we only care about the classical measurement out-
come, labelled by two bits 00, 01, 10, or 11, then we do not need to implement the
Bell basis change again after the measurement. This equivalence is illustrated in
Figure 4.11.

It will be very important for quantum computing, in particular for quantum
error correction, to be able to implement general projective measurements, and
not complete Von Neumann measurements. Consider a projective measurement
with respect to the decomposition

I =
∑

i

Pi, (4.5.8)

where Pi has rank ri. In other words

Pi =
ri∑

j=1

|ψi,j〉〈ψi,j |

where the the states {|ψi,j〉} are an orthonormal basis for the Hilbert space of
dimension N =

∑
i ri.

Let UP be a circuit that maps |ψi,j〉|0〉 �→ |ψi,j〉|i〉. One way (but not the only
way) to implement UP is to perform a basis change U : |ψi,j〉 �→ |i, j〉, ‘copy’ j
to the ancilla register, and then apply U−1.

As an example, we consider a collection of projectors that are already diago-
nal in the computational basis, the parity projectors P0 and P1 (defined earlier
in Section 3.4). Any input state |ψ〉 =

∑
x βx|x〉 can be rewritten as

|ψ〉 = α0|ψ0〉 + α1|ψ1〉, where 〈ψ0|ψ1〉 = 0, αi =
√
〈ψ|Pi|ψ〉, and |ψi〉 = Pi|ψ〉

αi

(as shown in Exercise 3.4.1). A parity measurement should output ‘0’ and the
state |ψ0〉 with probability |α0|2 and output ‘1’ and the state |ψ1〉 with proba-
bility |α1|2.
One can implement UP with a sequence of cnot gates, as illustrated in Figure
4.12. Thus after the UP circuit, we have the state

TEAM LinG

IMPLEMENTING MEASUREMENTS WITH QUANTUM CIRCUITS 77

Fig. 4.12 A circuit computing the parity of three qubits.

W

Fig. 4.13 A circuit implementing a parity measurement.

∑
x

αx|x〉|parity(x)〉 =
∑

parity(x)=0

αx|x〉|0〉+
∑

parity(x)=1

αx|x〉|1〉

= α0|ψ0〉|0〉+ α1|ψ1〉|1〉.

Thus measuring the ancilla qubit will leave the first register in the state |ψ0〉
with probability |α0|2 and in the state |ψ1〉 with probability |α1|2, as required.
Therefore, this circuit will implement a parity measurement on an arbitrary 3-
qubit state, as depicted in Figure 4.13.

It is worth emphasizing what differentiates this projective parity measurement
from a Von Neumann measurement followed by classical post-processing to com-
pute the parity. The projective measurement measures only the parity of the
strings in the quantum state, and no other information, leaving one of the super-
position states |ψ0〉 or |ψ1〉. A complete Von Neumann measurement would have
extracted more information than needed, and we would have been left with a
random basis state |x〉 of a specific parity instead of a superposition of all strings
with the same parity.

We have introduced the basic building blocks of quantum circuits and presented
circuit diagrams as a useful tool for describing quantum circuits and quantum op-
erations in general. The remaining chapters will show how to construct quantum
circuits to implement quantum protocols and algorithms. The quantum algo-
rithms will be described in terms of uniform families of acyclic quantum circuits,
where by uniform we mean that a classical computer can produce the quantum
circuits in time polynomial in the size of the circuit.

TEAM LinG

5

SUPERDENSE CODING
AND QUANTUM
TELEPORTATION

We are now ready to look at our first protocols for quantum information. In this
section, we examine two communication protocols which can be implemented
using the tools we have developed in the preceding sections. These protocols
are known as superdense coding and quantum teleportation. Both are inherently
quantum: there are no classical protocols which behave in the same way. Both
involve two parties who wish to perform some communication task between them.
In descriptions of such communication protocols (especially in cryptography), it
is very common to name the two parties ‘Alice’ and ‘Bob’, for convenience. We
will follow this tradition. We will repeatedly refer to communication channels.
A quantum communication channel refers to a communication line (e.g. a fiber-
optic cable), which can carry qubits between two remote locations. A classical
communication channel is one which can carry classical bits (but not qubits).1

The protocols (like many in quantum communication) require that Alice and
Bob initially share an entangled pair of qubits in the Bell state

|β00〉 = 1√
2

(
|00〉+ |11〉

)
. (5.0.1)

The above Bell state is sometimes referred to as an EPR pair. Such a state would
have to be created ahead of time, when the qubits are in a lab together and can
be made to interact in a way which will give rise to the entanglement between
them. After the state is created, Alice and Bob each take one of the two qubits
away with them. Alternatively, a third party could create the EPR pair and give
one particle to Alice and the other to Bob. If they are careful not to let them
interact with the environment, or any other quantum system, Alice and Bob’s
joint state will remain entangled. This entanglement becomes a resource which
Alice and Bob can use to achieve protocols such as the following.

1Often the term ‘channel’ is used to refer to the mathematical transformation that occurs
on bits or qubits when undergoing a general quantum operation. We will use this term in this
sense in Chapter 10.

78
TEAM LinG

SUPERDENSE CODING 79

5.1 Superdense Coding

Suppose Alice wishes to send Bob two classical bits of information. Superdense
coding is a way of achieving this task over a quantum channel, requiring only
that Alice send one qubit to Bob. Alice and Bob must initially share the Bell
state

|β00〉 = 1√
2

(
|00〉+ |11〉

)
. (5.1.1)

Suppose Alice is in possession of the first qubit and Bob the second qubit. Alice
performs one of four 1-qubit gates, depending on the 2 classical bits she wishes
to communicate to Bob. For convenience, we remind you again of the definitions
of the Pauli gates:

I ≡
[
1 0
0 1

]
X ≡

[
0 1
1 0

]
(5.1.2)

Y ≡
[
0 −i
i 0

]
Z ≡

[
1 0
0 −1

]
. (5.1.3)

If Alice wishes to send the bits 00 to Bob, she does nothing to her qubit (or
equivalently, applies the identity gate I). If she wishes to send 01, she applies
the X gate to her qubit. If she wishes to send 10, she applies the Z gate; and
if she wishes to send 11, she applies Z ·X (i.e. she applies the X gate followed
by the Z gate). The following list summarizes the resulting joint 2-qubit state
in each case:

To send Transformation
00 I ⊗ I : 1√

2

(
|00〉+ |11〉

)
�→ 1√

2

(
|00〉+ |11〉

)
= |β00〉

01 X ⊗ I : 1√
2

(
|00〉+ |11〉

)
�→ 1√

2

(
|01〉+ |10〉

)
= |β01〉

10 Z ⊗ I : 1√
2

(
|00〉+ |11〉

)
�→ 1√

2

(
|00〉 − |11〉

)
= |β10〉

11 Z ·X ⊗ I : 1√
2

(
|00〉+ |11〉

)
�→ 1√

2

(
|01〉 − |10〉

)
= |β11〉

You should verify the above states. After applying the appropriate gate, Alice
sends her qubit to Bob. Then Bob is in possession of one of the four Bell states,
depending on the classical bits Alice wished to send to him. Bob can now sim-
ply perform a measurement of the joint 2-qubit state with respect to the Bell
basis (i.e. the basis {|β00〉, |β01〉, |β10〉, |β11〉}). Such a measurement can be im-
plemented as described in Section 4.5 by first performing a change of basis to
the Bell basis, and then performing a measurement in the computational basis
(illustrated in Figure 4.11).

The outcome of the Bell measurement reveals to Bob which Bell state he pos-
sesses, and so allows him to determine with certainty the two classical bits Alice
wanted to communicate to him. The superdense coding protocol is illustrated in
Figure 5.1.

TEAM LinG

80 SUPERDENSE CODING AND QUANTUM TELEPORTATION

Bell

Fig. 5.1 The superdense coding protocol in which Alice sends two bits of classical

information by sending one physical qubit to Bob. Alice and Bob initially share an

EPR pair 1√
2
(|00〉 + |11〉). Alice applies the operation Uab = ZbXa depending on the

classical bits a, b that she wishes to send. After sending her qubit to Bob, he measures

his pair of qubits in the Bell basis. This measurement gives Bob the two values ‘a’ and

‘b’ corresponding to the Bell state |βab〉 in his possession.

5.2 Quantum Teleportation

For quantum teleportation, the scenario is that Alice wishes to communicate the
state of a qubit to Bob. Suppose Alice only has a classical channel linking her
to Bob. To send the state of a qubit exactly, it would seem that Alice would
either have to send the physical qubit itself, or she would have to communicate
the two complex amplitudes with infinite precision. However, if Alice and Bob
possess an entangled state this intuition is wrong, and a quantum state can be
sent exactly over a classical channel.

Teleportation is a protocol which allows Alice to communicate the state of a
qubit exactly to Bob, sending only two bits of classical information to him. Like
superdense coding, teleportation requires that Alice and Bob initially share the
Bell state

|β00〉 = 1√
2

(
|00〉+ |11〉

)
. (5.2.1)

Suppose Alice wants to teleport the state |ψ〉 = α0|0〉+ α1|1〉 to Bob. Then, the
circuit shown in Figure 5.2 implements the teleportation protocol, and transmits
the state |ψ〉 from Alice to Bob.

The 3-qubit state possessed jointly by Alice and Bob is initially

|ψ〉|β00〉. (5.2.2)

Notice that by regrouping the qubits (but keeping them in the same order), this
state can be written as

|ψ〉|β00〉 = 1
2 |β00〉|ψ〉+ 1

2 |β01〉(X|ψ〉) + 1
2 |β10〉(Z|ψ〉) + 1

2 |β11〉(XZ|ψ〉). (5.2.3)

Alice makes a measurement of the first two qubits in the Bell basis. The joint
Alice–Bob state after this measurement is one of

TEAM LinG

QUANTUM TELEPORTATION 81

Fig. 5.2 A circuit implementing quantum teleportation. The top two lines represent

Alice’s qubits, and the bottom line represents Bob’s qubit. Initially, Alice is in pos-

session of the state |ψ〉, and she shares an EPR pair with Bob. Alice performs a joint

measurement of |ψ〉 and her half of the EPR pair in the Bell basis. She sends the result

of this measurement (classical bits, a and b) to Bob over a classical channel (shown in

the figure as dashed arrows). The values of a and b are used to control the operations

Bob performs on his qubit. After Bob performs his final operation, his qubit is left in

the state |ψ〉.

|β00〉|ψ〉, (5.2.4)
|β01〉(X|ψ〉), (5.2.5)
|β10〉(Z|ψ〉), (5.2.6)
|β11〉(XZ|ψ〉), (5.2.7)

each with probability 1
4 . The classical bits a and b resulting from Alice’s mea-

surement indicate which of the four states is obtained. When Alice sends these
two bits to Bob, he learns whether his qubit is left in the state |ψ〉, X|ψ〉, Z|ψ〉,
or XZ|ψ〉. Depending on which state he has (i.e. depending on the values of the
classical bits, a and b), Bob performs one of the following operations to transform
his state into |ψ〉.

Exercise 5.2.1 Prove that

|ψ〉|β00〉 = 1
2
|β00〉|ψ〉 + 1

2
|β01〉(X|ψ〉) + 1

2
|β10〉(Z|ψ〉) + 1

2
|β11〉(XZ|ψ〉). (5.2.8)

M1,M2 Bob performs
0,0 I : α0|0〉+ α1|1〉 �→ α0|0〉+ α1|1〉 = |ψ〉
0,1 X : α0|1〉+ α1|0〉 �→ α0|0〉+ α1|1〉 = |ψ〉
1,0 Z : α0|0〉 − α1|1〉 �→ α0|0〉+ α1|1〉 = |ψ〉
1,1 Z ·X : α0|1〉 − α1|0〉 �→ α0|0〉+ α1|1〉 = |ψ〉

So Bob conditionally applies Z and X to his qubit (classically) conditioned on
the values a and b, respectively. After this transformation, Bob is guaranteed to

TEAM LinG

82 SUPERDENSE CODING AND QUANTUM TELEPORTATION

have the state |ψ〉, and so the state has been successfully teleported from Alice
to Bob. Note that it is somewhat remarkable that Alice could send a quantum
state exactly to Bob without actually sending any quantum information; she
only needs to send 2 bits of classical information!

Teleportation provides a beautiful illustration of the power of entanglement as
a resource for quantum computing and quantum communication. It allows us to
replace the task of sending a qubit with the task of establishing one EPR pair
of entanglement, sending two classical bits and performing a local Bell measure-
ment. Establishing the EPR pair can be attempted repeatedly until successful,
without damaging the state to be teleported. Sending classical bits does not
require a quantum communication channel. Bob can also perform his Bell mea-
surement without a quantum channel to Alice. So teleportation is a powerful
tool for moving quantum information between locations that may be separated
by a long distance.

5.3 An Application of Quantum Teleportation

Quantum teleportation turns out to have an interesting and remarkable appli-
cation to quantum circuits. As we have seen, to implement quantum circuits in
general, we need to have access to a universal set of quantum gates. Such a set
always includes at least one gate that acts on two qubits. The cnot gate is a
common choice. It is often much more difficult technologically to implement gates
that act on more than one qubit, since controlling coupled quantum systems is
very challenging. It may be that a particular implementation of the cnot gate
is not perfect, but fails some of the time. If a cnot gate fails in the middle of
some long computation, the state of the qubits on which it was acting will be
corrupted. Without some form of error correction, this will lead to an unreliable
result for the computation.

One way around this problem might be to create a copy of the state we would
like to apply the cnot gate to, and keep the copy in a safe place. If the cnot
gate fails, then we can simply make another copy for safe keeping, and try the
cnot again. Unfortunately, this is impossible, by a result known as the no-
cloning theorem, which says that it is impossible to implement a circuit that
will perfectly copy an unknown quantum state. We will examine the no-cloning
theorem in more detail in Section 10.4.2.

What we would like is a way of non-destructively applying the cnot gate
so that if it fails the quantum state of the relevant qubits is not corrupted,
and we can simply try the cnot gate again. Quantum teleportation gives us
a way of doing this, provided we have the ability to prepare a Bell state, to
do single bit rotations, and to measure Bell states directly. This scheme trans-
forms the technological problem of implementing a cnot gate into the
technological problem of creating an entangled state. It is illustrated in the
sequence of Figures 5.3–5.7. We wish to perform a cnot gate between a control
qubit in the state α0|0〉 + α1|1〉 and a target qubit in the state γ0|0〉 + γ1|1〉.

TEAM LinG

AN APPLICATION OF QUANTUM TELEPORTATION 83

Bell

Bell

Fig. 5.3 Teleportation circuits to teleport the states α0|0〉 + α1|1〉 and γ0|0〉 + γ1|1〉.
Note that the state of the two logical qubits is unaffected by this circuit, and so can

be viewed as an implementation of the identity operation.

Fig. 5.4 A cnot gate between the pair of teleported states. The overall effect on the

state of the two logical qubits is the cnot operation.

This could be done directly but at the risk of corrupting the quantum in-
formation when the gate fails. Instead, we can use two teleportation proto-
cols: one for the control bit and the other for the target one, as shown in
Figure 5.3.

In Figure 5.4, we apply the cnot gate to the teleported states.

Figure 5.5 illustrates the ‘trick’. We can add a pair of cnot gates to the middle
two qubits as shown. This does not change the overall behaviour of the circuit,
since the combined effect of the two cnot gates on those qubits is the identity.
We can regroup the cnot gates, as shown by the dashed boxes in Figure 5.5.
It is easy to check that the effect of the portion ofthe circuit in the first (left)

TEAM LinG

84 SUPERDENSE CODING AND QUANTUM TELEPORTATION

Bell

Bell

Fig. 5.5 A pair of cnot gates added to the circuits. Notice that the pair of cnot

gates has no net effect.

C

Fig. 5.6 The pair of cnot gates can be removed if we modify the classical logic

controlling the application of the X and Z gates.

dashed box is to create the 4-qubit entangled state

|0000〉+ |0011〉+ |1110〉+ |1101〉
2

.

Consider the portion of the circuit in the second (right) dashed box. The only im-
pact of the cnot gates is to alter the conditions on which the X and Z gates are
applied separately to the two qubits. For example, if M1 = 0,M2 = 0,M3 = 1,
and M4 = 0, the effect of the circuit in the dashed box is the same as ap-
plying Z separately to both qubits. For any combination of M1,M2,M3,M4,
the desired effect can be achieved by applying some appropriate combination
of X and Z gates individually to the two qubits in the dashed box. So this
means we can remove the cnot gates from this dashed box if we appropri-
ately modify the classical logic controlling the X and Z gates. This is shown
in Figure 5.6.

TEAM LinG

AN APPLICATION OF QUANTUM TELEPORTATION 85

Fig. 5.7 A circuit for applying a cnot gate between two qubits in a quantum com-

putation, without risking destroying the state of the two qubits if the cnot gate fails.

Exercise 5.3.1 Derive the ‘classical logic’ in Figure 5.6 (i.e. specify the mapping

M1, M2, M3, M4 �→ M ′
1, M

′
2, M

′
3, M

′
4

for all values of M1, M2, M3, M4).

Note that we are only requiring a Bell measurement that provides the classical
outcomes M1, M2. As we mentioned in the caption of Figure 4.11, a Bell mea-
surement does not require implementing a cnot gate. We also do not need the
resulting Bell state βM1M2 and thus the implementation of this measurement
could for example destroy the Bell state in the process of measurement.

Notice that the first dashed box in Figure 5.6 makes use of cnot gates. It is
easy to verify that the effect of the circuit in this dashed box is only to create
the state

|0000〉+ |0011〉+ |1110〉+ |1101〉
2

. (5.3.1)

It suffices to have some machine that generates the above state, and some means
of verifying that it has succeeded. Even though this machine uses cnot gates,
the point is that if it fails to create the state (5.3.1), our verification procedure
will tell us this, and we can try the machine again with four freshly prepared
qubits in the state |0〉. So in Figure 5.6, we replace the first dashed box with a
generic machine for creating the state 5.3.1, which we assume will also contain
a procedure for verifying that the state has been successfully created.

With the modifications described above, a circuit for implementing the cnot
gate on two qubits is shown in Figure 5.7.

TEAM LinG

6

INTRODUCTORY
QUANTUM ALGORITHMS

In this chapter we will describe some of the early quantum algorithms. These
algorithms are simple and illustrate the main ingredients behind the more useful
and powerful quantum algorithms we describe in the subsequent chapters.

Since quantum algorithms share some features with classical probabilistic algo-
rithms, we will start with a comparison of the two algorithmic paradigms.

6.1 Probabilistic Versus Quantum Algorithms

Classical probabilistic algorithms were introduced in Chapter 1. In this section
we will see how quantum computation can be viewed as a generalization of
probabilistic computation.

We begin by considering a simple probabilistic computation. Figure 6.1 illustrates
the first two steps of such a computation on a register that can be in one of the
four states, labelled by the integers 0, 1, 2, and 3. Initially the register is in the
state 0. After the first step of the computation, the register is in the state j with
probability p0,j . For example, the probability that the computation is in state
2 after the first step is p0,2. In the second step of the computation, the register
goes from state j to state k with probability qj,k. For example, in the second
step the computation proceeds from state 2 to state 3 with probability q2,3.

Suppose we want to find the total probability that the computation ends up in
state 3 after the second step. This is calculated by first determining the proba-
bility associated with each computation ‘path’ that could end up at the state 3,
and then by adding the probabilities for all such paths. There are four compu-
tation paths that can leave the computation in state 3 after the first step. The
computation can proceed from state 0 to state j and then from state j to state
3, for any of the four j ∈ {0, 1, 2, 3}. The probability associated with any one
of these paths is obtained by multiplying the probability p0,j of the transition
from state 0 to state j, with the probability qj,3 of the transition from state j to
state 3. The total probability of the computation ending up in state 3 is given

86
TEAM LinG

PROBABILISTIC VERSUS QUANTUM ALGORITHMS 87

Fig. 6.1 A classical probabilistic computation acting on a register that can be in

one of four states labelled 0, 1, 2, 3. The p0,j are the probabilities for the computation

proceeding from state 0 to state j in the first step. The qj,k represent the probabilities

for the computation proceeding from state j to state k in the second step.

Fig. 6.2 The classical probabilistic computation viewed in a quantum setting. The

transition probabilities as squared norms of quantum probability amplitudes. We have

p0,j = |α0,j |2 and qj,k = |βj,k|2. This can be viewed as a quantum computation in

which the state is measured after each step.

by adding these four possibilities. So we have

prob(final outcome is 3) =
∑

j

p0,jqj,3. (6.1.1)

Another way of looking at this computation is to suppose the register con-
sists of two qubits, and let the labels 0, 1, 2, 3 refer to the four basis states
|00〉, |01〉, |10〉, |11〉, respectively. Then view each of the transition probabilities
as a squared norm of a quantum probability amplitude, so that p0,j = |α0,j |2
and qj,k = |βj,k|2. This approach is shown in Figure 6.2, which can be viewed as
a quantum computation in which the state is measured after each step.

If we measured the state (in the computational basis) immediately after the first
step of the computation, the probability associated with outcome 2 would be

prob(measurement after first step gives 2) = |α0,2|2 = p0,2. (6.1.2)

TEAM LinG

88 INTRODUCTORY QUANTUM ALGORITHMS

Fig. 6.3 A fully quantum computation. Here the state is not measured until after the

second step.

As before, the total probability of measuring outcome 3 after the second
step is

prob(final outcome is 3) =
∑

j

|α0,j |2|βj,3|2 (6.1.3)

=
∑

j

|α0,jβj,3|2 (6.1.4)

which is the same probability as in Equation 6.1.1.

In this example, since we assume that the state is measured after each step, we
would know the intermediate state j, and thus we would know which computation
path leading to the final state 3 was taken. The total probability of arriving at
the final state 3 is determined by adding the squared norm of the probability
amplitude α0,jβj,3 associated with each path (i.e. we add the probabilities for
the four paths, and not the probability amplitudes).

In a fully quantum algorithm, we would not measure the state immediately
after the first step. This way the quantum probability amplitudes will have a
chance to interfere. For example, some negative amplitudes could cancel with
some positive amplitudes, significantly affecting the final probabilities associated
with a given outcome. A quantum version of the algorithm above is illustrated
in Figure 6.3.

This time the calculation of the total probability associated with outcome 3 in
the measurement after the second step is different. Since there is no measurement
after the first step of the computation, we do not learn the path taken by the
computation to the final state 3. That is, when we obtain the output 3, we will
have no information telling us which of the four paths was taken. In this case,
instead of adding the probabilities associated with each of these four paths, we
must add the probability amplitudes. The probability of a measurement after
the second step giving the result 3 is obtained by taking the squared norm of
the total probability amplitude.

TEAM LinG

PROBABILISTIC VERSUS QUANTUM ALGORITHMS 89

prob(final outcome is 3) =

∣∣∣∣∣∣
∑

j

α0,jβj,3

∣∣∣∣∣∣
2

. (6.1.5)

Note the difference between Equations 6.1.4 and 6.1.5. In Exercise 6.1.2 you
will examine sets of probability amplitudes for which the two equations give
drastically different results.

Exercise 6.1.1 The transition probabilities qi,j of the classical probabilistic algorithm
illustrated in Figure 1.1 form a 4×4 stochastic matrix for which

∑
i qi,j = 1 for every j.

(a) Prove that for any unitary matrix U = [ui,j], the matrix S =
[
|ui,j |2

]
is a stochastic

matrix.

(b) Prove that not all stochastic matrices can be derived from a unitary U as described
in the previous exercise.

Note that this means that not all classical probabilistic algorithms can be simulated
by quantum algorithms in the way that is described in this section. However, the next
exercise shows a simple way in which a quantum algorithm can simulate any classical
probabilistic one.

(c) Show how a classical probabilistic transition on an M -state system can be simulated
by a quantum algorithm by adding an additional M -state ‘ancilla’ system, applying a
unitary operation to the joint system, and then measuring and discarding the ancilla
system.

Exercise 6.1.2

(a) Describe complex numbers αi, i = 0, 1, . . . , N − 1 satisfying

∑
i

|αi|2 = 1and

∣∣∣∣∣∑
i

αi

∣∣∣∣∣
2

= 0.

(b) Describe complex numbers αi, i = 0, 1, . . . , N − 1 satisfying

∑
i

|αi|2 =
1

N
and

∣∣∣∣∣∑
i

αi

∣∣∣∣∣
2

= 1.

Quantum interference has already been seen in Section 1.6 where we examined
the photon and beam-splitter apparatus. We can revisit this example in the lan-
guage of quantum circuits to provide a concrete example of interference in a
quantum computation. Consider the quantum circuit in Figure 6.4. This circuit
does not perform a purely quantum computation, because we make a measure-
ment immediately after the first Hadamard gate (recall the definition of the
Hadamard gate H, from Section 4.3).

TEAM LinG

90 INTRODUCTORY QUANTUM ALGORITHMS

Fig. 6.4 A quantum circuit exhibiting no quantum interference.

Fig. 6.5 A quantum circuit exhibiting interference.

The state |φ1〉 immediately after this measurement is

|φ1〉 =

{
|0〉 with probability 1

2

|1〉 with probability 1
2 .

(6.1.6)

The state immediately after the second Hadamard gate is then

|φ2〉 =

{
1√
2
(|0〉+ |1〉) with probability 1

2
1√
2
(|0〉 − |1〉) with probability 1

2 .
(6.1.7)

In either case, the final measurement will give the result 0 or 1 with equal prob-
ability.

Compare the above with the quantum circuit shown in Figure 6.5. This time
there is no measurement after the first Hadamard gate, and the application of the
second Hadamard gate will give rise to interference in the quantum amplitudes.
The state immediately after the first Hadamard gate is

|ψ1〉 =
1√
2
|0〉+ 1√

2
|1〉. (6.1.8)

This state is input directly to the second Hadamard gate, and the state after the
second Hadamard gate is

|ψ2〉 = H

(
1√
2
|0〉+ 1√

2
|1〉

)
(6.1.9)

=
1√
2
H|0〉+ 1√

2
H|1〉 (6.1.10)

=
1√
2

(
1√
2
|0〉+ 1√

2
|1〉

)
+

1√
2

(
1√
2
|0〉 − 1√

2
|1〉

)
(6.1.11)

=
1
2
|0〉+ 1

2
|1〉+ 1

2
|0〉 − 1

2
|1〉 (6.1.12)

= |0〉. (6.1.13)

TEAM LinG

PHASE KICK-BACK 91

The total probability amplitude associated with |1〉 is 0, meaning that the
probability for the second measurement giving result ‘1’ is now 0. The second
Hadamard gate acted on the basis states |0〉 and |1〉 in superposition, and the
amplitudes of state |1〉 for the two paths in this superposition interfered, causing
them to cancel out.

Note that if in Figure 6.5 we replace the Hadamard gate H with the ‘square root
of not’ gate, [

1 i
i 1

]
, (6.1.14)

then we are describing the photon/beam-splitter experiment we saw in
Section 1.6.

Classical probabilistic algorithms can be easily simulated by quantum algorithms
(see Exercise 6.1.1 c). However, can classical probabilistic algorithms efficiently
simulate quantum algorithms? We have seen how naively replacing each quan-
tum gate with a probabilistic classical gate can give drastically different out-
comes, and thus will not work in general. Simple attempts, like approximating
the total amplitude of a given outcome by sampling a polynomial number of
paths leading to that outcome, are also not efficient in general. However, in
some restricted cases, such as quantum circuits using only the cnot,H,X, Y, Z,
and T gates (which generate what is known as the Clifford group), can be ef-
ficiently simulated on a classical computer (this is known as the Gottesman–
Knill theorem). If there is no entanglement, or a sufficiently small amount of
entanglement, then there are also efficient classical algorithms for simulating
quantum systems. However, there is no known general purpose classical algo-
rithm for simulating quantum systems (and, in particular, quantum computers).
This leaves open the possibility that quantum algorithms might be able to solve
some computational problems more efficiently than any classical probabilistic
algorithm can.

6.2 Phase Kick-Back

In Exercise 4.2.4 we saw how, although when described in the classical basis,
the cnot gate appears to do nothing to the control qubit, it can in fact affect
the control qubit just as much as it does the target qubit. For example, in the
Hadamard basis, the role of control and target qubit is effectively switched, for
example,

cnot :
(|0〉+ |1〉√

2

)(|0〉 − |1〉√
2

)
�−→

(|0〉 − |1〉√
2

)(|0〉 − |1〉√
2

)
. (6.2.1)

TEAM LinG

92 INTRODUCTORY QUANTUM ALGORITHMS

Notice that
(

|0〉−|1〉√
2

)
is an eigenvector (or eigenstate) of the X(not) gate with

eigenvalue −1, and an eigenvector of the identity gate with eigenvalue +1. Since
the cnot applies the not gate to the target qubit if the first qubit is in state
|1〉, we get

cnot : |1〉
(|0〉 − |1〉√

2

)
�−→|1〉

(
not

(|0〉 − |1〉√
2

))
(6.2.2)

= |1〉
(

(−1)
(|0〉 − |1〉√

2

))
(6.2.3)

= −|1〉
(|0〉 − |1〉√

2

)
(6.2.4)

(where the second line follows from the first axiom of tensor products that we
saw in Section 2.6). Since the cnot applies the identity gate (i.e. does ‘nothing’)
to the target qubit if the first qubit is in state |0〉, we get

cnot : |0〉
(|0〉 − |1〉√

2

)
�−→ |0〉

(|0〉 − |1〉√
2

)
. (6.2.5)

Since the target qubit is in an eigenstate, it does not change, and we can effec-
tively treat the eigenvalue as being ‘kicked back’ to the control register.

Note that this can be summarized as

cnot : |b〉
(|0〉 − |1〉√

2

)
�−→ (−1)b|b〉

(|0〉 − |1〉√
2

)
, (6.2.6)

where b ∈ {0, 1}. When the control qubit is in a superposition of |0〉 and |1〉, we
have

cnot : (α0|0〉+ α1|1〉)
(|0〉 − |1〉√

2

)
�−→ (α0|0〉 − α1|1〉)

(|0〉 − |1〉√
2

)
(6.2.7)

(notice this corresponds to effecting the Z gate to the control qubit).

Let us consider the effect of a more general 2-qubit gate Uf implementing an
arbitrary function f : {0, 1} → {0, 1} by mapping Uf : |x〉|y〉 �→ |x〉|y ⊕ f(x)〉 (as
we saw in Section 1.5, this mapping is reversible even though the function f may
not itself be invertible).

TEAM LinG

PHASE KICK-BACK 93

Let us fix the target register to the state 1√
2

(|0〉 − |1〉), and analyse the action
of Uf on an arbitrary basis state in the control qubit:

Uf : |x〉
(|0〉 − |1〉√

2

)
�−→

(
Uf |x〉|0〉 − Uf |x〉|1〉√

2

)
(6.2.8)

=
(|x〉|0⊕ f(x)〉 − |x〉|1⊕ f(x)〉√

2

)
(6.2.9)

=|x〉
(|0⊕ f(x)〉 − |1⊕ f(x)〉√

2

)
. (6.2.10)

We know that the action of ‘⊕f(x)’ has no effect on a single bit if f(x) = 0
(i.e. b⊕ 0 = b), and ‘⊕f(x)’ flips the state of the bit if f(x) = 1.

Consider the expression 1√
2
(|0 ⊕ f(x)〉 − |1 ⊕ f(x)〉) in the two cases f(x) = 0

and f(x) = 1:

f(x) = 0 :
|0⊕ f(x)〉 − |1⊕ f(x)〉√

2
=
|0〉 − |1〉√

2
(6.2.11)

f(x) = 1 :
|0⊕ f(x)〉 − |1⊕ f(x)〉√

2
=
|1〉 − |0〉√

2
= −

(|0〉 − |1〉√
2

)
. (6.2.12)

These two possibilities differ by a factor of (−1) which depends on the value of
f(x). We have

|0⊕ f(x)〉 − |1⊕ f(x)〉√
2

= (−1)f(x)

(|0〉 − |1〉√
2

)
. (6.2.13)

So the above state can be rewritten as

|x〉(−1)f(x)

(|0〉 − |1〉√
2

)
. (6.2.14)

Associating the (−1)f(x) factor with the first qubit, we have

Uf : |x〉
(|0〉 − |1〉√

2

)
�→ (−1)f(x)|x〉

(|0〉 − |1〉√
2

)
. (6.2.15)

When the control qubit is in a superposition of |0〉 and |1〉, we have

Uf : (α0|0〉+ α1|1〉)
(|0〉 − |1〉√

2

)
�−→

(
(−1)f(0)α0|0〉+ (−1)f(1)α1|1〉

)(|0〉 − |1〉√
2

)
.

(6.2.16)

We can think of Uf as a 1-qubit operator Ûf(x) (which maps |b〉 �→ |b ⊕ f(x)〉)
acting on the second qubit, controlled by the state |x〉 of the first register, as
shown in Figure 6.6. We may sometimes write c-Ûf(x) instead of Uf .

TEAM LinG

94 INTRODUCTORY QUANTUM ALGORITHMS

Fig. 6.6 The 2-qubit gate Uf : |x〉|y〉 �→ |x〉|y ⊕ f(x)〉 can be thought of as a 1-qubit

gate Ûf(x) acting on the second qubit, controlled by the first qubit.

Fig. 6.7 The state |0〉−|1〉√
2

of the target register is an eigenstate of Ûf(x). The eigenvalue

(−1)f(x) can be ‘kicked back’ in front of the target register.

Notice in Equation (6.2.15) that the state |0〉−|1〉√
2

of the second register is an

eigenvector of Ûf(x).

This technique of inputting an eigenstate to the target qubit of an operator like
the c-Ûf(x), and associating the eigenvalue with the state of the control register
(as illustrated in Figure 6.7), will be used repeatedly in the remainder of this
chapter and the next chapter.

6.3 The Deutsch Algorithm

We now look at our first quantum algorithm. The Deutsch algorithm is a very
simple example of a quantum algorithm based on the Quantum Fouries Trans-
form (to be defined in the next chapter). It is a good place to start, because while
being very simple and easy to understand, the Deutsch algorithm illustrates the
key ideas of quantum parallelism and quantum interference that are used in all
useful quantum algorithms.

The problem solved by the Deutsch algorithm is the following. Suppose we are
given a reversible circuit for computing an unknown 1-bit function f : {0, 1} →
{0, 1} (see Section 1.5 for a discussion of reversible circuits). We treat this
reversible circuit as a ‘black box’ or ‘oracle’. This means that we can apply
the circuit to obtain values of f(x) for given inputs x, but we cannot gain any
information about the inner workings of the circuit to learn about the function
f . The problem is to determine the value of f(0) ⊕ f(1). If we determine that
f(0)⊕ f(1) = 0, then we know that f(0) = f(1) (although we do not know the
value), and we say that f is ‘constant’. If on the other hand we determine that
f(0) ⊕ f(1) = 1, then we know that f(0) �= f(1), and we say the function is

TEAM LinG

THE DEUTSCH ALGORITHM 95

‘balanced’. So determining f(0)⊕ f(1) is equivalent to determining whether the
function f is constant or balanced.

The Deutsch Problem

Input: A black box for computing an unknown function function
f : {0, 1} → {0, 1}.
Problem: Determine the value of f(0)⊕ f(1) by making queries to f .

How many queries to the oracle for f must be made classically to determine
f(0)⊕ f(1)? Clearly the answer is 2. Suppose we compute f(0) using one (clas-
sical) query. Then the value of f(1) could be 0, making f(0)⊕ f(1) = 0, or the
value of f(1) could be 1, making f(0) ⊕ f(1) = 1. Without making a second
query to the oracle to determine the value of f(1), we can make no conclusion
about the value of f(0)⊕ f(1). The Deutsch algorithm is a quantum algorithm
capable of determining the value of f(0) ⊕ f(1) by making only a single query
to a quantum oracle for f .

The given reversible circuit for f can be made into a quantum circuit, by re-
placing every reversible classical gate in the given circuit with the analogous
unitary quantum gate. This quantum circuit can be expressed as a unitary
operator

Uf : |x〉|y〉 �→ |x〉|y ⊕ f(x)〉. (6.3.1)

Having created a quantum version of the circuit for f , we can supply quantum
bits as inputs. We define Uf so that if we set the second input qubit to be in the
state |y〉 = |0〉, then |x〉 = |0〉 in the first input qubit will give |0⊕f(0)〉 = |f(0)〉
in the second output bit, and |x〉 = |1〉 in the first input qubit will give |f(1)〉. So
we can think of |x〉 = |0〉 as a quantum version of the (classical) input bit 0, and
|x〉 = |1〉 as a quantum version of the input bit 1. Of course, the state of the input
qubit can be some superposition of |0〉 and |1〉. Suppose, still keeping the second
input qubit |y〉 = |0〉, we set the first input qubit to be in the superposition
state

1√
2
|0〉+ 1√

2
|1〉. (6.3.2)

Then the two qubit input to Uf is

(
1√
2
|0〉+ 1√

2
|1〉

)
|0〉 (6.3.3)

=
1√
2
|0〉|0〉+ 1√

2
|1〉|0〉. (6.3.4)

TEAM LinG

96 INTRODUCTORY QUANTUM ALGORITHMS

The output of Uf will be the state

Uf

(
1√
2
|0〉|0〉+ 1√

2
|1〉|0〉

)
(6.3.5)

=
1√
2
Uf |0〉|0〉+

1√
2
Uf |1〉|0〉 (6.3.6)

=
1√
2
|0〉|0⊕ f(0)〉+ 1√

2
|1〉|0⊕ f(1)〉 (6.3.7)

=
1√
2
|0〉|f(0)〉+ 1√

2
|1〉|0⊕ f(1)〉. (6.3.8)

In some sense, Uf has simultaneously computed the value of f on both possible
inputs 0 and 1 in superposition. However, recalling how quantum measurement
works from Section 3.4, if we now measure the output state in the computational
basis, we will observe either |0〉|f(0)〉 (with probability 1

2), or |1〉|1⊕ f(1)〉 (with
probability 1

2). After the measurement, the output state will be either |f(0)〉 or
|f(1)〉, respectively, and so any subsequent measurements of the output state
will yield the same result. So this means that although we have successfully
computed two values in superposition, only one of those values is accessible
through a quantum measurement in the computational basis. Fortunately, this
is not the end of the story.

Recall that for the Deutsch problem we are ultimately not interested in individual
values of f(x), but wish to determine the value of f(0) ⊕ f(1). The Deutsch
algorithm illustrates how we can use quantum interference to obtain such global
information about the function f , and how this can be done more efficiently than
is possible classically. The Deutsch algorithm is implemented by the quantum
circuit shown in Figure 6.8.

Note that the second input bit has been initialized to the state |0〉−|1〉√
2

. This
state can easily be created from the state |1〉 by applying a single Hadamard
gate. We do not show this gate, however, to emphasize a certain symmetry that
is characteristic of these algorithms. A convenient way to analyse the behaviour
of a quantum algorithm is to work through the state at each stage of the circuit.
First, the input state is

Fig. 6.8 A circuit implementing the Deutsch algorithm. The measured value equals

f(0) ⊕ f(1).

TEAM LinG

THE DEUTSCH ALGORITHM 97

|ψ0〉 = |0〉
(|0〉 − |1〉√

2

)
. (6.3.9)

After the first Hadamard gate is applied to the first qubit, the state becomes

|ψ1〉 =
(

1√
2
|0〉+ 1√

2
|1〉

)(|0〉 − |1〉√
2

)
(6.3.10)

=
1√
2
|0〉

(|0〉 − |1〉√
2

)
+

1√
2
|1〉

(|0〉 − |1〉√
2

)
. (6.3.11)

Recalling Equation (6.2.15), after applying the Uf gate we have the state

|ψ2〉 =
(−1)f(0)

√
2
|0〉

(|0〉 − |1〉√
2

)
+

(−1)f(1)

√
2
|1〉

(|0〉 − |1〉√
2

)
(6.3.12)

=
(

(−1)f(0)|0〉+ (−1)f(1)|1〉√
2

)(|0〉 − |1〉√
2

)
(6.3.13)

= (−1)f(0)

(|0〉+ (−1)f(0)⊕f(1)|1〉√
2

)(|0〉 − |1〉√
2

)
(6.3.14)

where the last equality uses the fact that (−1)f(0)(−1)f(1) = (−1)f(0)⊕f(1).

If f is a constant function (i.e. f(0)⊕ f(1) = 0), then we have

|ψ2〉 = (−1)f(0)

(|0〉+ |1〉√
2

)(|0〉 − |1〉√
2

)
(6.3.15)

and so the final Hadamard gate on the first qubit transforms the state to

|ψ3〉 = (−1)f(0)|0〉
(|0〉 − |1〉√

2

)
. (6.3.16)

The squared norm of the basis state |0〉 in the first qubit is 1. This means that
for a constant function a measurement of the first qubit is certain to return the
value 0 = f(0)⊕ f(1).

If f is a balanced function (i.e. f(0)⊕ f(1) = 1), then we have

|ψ2〉 = (−1)f(0)

(|0〉 − |1〉√
2

)(|0〉 − |1〉√
2

)
(6.3.17)

and so the final Hadamard gate on the first qubit transforms the state to

|ψ3〉 = (−1)f(0)|1〉
(|0〉 − |1〉√

2

)
. (6.3.18)

In this case the squared norm of the basis state |1〉 in the first qubit is 1. This
means that for a balanced function a measurement of the first qubit is certain
to return the value 1 = f(0) ⊕ f(1). So a measurement of the first qubit at the

TEAM LinG

98 INTRODUCTORY QUANTUM ALGORITHMS

Fig. 6.9 The circuit for Deutsch’s algorithm with the c-Ûf(x) drawn instead of Uf .

When c-Ûf(x) is applied, the control qubit is in a superposition of |0〉 and |1〉, which

pick up phase factors of (−1)f(0) and (−1)f(1), corresponding to the eigenvalues of

Ûf(x) for x = 0 and 1, respectively. The Hadamard gate followed by a measurement in

the computational basis determines the relative phase factor between |0〉 and |1〉.

end of the circuit for the Deutsch algorithm determines the value f(0) ⊕ f(1)
and thus whether the function is constant or balanced.

To gain some insight into how the Deutsch algorithm can generalize, it is help-
ful to remember that the operator Uf : |x〉|y〉 �→ |x〉|y ⊕ f(x)〉 in the Deutsch
algorithm can be viewed as a single-qubit operator Ûf(x), whose action on the
second qubit is controlled by the state of the first qubit (see Figure 6.9). The
state (|0〉−|1〉√

2
) is an eigenstate of Ûf(x) with eigenvalue (−1)f(x). By encoding

these eigenvalues in the phase factors of the control qubit, we are able to deter-
mine f(0) ⊕ f(1) by determining the relative phase factor between |0〉 and |1〉.
Distinguishing (|0〉+|1〉√

2
) and (|0〉−|1〉√

2
) is done using the Hadamard gate.

We will see this technique of associating phase factors (corresponding to eigenval-
ues) with the control register, and then using quantum interference to determine
the relative phase, applied throughout this chapter and the next chapter.

Exercise 6.3.1 In the Deutsch algorithm, when we consider Uf as a single-qubit

operator Ûf(x),
|0〉−|1〉√

2
is an eigenstate of Ûf(x), whose associated eigenvalue gives us

the answer to the Deutsch problem. Suppose we were not able to prepare this eigenstate
directly. Show that if we instead input |0〉 to the target qubit, and otherwise run the
same algorithm, we get an algorithm that gives the correct answer with probability
3
4

(note this also works if we input |1〉 to the second qubit). Furthermore, show that

with probability 1
2

we know for certainty that the algorithm has produced the correct
answer.

Hint: write |0〉 in the basis of eigenvectors of Uf .

Note: Deutsch originally presented his algorithm in terms of the Uf operator with |0〉
input to the second qubit. Shor analysed his algorithm for finding orders (factoring)
in an analogous manner. Later, it was found that analysing these algorithms in the
eigenbasis of a suitable controlled operator is often convenient (Appendix A.6 discusses

this issue; the operators are usually different from the Ûf(x) operators we describe
in this exercise). Note that for many algorithms (including the algorithm for finding

TEAM LinG

THE DEUTSCH–JOZSA ALGORITHM 99

orders, which we will see in the next section), it is not possible to implement the ‘trick’
of inputting a desired eigenstate directly.

6.4 The Deutsch–Jozsa Algorithm

The Deutsch–Jozsa algorithm solves a problem that is a straight forward gener-
alization of the problem solved by the Deutsch algorithm. The algorithm has
exactly the same structure. As with the Deutsch algorithm, we are given a
reversible circuit implementing an unknown function f , but this time f is a
function from n-bit strings to a single bit. That is,

f : {0, 1}n → {0, 1}. (6.4.1)

We are also given the promise that f is either constant (meaning f(x) is the
same for all x), or f is balanced (meaning f(x) = 0 for exactly half of the input
strings x, and f(x) = 1 for the other half of the inputs). The problem here is to
determine whether f is constant, or balanced, by making queries to the circuit
for f .

The Deutsch–Jozsa Problem

Input: A black-box for computing an unknown function f : {0, 1}n → {0, 1}.
Promise: f is either a constant or a balanced function.
Problem: Determine whether f is constant or balanced by making queries to
f .

Consider solving this problem by a classical algorithm. Suppose we have used the
oracle to determine f(x) for exactly half of the possible inputs x (i.e. you have
made 2n−1 queries to f), and that all queries have returned f(x) = 0. At this
point, we would strongly suspect that f is constant. However, it is possible that
if we queried f on the remaining 2n−1 inputs, we might get f(x) = 1 each time.
So it is still possible that f is balanced. So in the worst case, using a classical
algorithm we cannot decide with certainty whether f is constant or balanced
using any less than 2n−1 +1 queries. The property of being constant or balanced
is a global property of f . As for the Deutsch problem, a quantum algorithm
can take advantage of quantum superposition and interference to determine this
global property of f . The Deutsch–Jozsa algorithm will determine whether f
is constant, or balanced, making only one query to a quantum version of the
reversible circuit for f .

Analogous to what we did for the Deutsch algorithm, we will define the quantum
operation

Uf : |x〉|y〉 �→ |x〉|y ⊕ f(x)〉. (6.4.2)

This time we write x in boldface, because it refers to an n-bit string. As before,
we think of Uf as a 1-qubit operator Ûf(x), this time controlled by the register

TEAM LinG

100 INTRODUCTORY QUANTUM ALGORITHMS

Fig. 6.10 A circuit for the Deutsch–Jozsa algorithm. If the measured bit string is all

0s, then the function is constant. Otherwise, it is balanced.

of qubits in the state |x〉. We can see that |0〉−|1〉√
2

is an eigenstate of Ûf(x) with

eigenvalue (−1)f(x).

The circuit for the Deutsch–Jozsa algorithm is shown in Figure 6.10.

Notice the similarity between the circuit for the Deutsch algorithm, and the cir-
cuit for the Deutsch–Jozsa algorithm. In place of a simple 1-qubit Hadamard
gate, we now have tensor products of n 1-qubit Hadamard gates (acting in par-
allel). This is denoted H⊗n. We use |0〉⊗n, or |0〉 to denote the state that is the
tensor product of n qubits, each in the state |0〉.
As we did for the Deutsch algorithm, we follow the state through the circuit.
Initially the state is

|ψ0〉 = |0〉⊗n

(|0〉 − |1〉√
2

)
. (6.4.3)

Consider the action of an n-qubit Hadamard transformation on the state |0〉⊗n:

H⊗n|0〉⊗n =
(

1√
2

)n

(|0〉+ |1〉)⊗ (|0〉+ |1〉)⊗ · · · ⊗ (|0〉+ |1〉)︸ ︷︷ ︸
n

. (6.4.4)

By expanding out the tensor product, this can be rewritten as

H⊗n|0〉⊗n =
1√
2n

∑
x∈{0,1}n

|x〉. (6.4.5)

This is a very common and useful way of writing this state; the n-qubit Hadamard
gate acting on the n-qubit state of all zeros gives a superposition of all n-
qubit basis states, all with the same amplitude 1√

2n
(called an ‘equally weighted

TEAM LinG

THE DEUTSCH–JOZSA ALGORITHM 101

superposition’). So the state immediately after the first H⊗n in the Deutsch–
Jozsa algorithm is

|ψ1〉 =
1√
2n

∑
x∈{0,1}n

|x〉
(|0〉 − |1〉√

2

)
. (6.4.6)

Notice that the query register is now in an equally weighted superposition of all
the possible n-bit input strings. Now consider the state immediately after the
Uf (equivalently the c-Ûf(x)) gate. The state is

|ψ2〉 =
1√
2n

Uf

⎛⎝ ∑
x∈{0,1}n

|x〉
(|0〉 − |1〉√

2

)⎞⎠
=

1√
2n

∑
x∈{0,1}n

(−1)f(x)|x〉
(|0〉 − |1〉√

2

)
(6.4.7)

where we have associated the phase shift of (−1)f(x) with the first qubit (recall
Section 6.2).

To facilitate our analysis of the state after the interference is completed by the
second Hadamard gate, consider the action of the n-qubit Hadamard gate on an
n-qubit basis state |x〉.
It is easy to verify that the effect of the 1-qubit Hadamard gate on a 1-qubit
basis state |x〉 can be written as

H|x〉 = 1√
2

(|0〉+ (−1)x|1〉) (6.4.8)

=
1√
2

∑
z∈{0,1}

(−1)xz|z〉. (6.4.9)

Then we can see that the action of the Hadamard transformation on an n-qubit
basis state |x〉 = |x1〉|x2〉 . . . |xn〉 is given by

H⊗n|x〉 = H⊗n(|x1〉|x2〉 · · · |xn〉) (6.4.10)
= H|x1〉H|x2〉 · · ·H|xn〉 (6.4.11)

=
1√
2

(|0〉+ (−1)x1 |1〉) 1√
2

(|0〉+ (−1)x2 |1〉) · · · 1√
2

(|0〉+ (−1)xn |1〉)
(6.4.12)

=
1√
2n

∑
z1z2...zn∈{0,1}n

(−1)x1z1+x2z2+···+xnzn |z1〉|z2〉 · · · |zn〉. (6.4.13)

TEAM LinG

102 INTRODUCTORY QUANTUM ALGORITHMS

Exercise 6.4.1 Prove that(
|0〉 + (−1)x1 |1〉√

2

)(
|0〉 + (−1)x2 |1〉√

2

)
· · ·

(
|0〉 + (−1)xn |1〉√

2

)
(6.4.14)

=
1√
2n

∑
z1z2...zn∈{0,1}n

(−1)x1z1+x2z2+···+xnzn |z1〉|z2〉 · · · |zn〉. (6.4.15)

The above equation above can be written more succinctly as

H⊗n|x〉 =
1√
2n

∑
z∈{0,1}n

(−1)x·z|z〉 (6.4.16)

where x · z denotes the bitwise inner product of x and z, modulo 2 (we are able
to reduce modulo 2 since (−1)2 = 1). Note that addition modulo 2 is the same
as the xor operation. The state after the final n-qubit Hadamard gate in the
Deutsch–Jozsa algorithm is

|ψ3〉 =

⎛⎝ 1√
2n

∑
x∈{0,1}n

(−1)f(x) 1√
2n

∑
z∈{0,1}n

(−1)x·z|z〉

⎞⎠(|0〉 − |1〉√
2

)

=
1
2n

∑
z∈{0,1}n

⎛⎝ ∑
x∈{0,1}n

(−1)f(x)+x·z

⎞⎠ |z〉(|0〉 − |1〉√
2

)
. (6.4.17)

At the end of the algorithm a measurement of the first register is made in the
computational basis (just as was done for the Deutsch algorithm). To see what
happens, consider the total amplitude (coefficient) of |z〉 = |0〉⊗n in the first
register of state |ψ3〉. This amplitude is

1
2n

∑
x∈{0,1}n

(−1)f(x). (6.4.18)

Consider this amplitude in the two cases: f constant and f balanced. If f is
constant, the amplitude of |0〉⊗n is either +1 or −1 (depending on what value
f(x) takes). So if f is constant, a measurement of the first register is certain to
return all 0s (by ‘all 0s’ we mean the binary string 00 · · · 0). On the other hand, if
f is balanced, then it is easy to see that the positive and negative contributions
of the amplitudes cancel, and the overall amplitude of |0〉⊗n is 0. So if f is
balanced, a measurement of the first register is certain not to return all 0s. So
to determine whether f is constant or balanced, the first register is measured. If
the result of the measurement is all 0s, then the algorithm outputs ‘constant’,
and otherwise it outputs ‘balanced’.

TEAM LinG

SIMON’S ALGORITHM 103

Exercise 6.4.2

(a) Show that a probabilistic classical algorithm making 2 evaluations of f can with
probability at least 2

3
correctly determine whether f is constant or balanced.

Hint: Your guess does not need to be a deterministic function of the results of the two
queries. Your result should not assume any particular a priori probabilities of having a
constant or balanced function.

(b) Show that a probabilistic classical algorithm that makes O(n) queries can with
probability at least 1 − 1

2n correctly determine whether f is constant or balanced.

Hint: Use the Chernoff bound (Appendix A.1).

It is worth noting that although deterministic classical algorithms would require
2n−1 + 1 queries in the worst case (compared to only 1 query for this quantum
algorithm), as shown in Exercise 6.4.2, a probabilistic classical algorithm could
solve the Deutsch–Jozsa problem with probability of error at most 1

3 using 2
queries. The probability of error can be reduced to less than 1

2n with only n + 1
queries. So although there is an exponential gap between deterministic classical
and ‘exact’ quantum query complexity (see Definitions 9.4.1. and 9.4.2), the gap
between classical probabilistic query complexity and the quantum computational
query complexity is constant in the case of constant error, and can be amplified
to a linear gap in the case of exponentially small error. The next section gives
one of the first examples where a quantum algorithm can solve a problem with
a polynomial number of queries, where any classical algorithm would require an
exponential number of queries even to succeed with bounded error.

6.5 Simon’s Algorithm

Consider a function f : {0, 1}n → X, for some finite set X, where we have the
promise that there is some ‘hidden’ string s = s1s2 . . . sn so that f(x) = f(y) if
and only if x = y or x = y ⊕ s. In this section we will treat the domain {0, 1}n
of f as the vector space1 Zn

2 over Z2 (in general, one can treat it as additive
group). For convenience, we will assume that X ⊆ {0, 1}n.

1To avoid potential confusion, it is worth pointing out that we are talking about two different
types of vector spaces. On the one hand, we are referring to the vector space Zn

2 over Z2, which
consists of n-tuples of 0s and 1s. This vector space has dimension n since it can be generated by
the n linearly independent vectors consisting of n-tuples with exactly one 1 in the kth position,
for k = 1, 2, . . . n. The quantum algorithm is executed in a complex vector (i.e. Hilbert) space
whose basis elements are labelled by the elements of the vector space Zn

2 . This Hilbert space
has dimension 2n.

TEAM LinG

104 INTRODUCTORY QUANTUM ALGORITHMS

Simon’s Problem

Input: A black-box for computing an unknown function f : {0, 1}n → X,
where X is some finite set.
Promise: There exists a string s = s1s2 . . . sn so that f(x) = f(y) if and only
if x = y or x = y ⊕ s.
Problem: Determine the string s by making queries to f .

Simon’s problem requires an exponential number of queries on a classical com-
puter.

Theorem 6.5.1 Any classical algorithm that solves this problem with proba-
bility at least 2

3 for any such f must evaluate f a number of times in Ω(2n/3).

Before we describe Simon’s algorithm, let us make another observation about
the n-qubit Hadamard transformation. We already saw that

H⊗n|x〉 =
1√
2n

∑
z∈{0,1}n

(−1)x·z|z〉. (6.5.1)

What happens when we apply H⊗n to a superposition of two basis states, say
|0〉+ |s〉?

H⊗n

(
1√
2
|0〉+ 1√

2
|s〉

)
=

1√
2n+1

∑
z∈{0,1}n

|z〉+ 1√
2n+1

∑
z∈{0,1}n

(−1)s·z|z〉

(6.5.2)

=
1√

2n+1

∑
z∈{0,1}n

(1 + (−1)s·z)|z〉. (6.5.3)

Note that if s · z = 1 we have 1+(−1)s·z = 0 and the basis state |z〉 vanishes in the
above superposition, and otherwise, |z〉 remains with amplitude 1√

2n−1 . Let us
define s⊥ = {z ∈ {0, 1}n|s · z = 0}. Note that s⊥ is the vector subspace of Zn

2 that
is orthogonal to the subspace S = {0, s}, also called the ‘orthogonal complement
of S’ and denoted S⊥. This implies that the dim(S) + dim(S⊥) = dim(Zn

2) = n,
and thus s⊥ has dimension n− 1.

H⊗n

(
1√
2
|0〉+ 1√

2
|s〉

)
=

1√
2n−1

∑
z∈{s}⊥

|z〉. (6.5.4)

Exercise 6.5.1 Let x,y ∈ {0, 1}n and let s = x ⊕ y. Show that

H⊗n

(
1√
2
|x〉 +

1√
2
|y〉

)
=

1√
2n−1

∑
z∈{s}⊥

(−1)x·z|z〉. (6.5.5)

TEAM LinG

SIMON’S ALGORITHM 105

Fig. 6.11 A circuit for the quantum part of Simon’s algorithm. The measured bit

values correspond to a string wi from s⊥.

In Exercise 6.5.1, we see how the Hadamard gate maps 1√
2
|x〉+ 1√

2
|x ⊕ s〉 to a

uniform superposition of states z ∈ s⊥. This is the main ingredient to analysing
the following algorithms for solving Simon’s problem.

We assume that we have the following reversible black-box for implementing f :

Uf : |x〉|b〉 �−→ |x〉|b⊕ f(x)〉.

Simon’s algorithm is illustrated in Figure 6.11, and performs the following oper-
ations.

Algorithm for Simon’s Problem

1. Set a counter i = 1.
2. Prepare 1√

2n

∑
x∈{0,1}n |x〉|0〉.

3. Apply Uf , to produce the state∑
x∈{0,1}n

|x〉|f(x)〉.

4. (optional2) Measure the second register.
5. Apply H⊗n to the first register.
6. Measure the first register and record the value wi.
7. If the dimension of the span of {wi} equals n − 1, then go to Step 8,

otherwise increment i and go to Step 2.
8. Solve the linear equation WsT = 0T and let s be the unique non-zero

solution.
9. Output s.

2This step is unnecessary, but can be helpful with the analysis.

TEAM LinG

106 INTRODUCTORY QUANTUM ALGORITHMS

Note that {0, 1}n can be partitioned into 2n−1 pairs of strings of the form
{x,x⊕ s} (in group theory language, these are the cosets of the subgroup {0, s}
in the additive group Zn

2). Let I be a subset of {0, 1}n consisting of one rep-
resentative from each of these pairs (in group theory language, these are coset
representatives of the cosets of {0, s}).
Note that the state in Step 3 can be rewritten as

1√
2n−1

∑
x∈I

1√
2
(|x〉+ |x⊕ s〉)|f(x)〉. (6.5.6)

Thus, after we measure the 2nd register in Step 4 to obtain some value f(x),
the first register will be left in the superposition 1√

2
(|x〉+ |x⊕ s〉). Exercise 6.5.1

shows that after the Hadamard transformation in Step 5, the first register will
be in an equally weighted superposition of elements of s⊥. Thus the values wi

measured in Step 6 will be elements of s⊥ selected uniformly at random. This
means that when in Step 7 the dimension of the span of the {wi} equals n− 1,
then span{wi} = s⊥. It follows that 0 and s are the only solutions to the linear
equation in Step 8, which can be found by Gaussian elimination modulo 2 in
time polynomial in n.

Exercise 6.5.2 We have defined s⊥, but more generally we can let S be a vector
subspace of Zn

2 , and define S⊥ = {t ∈ Zn
2 |t · s = 0 for all s ∈ S}. So our previously

defined s⊥ corresponds to S⊥ where S = {0, s} is the 2-dimensional vector space
spanned by s.

(a) Define |S〉 =
∑

s∈S
1√
2m |s〉. Prove that H⊗n|S〉 =

∑
w∈S⊥

1
2n−m |w〉.

(b) For any y ∈ {0, 1}n define |y + S〉 =
∑

s∈S
1√
2m |s〉. What is H⊗n|y + S〉?

Exercise 6.5.3 Let W be a vector subspace of {0, 1}n of dimension m.

Let w1,w2, . . . be a sequence of elements of W selected uniformly at random. Let Vi

be the subspace spanned by w1,w2, . . . , wi.

Define Xj to be the random variable denoting the lowest index i where Vi has dimension
j. So Xm denotes the lowest index i where Vi has dimension m and therefore Vi = W .

Show that the expected value of Xm is less than m + 1.

Hint: Define Y1 = X1, and Yj = Xj − Xj−1 for j > 1, and note that Xj = Y1 + Y2 +
. . . + Yj .

As shown in Exercise 6.5.3, the expected number of samples from s⊥ before the
algorithm stops is less than m + 1 = n.

TEAM LinG

SIMON’S ALGORITHM 107

Theorem 6.5.2 The above algorithm finds the hidden string s in Simon’s Prob-
lem. The expected number of evaluations of f in the execution of the algorithm
is less than n, and the expected number of other elementary gates is in O(n3).

One might not be so satisfied with a polynomial expected running time; however,
if one is willing to accept a small probability of not getting an answer, then
we also have a polynomial worst-case running time. This is because one can
generically convert an algorithm with expected running time T into one with
a definite running time in O(T) and with a bounded probability of successfully
outputting an answer. We call this type of algorithm a ‘zero-error’ algorithm
since when it does provide an answer, it is always correct.

It follows from Markov’s inequality that any algorithm that terminates with an
expected number of queries equal to T will terminate after at most 3T queries,
with probability at least 2

3 (see Appendix A.1). This means that if we simply
abandon Simon’s algorithm if it has not stopped after 3n queries, then with
probability at least 2

3 the algorithm will successfully solve Simon’s problem. For
any particular algorithm, it might be possible to do better than what Markov’s
inequality provides. For example, a more careful analysis shows that n + 3 uni-
formly random samples from s⊥ will generate s⊥ with probability at least 2

3
(see A.3). We can thus alternatively describe the following zero-error version of
Simon’s algorithm that has a bounded running time.

Zero-Error Algorithm for Simon’s Problem

1. Set a counter i = 1.
2. Prepare 1√

2n

∑
x∈{0,1}n |x〉|0〉.

3. Apply Uf , to produce the state∑
x∈{0,1}n

|x〉|f(x)〉.

4. (optional)3Measure the second register.
5. Apply H⊗n to the first register.
6. Measure the first register and record the value wi.
7. If i = n + 3 then go to Step 8, otherwise increment i and go to Step 2.
8. Solve the linear system WsT = 0T , and let s1, s2, . . . be the generators of

the solution space.
9. If the solution space has dimension 1, spanned by s1, output s = s1.

Otherwise, output ‘FAILURE’.

Theorem 6.5.3 The above algorithm solves Simon’s problem with probability
at least 2

3 using n + O(1) evaluations of f and O(n3) other elementary operations.

3This step is unnecessary, but can be helpful with the analysis.

TEAM LinG

108 INTRODUCTORY QUANTUM ALGORITHMS

One can naturally generalize Simon’s problem to the following.

Generalized Simon’s Problem

Input: A black-box Uf , implementing some f : {0, 1}n → X, where X is some
finite set.
Promise: f(x) = f(y) if and only if x− y ∈ S for some subspace S ≤ Zn

2 .
Problem: Find a basis s1, s2, . . . , sm for S (where m is the dimension of the
subspace S).

The algorithm for solving the generalized Simon’s problem is essentially the same
as the algorithm for Simon’s problem. Note that if S = {0,x1, . . . , x2m−1} is an
m-dimensional subspace of Zn

2 = {0, 1}n over Z2, then the set {0, 1}n can be
partitioned into 2n−m subsets of the form {y,y ⊕ x1,y ⊕ x2, . . . , y ⊕ x2m−1}
(which we often denote by y + S). Let I be a subset of {0, 1}n consisting of one
representative from each of these 2n−m disjoint subsets. Thus in Step 3, we can
see that we have the state∑

x∈{0,1}n

|x〉|f(x)〉 =
1√

2n−m

∑
y∈I

|y + S〉|f(y)〉 (6.5.7)

where (as in Exercise 6.5.2) we define |y + S〉 =
∑

s∈S
1√
2m
|s〉. Thus, after we

measure the second register in Step 4, the first register is left in a state of the form
|y+S〉 for a random y. In Exercise 6.5.2 we see that after applying the Hadamard
transformation in Step 5, the first register contains a uniform superposition of
elements of S⊥. Thus the measurement of the first register in Step 6 results in a
value wi sampled uniformly at random from S⊥. The only part of the algorithm
that changes slightly is the last three steps.

If we know the dimension m of S, then we know that S⊥ has dimension n−m,
and we could substitute Steps 7, 8, and 9 in the first algorithm for Simon’s
problem with

7′. If the dimension of the span of {wi} equals n − m, then go to Step 8,
otherwise increment i and go to step 2.

8′. Solve the linear equation WsT = 0T and let s1, s2, . . . , sm be generators of
the solution space.

9′. Output s1, s2, . . . , sm.

Theorem 6.5.4 The modified algorithm described above solves the generalized
Simon’s problem when the dimension m of S is given. The expected number of
evaluations of f in the execution of the algorithm is less than n −m + 1, and
O(n3) other elementary operations are used.

When we do not know m, we still know that whatever m is, that m + 4 samples
suffice in order to generate S⊥ with probability at least 2

3 , and thus n + 4 samples

TEAM LinG

SIMON’S ALGORITHM 109

are certainly adequate. Thus for the generalized Simon’s problem, we can run
the zero-error algorithm for Simon’s problem, with the following replacements:

7′′. If i = n + 4 then go to Step 8, otherwise increment i and go to Step 2.
8′′. Solve the linear equation WsT = 0T and let s1, s2, . . . be generators of the

solution space.
9′′. Evaluate f(0), f(s1), f(s2), If the outputs all equal f(0), then output

s1, s2, . . . , sm. Otherwise, output ‘FAILURE’.

The following Theorem is proved in Appendix A.3.

Theorem 6.5.5 The subspace 〈w1,w2, . . . , wn+4〉 spanned by the wi obtained
in the modified zero-error algorithm for Simon’s problem is a subspace of S⊥.
With probability at least 2

3 , we have 〈w1,w2, . . . , wn+4〉 = S⊥.

Corollary 6.5.6 The hidden subspace S of f is contained in the span of
s1, s2, With probability at least 2

3 we have S = 〈s1, s2, . . .〉.

Note that we can test if f(si) = 0 for all i, and thus we can test if S = 〈s1, s2, . . .〉
with n + O(1) evaluations of f .

Theorem 6.5.7 The modified algorithm described above is zero-error and
solves the generalized Simon’s problem with probability at least 2

3 and uses
n − m + O(1) evaluations of f and O(n3) other elementary operations.

It is worth noting that, since we never use the measurement outcome in Step 4,
then that measurement step is not actually necessary (recall Exercise 3.5.4). It
is included solely for the sake of helping analyse the algorithm.

If we view this problem in the language of group theory, the group S is usually
called the ‘hidden subgroup’, as we describe in more detail in Section 7.5. We
will see later in the next section how replacing Zn

2 with the group of integers Z
gives us a problem that allows us to efficiently factor large integers.

TEAM LinG

7

ALGORITHMS WITH
SUPERPOLYNOMIAL
SPEED-UP

In this chapter we examine one of two main classes of algorithms: quantum al-
gorithms that solve problems with a complexity that is superpolynomially less
than the complexity of the best-known classical algorithm for the same prob-
lem. That is, the complexity of the best-known classical algorithm cannot be
bounded above by any polynomial in the complexity of the quantum algorithm.
The algorithms we will detail all make use of the quantum Fourier transform
(QFT).

We start off the chapter by studying the problem of quantum phase estimation,
which leads us naturally to the QFT. Section 7.1 also looks at using the QFT to
find the period of periodic states, and introduces some elementary number theory
that is needed in order to post-process the quantum algorithm. In Section 7.2,
we apply phase estimation in order to estimate eigenvalues of unitary operators.
Then in Section 7.3, we apply the eigenvalue estimation algorithm in order to
derive the quantum factoring algorithm, and in Section 7.4 to solve the discrete
logarithm problem. In Section 7.5, we introduce the hidden subgroup problem
which encompasses both the order finding and discrete logarithm problem as
well as many others. This chapter by no means exhaustively covers the quantum
algorithms that are superpolynomially faster than any known classical algorithm,
but it does cover the most well-known such algorithms. In Section 7.6, we briefly
discuss other quantum algorithms that appear to provide a superpolynomial
advantage.

7.1 Quantum Phase Estimation and the Quantum Fourier
Transform

To introduce the idea of phase estimation, we begin by noting that the final
Hadamard gate in the Deutsch algorithm, and the Deutsch–Jozsa algorithm,
was used to get at information encoded in the relative phases of a state. The
Hadamard gate is self-inverse and thus does the opposite as well, namely it can be

110
TEAM LinG

QUANTUM PHASE ESTIMATION AND THE QUANTUM FOURIER TRANSFORM 111

used to encode information into the phases. To make this concrete, first consider
H acting on the basis state |x〉 (where x ∈ {0, 1}). It is easy to see that

H|x〉 = 1√
2
|0〉+ (−1)x

√
2
|1〉 (7.1.1)

=
1√
2

∑
y∈{0,1}

(−1)xy|y〉. (7.1.2)

You can think about the Hadamard gate as having encoded information about
the value of x into the relative phases between the basis states |0〉 and |1〉. The
Hadamard gate is self-inverse, and so applying it to the state on the right side
of Equation (7.1.2) we get |x〉 back again:

H

(
1√
2
|0〉+ (−1)x

√
2
|1〉

)
= |x〉. (7.1.3)

Here the Hadamard gate can be thought of as decoding the information about
the value of x that was encoded in the phases.

More generally, consider H⊗n acting on the n-qubit basis state |x〉, which we
saw in Section 6.4 is:

H⊗n|x〉 =
1√
2n

∑
y∈{0,1}n

(−1)x·y|y〉. (7.1.4)

We can think about the n-qubit Hadamard transformation as having encoded
information about the value of x into the phases (−1)x·y of the basis states |y〉.
If we apply H⊗n to this state we get |x〉 back again:

H⊗n 1√
2n

∑
y∈{0,1}n

(−1)x·y|y〉 = H⊗n
(
H⊗n|x〉

)
(7.1.5)

=
(
H⊗nH⊗n

)
|x〉 (7.1.6)

= I|x〉 (7.1.7)
= |x〉. (7.1.8)

The n-qubit Hadamard gate here can be thought of as decoding the information
about the value of x that was encoded in the phases.

Exercise 7.1.1 (Bernstein–Vazirani problem) Show how to find a ∈ Zn
2 given one

application of a black box that maps |x〉|b〉 �→ |x〉|b ⊕ x · a〉, for some b ∈ {0, 1}.

Of course, (−1)x·y are phases of a very particular form. In general, a phase is a
complex number of the form e2πiω, for any real number ω ∈ (0, 1). The phase

TEAM LinG

112 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

−1 corresponds to ω = 1
2 . The n-qubit Hadamard transformation is not able to

fully access information that is encoded in more general ways. In this section
we explore how to generalize the Hadamard gate to allow the determination of
information encoded in phases in another special way.

Suppose we are given a state

1√
2n

2n−1∑
y=0

e2πiωy|y〉, (7.1.9)

where ω ∈ (0, 1). Previously we had considered the n-bit string y as an n-tuple
of binary values, but now we consider the n-bit strings to be integers from 0 to
2n − 1. When we write |y〉, it is understood that we are referring to the basis
state labelled by |y〉, where y is the binary encoding of the integer y.

Given the state (7.1.9) above, we might be interested in determining ω. It may
not be obvious now why this would be a useful thing to do, but the motivation
will become clear later on. For reference, we state the problem below.

Phase Estimation Problem

Input: The state 1√
2n

∑2n−1
y=0 e2πiωy|y〉.

Problem: Obtain a good estimate of the phase parameter ω.

There is a quantum algorithm for solving the Phase Estimation Problem. It is
described below.

We begin by showing you some standard notation for writing the kinds of ex-
pressions we will have. First note that ω can be written in binary as

ω = 0 . x1x2x3 · · · (7.1.10)

(this means x1 · 2−1 + x2 · 2−2 + x3 · 2−3 + · · ·).
Similarly, we can write power-of-2-multiples of ω as

2kω = x1x2x3 · · ·xk . xk+1xk+2 · · · (7.1.11)

and since e2πik = 1 for any integer k, we have

e2πi(2kω) = e2πi(x1x2x3···xk .xk+1xk+2···)

= e2πi(x1x2x3···xk)e2πi(0 .xk+1xk+2···)

= e2πi(0 .xk+1xk+2···). (7.1.12)

Let us begin considering how to use a quantum circuit to determine ω, given the
state

∑2n−1
y=0 e2πiωy|y〉 as input. If the input is a 1-qubit state(so n = 1), and if

TEAM LinG

QUANTUM PHASE ESTIMATION AND THE QUANTUM FOURIER TRANSFORM 113

ω = 0.x1, then the state can be written

1√
2

1∑
y=0

e2πi(0.x1)y|y〉 =
1√
2

1∑
y=0

e2πi(x1
2)y|y〉 (7.1.13)

=
1√
2

1∑
y=0

eπi(x1y) (7.1.14)

=
1√
2

1∑
y=0

(−1)x1y|y〉 (7.1.15)

=
1√
2

(|0〉+ (−1)x1 |1〉) . (7.1.16)

Recalling Equation (7.1.3) we can use the single-qubit Hadamard gate to deter-
mine the value of x1 (and thus of ω):

H

(
1√
2

(|0〉+ (−1)x1 |1〉)
)

= |x1〉. (7.1.17)

Before continuing to determining ω = 0 . x1x2 · · · for more complicated states,
make note of the following very useful identity.

1√
2n

2n−1∑
y=0

e2πiωy|y〉 =

(
|0〉+ e2πi(2n−1ω)|1〉√

2

)
⊗
(
|0〉+ e2πi(2n−2ω)|1〉√

2

)
⊗ · · ·

· · · ⊗
(|0〉+ e2πi(ω)|1〉√

2

)
=
(|0〉+ e2πi(0 .xnxn+1···)|1〉√

2

)
⊗
(|0〉+ e2πi(0 .xn−1xnxn+1···)|1〉√

2

)
⊗ · · ·

· · · ⊗
(|0〉+ e2πi(0 .x1x2···)|1〉√

2

)
.

(7.1.18)

Exercise 7.1.2 Prove the identity (7.1.18).

Suppose we have the 2-qubit state 1√
22

∑22−1
y=0 e2πiωy|y〉, and suppose that ω =

0.x1x2. Using the above identity, we can then write the state as

1√
22

22−1∑
y=0

e2πi(0.x1x2)y|y〉 =
(|0〉+ e2πi(0.x2)|1〉√

2

)
⊗
(|0〉+ e2πi(0.x1x2)|1〉√

2

)
.

(7.1.19)

TEAM LinG

114 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

Notice that x2 can be determined from the first qubit, by applying a Hadamard
gate (exactly the same as in the previous example). We still need to determine
x1, and this obviously has to come from the second qubit. If x2 = 0, then the
second qubit is in the state 1√

2
|0〉+e2πi(0.x1)|1〉, and we can determine x1 using a

Hadamard gate (just as we did for x2). If x2 = 1, however, this will not work, and
we will need to do something else first. Define a 1-qubit phase rotation operator
R2 by the following matrix (with respect to the computational basis):

R2 =
[
1 0
0 e

2πi
22

]
=
[
1 0
0 e2πi(0.01)

]
, (7.1.20)

where 0.01 in the exponent is written in base 2 (so 0.01 = 2−2). The inverse of
R2 is

R−1
2 =

[
1 0
0 e−2πi(0.01)

]
. (7.1.21)

If x2 = 1, consider the effect of applying R−1
2 to the second qubit:

R−1
2

(|0〉+ e2πi(0.x11)|1〉√
2

)
=
|0〉+ e2πi(0.x11−0.01)|1〉√

2

=
|0〉+ e2πi(0.x1)|1〉√

2
. (7.1.22)

After R−1
2 is applied, the Hadamard gate can be used to determine x1. Whether

to apply R−1
2 to the second qubit before applying the Hadamard gate is deter-

mined by whether x2 = 1 or x2 = 0. Recall that after we applied the Hadamard
gate to the first qubit, the state of the first qubit became |x2〉. So we can use
a controlled-R−1

2 gate on the second qubit, controlled by the state of the first
qubit. In summary, for the case of a 2-qubit state with ω = 0.x1x2, the circuit
shown in Figure 7.1 solves the Phase Estimation Problem (note that here the
‘estimation’ is exact).

It is worth noting that the controlled-R gate, for any phase rotation gate R is
symmetric with respect to swapping the control and target bits, as illustrated in
Figure 7.2. However, it is convenient when doing phase estimation to think of it
as being a controlled phase shift.

Fig. 7.1 A circuit for the 2-qubit phase estimation algorithm.
TEAM LinG

QUANTUM PHASE ESTIMATION AND THE QUANTUM FOURIER TRANSFORM 115

Fig. 7.2 A controlled phase shift of eiφ is symmetric with respect to swapping the

control and target bits.

Fig. 7.3 A circuit for the 3-qubit phase estimation algorithm.

The above approach to phase estimation can be generalized. To illustrate this,
we give one more example. Suppose we wish to determine ω = 0.x1x2x3 for a
3-qubit state 1√

23

∑23−1
y=0 e2πi(0.x1x2x3)y|y〉. This state can be written

23−1∑
y=0

e2πi(0.x1x2x3)y|y〉 (7.1.23)

=
(|0〉+ e2πi(0.x3)|1〉√

2

)
⊗
(|0〉+ e2πi(0.x2x3)|1〉√

2

)
⊗
(|0〉+ e2πi(0.x1x2x3)|1〉√

2

)
.

We define a general 1-qubit phase rotation gate Rk by

Rk =
[
1 0
0 e

2πi

2k

]
. (7.1.24)

The inverse R−1
k has the following effect on the basis states

R−1
k : |0〉 �→ |0〉

R−1
k : |1〉 �→ e−2πi(0.0...01)|1〉, (7.1.25)

where the 1 in the exponent is in the kth position.

We argue just as we did for the 2-qubit case above. This time, for the third
qubit we have to conditionally ‘rotate off’ both x2 and x3. The circuit
in Figure 7.3 implements the phase estimation algorithm for the 3-qubit state
(7.1.23). A measurement of the state at the output of the circuit tells us
ω = 0.x1x2x3.

It should be clear now how this phase estimation circuit generalizes.
TEAM LinG

116 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

We have only argued that the above phase estimation algorithm works for the
n-qubit state 1√

2n

∑2n−1
y=0 e2πiωy|y〉 when the phase is of the form ω =

0.x1x2 · · ·xn. That is, we have only seen that the phase estimation algorithm
returns x when ω is of the form x

2n , for some integer x. As we shall see in the
next section, for arbitrary ω, the phase estimation circuit will return x such that
x
2n is closest to ω with high probability (this is why we use the word ‘estimation’
for this algorithm). So we just have to choose n (i.e. the number of qubits to use
for our approximation) so that this estimate is close enough.

Notice that the output of Figure 7.3 is the state |x〉 = |x3x2x1〉. For the analogous
circuit on n qubits estimating a phase of the form x = 0.x1x2 . . . xn, the output
of the circuit would be the state |xn . . . x2x1〉. If we add some gates to reverse
the order of the qubits at the end, we have an efficient circuit (with O(n2) gates)
that implements

1√
2n

2n−1∑
y=0

e2πi x
2n y|y〉 �−→ |x〉. (7.1.26)

Note that in practice we do not actually have to implement the reversal of the
order of the qubits; it suffices simply to logically relabel the qubits (in reverse
order).

Consider the inverse of (7.1.26):

|x〉 �−→ 1√
2n

2n−1∑
y=0

e2πi x
2n y|y〉. (7.1.27)

Note that this is simply the unitary transformation realized by applying the phase
estimation circuit backwards.1 Equation (7.1.27) bares a strong resemblance to
the discrete Fourier transform, which appears often in science and engineering.
We call Equation (7.1.27) the Quantum Fourier Transform (QFT) on n qubits,
written QFT2n . We often just write QFT instead of QFT2n when the intended
meaning is clear. The QFT extends linearly to arbitrary superpositions of basis
states.

Since the QFT is the inverse of the phase estimation operation, we have an
efficient circuit for performing the QFT (just the phase estimation circuit back-
wards). For reference, a quantum circuit for the QFT is shown in Figure 7.4.

In general, QFTm is used to denote the QFT defined on basis states |0〉, |1〉, . . . ,
|m− 1〉 according to

QFTm : |x〉 �→ 1√
m

m−1∑
y=0

e2πi x
m y|y〉. (7.1.28)

1Recall that running or applying a circuit ‘backwards’ means to replace each gate with its
inverse, and run the circuit in reverse order.

TEAM LinG

QUANTUM PHASE ESTIMATION AND THE QUANTUM FOURIER TRANSFORM 117

Fig. 7.4 A circuit for the QFT, up to a permutation of the output qubits to reverse

their order. Note that in practice, we do not need to physically implement this permu-

tation, but can achieve the desired result by simply logically relabelling the qubits.

Note however that a circuit like that in Figure 7.4 will only implement QFT
QFTm where m = 2n is a power of 2.

Theorem 7.1.1 There is a uniform family of circuits Cm,T with size polynomial
in log m and log T that implements QFTm with error2less than 1

T .

Also for reference, we state the action of the inverse QFT (denoted QFT−1
m) on

the basis states |0〉, |1〉, . . . , |m− 1〉:

QFT−1
m : |x〉 �→ 1√

m

m−1∑
y=0

e−2πi x
m y|y〉. (7.1.29)

7.1.1 Error Analysis for Estimating Arbitrary Phases

In our discussion of phase estimation we assumed that ω was of the form ω = x
2n .

The QFT−1 then returns the integer x, encoded in binary by an n-qubit state. In
this section we examine the error that occurs when ω is not an integer multiple
of 1

2n .

In general, the QFT−1 will output some superposition |ω̃〉 =
∑

x αx(ω)|x〉 which,
after the measurement, outputs x with probability |αx(ω)|2. The output x corre-
sponds to the estimate ω̃ = x

2n . We show in this section that with high probability
the estimate ω̃ will be a good estimate of ω. Note that although ω̃ is a particular
value that is output according to a probability distribution, we use |ω̃〉 as short-
hand for the superposition of the values x which, when measured, gives a good
estimate of ω with high probability. (i.e. |ω̃〉 does not refer to a computational
basis state with value ‘ω̃’.)

We begin by showing that if we use n qubits, then the phase estimation algorithm
returns the integer x̂ such that x̂

2n is the closest integer multiple of 1
2n to ω, with

probability at least 4
π2 . (If ω is exactly halfway between two integer multiples

of 1
2n , the phase estimation algorithm returns each of these with probability at

least 4
π2 .) Then we will investigate how many qubits we need to use to ensure

2Recall the definition of this error in Equation 4.3.1.

TEAM LinG

118 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

that we get ω accurate to n bits, with a probability of error below a prespeci-
fied level. To illustrate our discussion, it is convenient to represent phase values
on a circle having circumference 1. The value ω (corresponding to the phase
parameter 2πω) is a real number in the interval [0, 1). We can choose a reference
point on the circle to represent the value 0, and count points around the circle
counterclockwise, up to the value 1 where we return to the starting point. To
represent phase values that can be encoded on an n-qubit quantum computer,
we place a dot on the circle at each integer multiple of 1

2n . There will be 2n such
dots on the circle. Of course, a real phase parameter ω may not be an integer
multiple of 1

2n , and so may lie between the dots on the circle. This representation
for the phase is illustrated in Figure 7.5.

Suppose the phase being estimated is ω, and let ω̂ be the nearest integer multiple
of 1

2n to ω, as shown in Figure 7.6. That is, x̂ is chosen as the integer between
0 and 2n − 1 such that ω̂ = x̂

2n is the closest number of this form to ω. If ω is
exactly halfway between two numbers of this form, choose ŵ = x̂

2n to be one of
the two. For ease of notation, in this section, we will abuse the usual absolute
value notation and, for any real numbers ω, ω̃ ∈ [0, 1), we let |ω − ω̃| be such
that 2π|ω − ω̃| is the shortest arclength between e2πiω and e2πiω̃ along the unit
circle. That is, we will use |ω− ω̃| to denote min{|ω− ω̃|, |ω− ω̃ +1|, |ω− ω̃−1|}.

Fig. 7.5 Representation of a phase ω as a point on a circle.

Fig. 7.6 ω̂ = x̂
2n is the nearest integer multiple of 1

2n to ω.

TEAM LinG

QUANTUM PHASE ESTIMATION AND THE QUANTUM FOURIER TRANSFORM 119

Our first goal is to show that the phase estimation algorithm returns the integer
x̂ with probability at least 4

π2 . We begin with a lemma which follows easily by
computing a simple geometric sum and recalling that |1− ei2θ| = |e−iθ − eiθ| =
2| sin(θ)|.

Lemma 7.1.2 Let ω = x
2n = 0.x1x2 . . . xn be some fixed number. The phase es-

timation algorithm applied to the input state |ψ〉 = 1√
2n

∑2n−1
y=0 e2πiωy|y〉 outputs

the integer x with probability:

p(x) =
1

22n

sin2 (π(2nω − x))
sin2 (π(ω − x/2n))

. (7.1.30)

The following lemma will be useful.

Lemma 7.1.3 If |θ| ≤ π
2 then 1

M2
sin2(Mθ)
sin2(θ)

≥ 4
π2 , for any M ≥ 1.

Together with Lemma 7.1.3, Lemma 7.1.2 implies the following theorem.

Theorem 7.1.4 Let ω̂ = x̂
2n be an integer multiple of 1

2n closest to ω. The phase
estimation algorithm returns x̂ with probability at least 4

π2 .

In other words, with probability at least 4
π2 the phase estimation algorithm

outputs an estimate x̃ such that | x̃
2n − ω| ≤ 1

2n+1 .

Note that if ω lies exactly in between x
2n and x+1

2n (i.e. ω = k
2n + 1

2n+1), then we
will measure one of the two closest estimates of ω with probability at least 8

π2 .
In fact, this is true for any ω as we summarize in the following theorem.

Theorem 7.1.5 If x
2n ≤ ω ≤ x+1

2n , then the phase estimation algorithm returns
one of x or x + 1 with probability at least 8

π2 .

In other words, with probability at least 8
π2 the phase estimation algorithm

outputs an estimate x̂ such that | x̂
2n − ω| ≤ 1

2n .

It is easy to verify that with probability at least 1− 1
2(k−1) , the phase estimation

algorithm will output one of the 2k closest integer multiples of 1
2n (see Figure 7.7).

This implies that with probability at least 1− 1
2(k−1) , the output ω̃ of the phase

estimation algorithm will satisfy |ω− ω̃| ≤ k
2n . In other words, in order to obtain

an estimate ω̃ such that with probability at least 1− 1
2m we have |ω̃ − ω| ≤ 1

2r ,
it suffices to do a phase estimation with n = m + r + 1. It is worth noting that
this algorithm is quite likely to get an estimate that has error much smaller than
1
2r . For example, with probability at least 8

π2 the error will be at most 1
2r+m . If

we only care about having an estimate with error at most 1
2r , in Exercise 7.1.3

you will show how to do so using O(log r) repetitions of the phase estimation

TEAM LinG

120 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

Fig. 7.7 The phase estimation algorithm will output one of the 2k closest integer

multiples of 1
2n to ω with probability at least 1 − 1

2(k−1)
.

algorithm with parameter n = m. Depending on the intrinsic cost of computing
higher-order phase shifts, this could be a much more efficient algorithm.

Exercise 7.1.3 Prove that O(log2(r)) phase estimations with n = m and taking the
outcome that occurs most often provides an estimate ω̃ of the phase ω which will with
probability at least 1 − 1

2r have error |ω − ω̃| ≤ 1
2m .

Hint: Find an upper bound on the probability of obtaining anything other than one of
the two closest estimates, and then guarantee that with high probability the outcome
is one of the two closest estimates.

Exercise 7.1.4

(a) Give a concise description of the operation performed by the square of the QFT.

(a) What are the eigenvalues of the QFT?

7.1.2 Periodic States

We have studied in detail the behaviour of the QFT (or its inverse) on compu-
tational basis states, and on states of the form∑

x

e2πiωx|x〉. (7.1.31)

It is also interesting and useful to study behaviour of the QFT on what we often
call periodic states.

A periodic superposition of states is one of the form

|φr,b〉 =
1√
m

m−1∑
z=0

|zr + b〉. (7.1.32)

TEAM LinG

QUANTUM PHASE ESTIMATION AND THE QUANTUM FOURIER TRANSFORM 121

We say this state is periodic with period r, shift b, and m repetitions of the period.

Consider the following problem:

Finding the Period a of a Periodic State, Given mr

Input:

• Integer mr

• A black-box generating quantum states

|φr,b〉 =
1√
m

m−1∑
z=0

|zr + b〉 (7.1.33)

where b is chosen uniformly at random from {0, 1, . . . , r − 1}.
Problem: Find r.

If we measure |φr,b〉 in the computational basis, we get zr + b for some value
z ∈ {0, 1, . . . , m− 1} chosen uniformly at random. Since b ∈ {0, 1, . . . , r − 1} is
also chosen uniformly at random, the probability of the measurement producing
any particular integer x ∈ {0, 1, . . . , mr − 1} is uniformly 1

mr and thus this
outcome gives us no useful information about the value of r.

Exercise 7.1.5 Prove

QFT−1
mr|φr,b〉 =

1√
r

r−1∑
k=0

e−2πi b
r

k|mk〉. (7.1.34)

However, if we apply3 QFT−1
mr to |φr,b〉 then the resulting state is the superpo-

sition QFT−1
mr|φr,b〉 = 1√

r

∑r−1
k=0 e−2πi b

r k|mk〉. If we measure this state we will
obtain a value x = mk for some random integer k between 0 and r − 1. Since
we know mr, we can compute x

mr = k
r and express it in lowest terms. Note

however that if k and r share a non-trivial common factor, the denominator
of the reduced fraction for x

mr = k
r will not be r, but rather some divisor of

r. For example, suppose m = 3, r = 20, x = 24; in other words, we initially
know mr = 60, and measuring QFT−1

60 |φr,b〉 gave us the number x = 24. So
in this case 24

60 = 8
20 and k = 8. However, since we only know mr = 60 and

x = 24, we would reduce to lowest terms and obtain 24
60 = 2

5 . The denominator
5 is a divisor of r = 20, but we ‘lost’ the factor of 4 because 4 was also a factor
of k = 24.

3Note that QFTmr would also work. We choose to use QFT−1
mr for consistency with the

phase estimation algorithm.

TEAM LinG

122 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

One answer to this potential problem is to simply note that with probability
in Ω(1

log r log r), the integer k will not have a non-trivial common factor with r.
Thus we only need to repeat this entire procedure an expected number of times
in O(log log r) before we find r.

In the next section, we introduce some mathematical notation and elementary
techniques that give us a better method for finding r, and will also be useful
elsewhere in this chapter.

One important technical question is how to know we have the correct r. In
the applications of this period-finding tool we use later, there will be an easy
classical means for verifying the correct r. In the example of this section, since
each denominator of the reduced fractions will be a divisor of r, then when r
should eventually appear in the list, it will be the largest element in the list.
Thus our algorithm should output the largest value in the list as the guess for
r. In Exercise 7.1.6, we introduce an interesting tool that gives us another way
to test if we have the correct value of r (note that we know our guess will be a
divisor of r, so to prove it equals r, it suffices to verify that it is also a multiple
of r).

Exercise 7.1.6 Suppose you are given the state |φr,b〉 and a candidate r′. Devise a
‘1-sided’ test, which always outputs 0 if r′ is a multiple of r, and outputs 1 with
probability at least 50% otherwise.

Hint: What happens if we add r′ mod mr to the basis states of |φr,b〉?

For now, let us move on to the case that we do not actually know the product
mr, and instead we have the following problem.

Finding the Period of a Periodic State

Input:

• Integer n

• A black-box generating quantum states

|φr,b〉 =
√

1
mb

∑
z:0≤zr+b<2n

|zr + b〉 (7.1.35)

where b is chosen from {0, 1, . . . , r − 1}, and mb ≈ 2n

r is the value that makes
the state have norm equal to 1.4

Problem: Find r.

4In order for the state to be normalized, we must have mb ≡ |{z : 0 ≤ zr + b < 2n}| =

� 2n−b−1
r

� + 1. This can also be written as mb =
2n−(2n mod r)

r
+ 1 if 0 ≤ b < (2n mod r),

and mb =
2n−(2n mod r)

r
if (2n mod r) ≤ b < r.

TEAM LinG

QUANTUM PHASE ESTIMATION AND THE QUANTUM FOURIER TRANSFORM 123

If we apply QFT−1
2n then with high probability a measurement will give a value

x such that x
2n is close to k

r for a random integer k ∈ {0, 1, 2, . . . , r}. More
specifically, we have the following theorem.

Theorem 7.1.6 Let x be the outcome of measuring QFT−1
2n |φr,b〉. For each value

x satisfying ∣∣∣∣ x

2n
− k

r

∣∣∣∣ ≤ 1
2mbr

(7.1.36)

for some integer k, the probability of obtaining x is at least mb

2n
4

π2 .

This theorem can be obtained by computing a simple geometric sum and using
Lemma 7.1.3.

The important part about this bound on the error is that as long as m ≥ r (it
suffices to have 2n ≥ 2r2), then 1

2mbr ≤ 1
2r2 . This allows us to find the fraction

k
r using the continued fractions algorithm.

The continued fractions algorithm is an algorithm that approximates any real
number with a sequence of rational approximations. We will summarize the facts
about continued fractions that are relevant for this textbook.

Theorem 7.1.7 Each rational number x
2n has a sequence of O(n) rational ap-

proximations, called convergents, a1
b1

, a2
b2

, . . . , am

bm
, where am

bm
= x

2n , with the fol-
lowing properties:

• a1 < a2 < · · · < am, b1 < b2 < · · · < bm.

• The list of convergents of x
2n can be computed in time polynomial in n.

• If some fraction k
r satisfies ∣∣∣∣ x

2n
− k

r

∣∣∣∣ ≤ 1
2r2

,

then k
r appears in the list of convergents of x

2n .

Note that Theorem 7.1.7 implies that if 2n ≥ 2r2 and if we measure one of the
two closest estimates of k

r , we will be able to recognize which convergent equals
k
r (see Exercise 7.1.7).

Exercise 7.1.7 (a) Prove that there can be at most one convergent ai
bi

= x
2n satisfying

| x
2n − ai

bi
| ≤ 1

2r2 and bi ≤ r.

(b) Prove that if 2n ≥ 2r2 and | x
2n − k

r
| ≤ 1

2n , then ai
bi

= k
r

will be the only convergent

of x
2n with bi ≤ 2

(n−1)
2 .

TEAM LinG

124 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

7.1.3 GCD, LCM, the Extended Euclidean Algorithm

We begin by reviewing some basic definitions from number theory, and then state
an algorithm which will be useful for some of the classical reductions we will see
in this chapter, in particular for finding r given a close estimate of k

r for random
integers k.

Definition 7.1.8 An integer x is said to divide an integer y, written x|y, if there
exists another integer z such that y = xz.

Definition 7.1.9 The greatest common divisor (GCD) of two integers x and y,
denoted GCD(x, y), is the largest positive integer z that divides both x and y.
In the case that x = y = 0, we define GCD(x, y) = 0.

Two numbers x and y are said to be coprime or relatively prime if the GCD of
x and y, denoted GCD(x, y), equals 1.

Definition 7.1.10 The lowest common multiple (LCM) of two integers x and
y, denoted LCM(x, y), is the smallest integer z that is divisible by both x and y.

A well-known algorithm called the extended Euclidean algorithm (EEA) provides
an efficient way to compute LCMs and GCDs.

The Extended Euclidean Algorithm

The EEA takes two positive integers x, y < 2n and outputs three integers
a, b, d < 2n with the following properties:

d = GCD(x, y) (7.1.37)
ax + by = d. (7.1.38)

The total running time is in O(n2).

Corollary 7.1.11 (EEA): Given non-zero integers x and y, the EEA can be
used to efficiently find:

1. GCD(x, y)
2. LCM(x, y) = xy

GCD(x,y)

3. The fraction x/y reduced to lowest terms (i.e. find x1, y1 such that x/y =
x1/y1 and GCD(x1, y1) = 1; note that x1 = x

GCD(x,y) , y1 = y
GCD(x,y))

4. The inverse of x modulo y (assuming GCD (x, y) = 1).

Let us return to the problem of finding r given the fraction k
r expressed in lowest

terms for an integer k ∈ {0, 1, 2, . . . , r − 1} selected uniformly at random.

Suppose we repeat the procedure to obtain two measurement results x1 and x2,
such that x1

mr = k1
r and x2

mr = k2
r , for integers k1, k2 between 0 and r− 1 selected

uniformly at random.

TEAM LinG

EIGENVALUE ESTIMATION 125

We can efficiently find integers c1, r1, c2, r2 with GCD(c1, r1) = GCD(c2, r2) = 1
so that k1

r = c1
r1

and k2
r = c2

r2
. Note that this means that r1 and r2 both divide r

(i.e. r is a common multiple of r1 and r2).

Theorem 7.1.12 Let r be a positive integer. Suppose the integers k1 and k2

are selected independently and uniformly at random from {0, 1, . . . , r − 1}. Let
c1, r1, c2, r2 be integers so that GCD(r1, c1) = GCD(r2, c2) = 1 and k1

r = c1
r1

and
k2
r = c2

r2
.

Then with probability at least 6
π2 we have r = LCM(r1, r2). Furthermore, the

numbers c1, r1, c2, r2, and r can be computed in time in O(log2 r).

7.2 Eigenvalue Estimation

When we looked at the Deutsch algorithm (and similarly the Deutsch–Jozsa and
Simon algorithms), we mentioned that we could think of the operator Uf as a
controlled operator c-Ûf(x). We saw that the state |0〉−|1〉√

2
of the target qubit was

an eigenvector of Ûf (x), with corresponding eigenvalue (−1)f(x), and we showed
that we can associate this eigenvalue with the control qubit. We generalize this
idea here, and show how we can construct a quantum circuit for estimating
eigenvalues of a given multi-qubit unitary operator U .

Consider an n-qubit unitary operator U with eigenvector |ψ〉 and corresponding
eigenvalue e2πiω. Suppose that we have an efficient quantum network for imple-
menting U . Now consider a controlled-U gate (i.e. a circuit for performing the
controlled-U operation, which we bundle-up and represent as single ‘gate’. Recall
Exercise 4.2.7 on how to implement this). Suppose the second (target) register
is prepared in the eigenstate |ψ〉. If the control qubit is in state |0〉, U is not
applied to the qubits of the second register. If the control bit is in the state |1〉,
U is applied. In this case, denoting the controlled-U gate by c-U , we have

c-U |1〉|ψ〉 = |1〉U |ψ〉
= |1〉e2πiω|ψ〉
= e2πiω|1〉|ψ〉. (7.2.1)

This is shown in Figure 7.8.

Suppose the control qubit is prepared in a superposition α|0〉 + β|1〉. Then the
effect of applying the controlled-U is to encode the eigenvalue of U into the
relative phase factor between the basis states |0〉 and |1〉 in the control qubit’s
state. As a relative phase, it becomes a measurable quantity (through quantum
interference). This effect of encoding the eigenvalue of U into the phase of the
control register of a controlled-U operation is illustrated in Figure 7.9.

In this section we are going to apply this idea of encoding eigenvalues in the
phases of a control qubit together with the phase estimation algorithm to solve
the following problem.

TEAM LinG

126 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

Fig. 7.8 When we analyse the action of the controlled-U on the state |1〉|ψ〉 for an

eigenstate |ψ〉 with eigenvalue e2πiω, the phase shift corresponding to the eigenvalue

of U can be associated with the control qubit, since |1〉
(
e2πiω|ψ〉

)
=

(
e2πiω|1〉

)
|ψ〉.

That is, the eigenvalue of U on |ψ〉 can be considered to have been ‘kicked back’ to the

control qubit.

Fig. 7.9 When the control bit is in a superposition of |0〉 and |1〉, the |0〉 component

does not pick up a phase of e2πiω, and the |1〉 component does. Thus the eigenvalue

turns up as a relative phase between the |0〉 and |1〉 components of the control bit

superposition.

Eigenvalue Estimation Problem

Input: A quantum circuit implementing an operator U , and an eigenstate |ψ〉
with corresponding eigenvalue e2πiω.
Problem: Obtain a good estimate for ω.

Recall that the inverse QFT (which we showed was a good algorithm for phase
estimation) allows us to estimate ω given the state

1√
2n

2n−1∑
y=0

e2πiωy|y〉 (7.2.2)

=

(
|0〉+ e2πi(2n−1ω)|1〉√

2

)(
|0〉+ e2πi(2n−2ω)|1〉√

2

)
· · ·

(|0〉+ e2πi(ω)|1〉√
2

)
.

(7.2.3)

So if we can devise a quantum circuit that creates this state, we can then use
QFT−1 to estimate the eigenvalue. To see how this can be done, notice that |ψ〉

TEAM LinG

EIGENVALUE ESTIMATION 127

is also an eigenvector of U2, with corresponding eigenvalue
(
e2πiω

)2 = e2·2πiω.
Similarly, for any integer x, we know that |ψ〉 is an eigenvector of Ux with
corresponding eigenvalue ex·2πiω. So if we implement a controlled-U2j

, and set
the control qubit to |0〉+|1〉√

2
, and the target qubit to the eigenstate |ψ〉, then the

result is

c-U2j

((|0〉+ |1〉√
2

)
|ψ〉

)
=

(
|0〉+ e2πi(2jω)|1〉√

2

)
|ψ〉. (7.2.4)

With these observations, it is easy to see that the circuit in Figure 7.10 creates
the state (7.2.2).

As we have seen, if we now apply the QFT−1 to the output of the circuit shown
in Figure 7.10, we will obtain a state |ω̃〉, which provides (with high probability)
a good estimate of the eigenvalue parameter ω. Therefore, the circuit shown in
Figure 7.11 solves the eigenvalue estimation problem.

We have a sequence of controlled-U2k

operations controlled on the kth significant
bit xk of x = 2n−1xn−1 + . . . +2x1 +x0, for each of k = 1, 2, . . . , n. It is easy to
see that this has the overall effect of applying U a total of x times (exponentiating
U). We can write this as a single Ux operator. We therefore define a c-Ux operator
that maps

c-Ux :|x〉|φ〉 �→ |x〉Ux|φ〉. (7.2.5)

Exercise 7.2.1 Let N ≤ 2n. Given a ∈ {2, . . . , N − 2}, explain how a2m

mod N can
be computed in time polynomial in m + n, and with space in O(n).

Fig. 7.10 First stage of eigenvalue estimation.

TEAM LinG

128 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

Fig. 7.11 A circuit for eigenvalue estimation. We measure the state |ω̃〉 and obtain a

string x corresponding to the binary representation of an integer. Our estimate for ω

is 2π x
2n .

Fig. 7.12 A circuit for estimating the eigenvalue e2πiω of the operator U on eigenvalue

|ψ〉.

The qubits in the first (control) register can be prepared in the state(|0〉+ |1〉√
2

)(|0〉+ |1〉√
2

)
· · ·

(|0〉+ |1〉√
2

)
(7.2.6)

by starting with the state |0〉⊗n, and applying the n-qubit Hadamard transforma-
tion H⊗n. We have seen before that the tensor product factors can be expanded
out, and the result can be written more concisely as

H⊗n|0〉⊗n =
1√
2n

2n−1∑
x=0

|x〉. (7.2.7)

It is easy to check from the definition of the QFT that

QFT|0〉⊗n = H⊗n|0〉⊗n (7.2.8)

and so we can use a QFT in place of a Hadamard gate.

With the above observations, the circuit for eigenvalue estimation can be drawn
more concisely as shown in Figure 7.12.

The eigenvalue estimation algorithm implemented by the circuit in Figure 7.12
is summarized below.

TEAM LinG

EIGENVALUE ESTIMATION 129

Eigenvalue Estimation Algorithm

1. Initialize an n-qubit register to |0〉⊗n. Call this the control register.
2. Apply the QFT to the control register.
3. Apply c-Ux to the given eigenstate |ψ〉, controlled on the state of the

control register.
4. Apply the QFT−1 to the control register.
5. Measure the control register to obtain a string of bits encoding the integer

x. Output the value x
2n as the estimate for ω.

Suppose we apply the eigenvalue estimation circuit with the second register ini-
tially in an arbitrary state |ψ〉 which is not necessarily an eigenvector of the
n-qubit operator U . By the spectral theorem (see Section 2.4), the eigenvectors
of U form a basis for the 2n-dimensional vector space on which U acts. This
means that any state in this space can be written as a linear combination of the
eigenvectors of U . So we have

|ψ〉 =
2n−1∑
j=0

αj |ψj〉 (7.2.9)

where |ψj〉 are the eigenvectors of U with corresponding eigenvalues e2πiωj ,
for i = 0, 1, . . . , 2n − 1. We know the eigenvalue estimation algorithm maps
|0〉⊗n|ψj〉 �→ |ω̃j〉|ψj〉. Thus, by linearity, if we apply the eigenvalue estimation
circuit with the second register in the state |ψ〉 =

∑2n−1
j=0 αj |ψj〉, we obtain the

superposition

2n−1∑
j=0

αj |ω̃j〉|ψj〉. (7.2.10)

This is illustrated in Figure 7.13. We will see this idea applied in the next section.

Note that measuring the first register is equivalent to being given |ω̃j〉|ψj〉 with
probability |αj |2 and then measuring the first register.

Recall from Exercise 3.5.4 (a) that measuring the first register and then tracing
out (i.e. discarding or ignoring) the second register is equivalent to tracing out

Fig. 7.13 The eigenvalue estimation circuit applied with the second register in the

state |ψ〉, which is a superposition of the eigenstates of U .
TEAM LinG

130 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

the second register before measuring the first register. In Exercise 3.5.4 (b),
we verify that tracing out the second system is equivalent to measuring it and
then discarding it without revealing the measurement outcome. For convenience,
we can therefore assume that the second register was measured in the basis of
eigenstates and then traced out. Thus, in the case of the state in Equation 7.2.10,
tracing out the second register leaves the first register in the mixture consisting
of the state |ω̃j〉 with probability |αj |2. This way of describing the state of the
first register will be a useful way of analysing many of the algorithms in this
chapter.

Exercise 7.2.2

(a) Recall in Section 4.5 it was shown how to implement a parity measurement using
a quantum circuit. In Exercise 3.4.4, it was shown how the parity measurement is
equivalent to measuring the observable Z⊗n. Describe an alternative algorithm (and
draw the corresponding circuit diagram) for measuring the observable Z ⊗Z ⊗Z using
one application of a c-(Z ⊗ Z ⊗ Z) gate.

(b) Consider the observable M =
∑

i miPi, where we assume for convenience that mi ∈
{0, 1, 2, . . . , N−1}. Let U = e

2πi
N

M . Describe an algorithm (and draw the corresponding
circuit diagram) for measuring the observable M given one application of a c-Ux which
maps |x〉|ψ〉 �→ |x〉Ux|ψ〉, for x ∈ {0, 1, . . . , N − 1}.

7.3 Finding-Orders

7.3.1 The Order-Finding Problem

In the preceding sections we have developed tools that now allow us to describe an
algorithm that has been one of the most important developments in the history
of quantum computation. This is the quantum factoring algorithm, discovered by
Peter Shor in 1994. The RSA cryptosystem is a public key protocol widely used in
industry and government to encrypt sensitive information. The security of RSA
rests on the assumption that it is difficult for computers to factor large numbers.
That is, there is no known (classical) computer algorithm for finding the factors
of an n-bit number in time that is polynomial in n. If such an algorithm were
found, it would undermine the security of RSA. So when Peter Shor discovered
that a quantum computer is capable of factoring large numbers efficiently, this
generated much excitement and catalysed industry and government’s interest in
the potential of quantum computation.

Before we continue to describe this and other similar algorithms in more detail,
we include a short section describing some of the relevant mathematics we will
be discussing.

TEAM LinG

FINDING-ORDERS 131

7.3.2 Some Mathematical Preliminaries

The integers mod N is the set of integers {0, 1, . . . , N −1}, which we will denote
as ZN . Two integers s and t are said to be equivalent mod N if N divides s− t
with zero remainder. In this case we write

s ≡ t (mod N). (7.3.1)

Any integer k can be reduced mod N by taking the remainder r after division
of k by N . In this case we write

r = k mod N. (7.3.2)

One important property is that if GCD(a,N) = 1, then the number 1 will
eventually appear in the sequence a mod N , a2 mod N , a3 mod N, . . . and then
the sequence continues to repeat itself in a periodic fashion. This motivates the
following definition.

Definition 7.3.1 Given integers a and N , such that GCD(a,N) = 1, the order
of a (mod N) is the smallest positive integer r so that ar ≡ 1 (mod N).

Exercises 7.3.1 and 7.3.2 provide some practice working with modular arithmetic,
and prove some basic results.

Exercise 7.3.1

(a) Compute 118 mod 5.

(b) Prove that xy mod N = (x mod N)(y mod N) mod N .

Exercise 7.3.2

(a) What is the order of 2 mod 5?

(b) What is 22005 mod 5?

(c) What is the order of 2 mod 11?

(d) Let r be the order of 2 mod 55.

(i) Find r.

(ii) Find GCD(55, 2
r
2 − 1) and GCD(55, 2

r
2 + 1).

If p is prime, then Zp, with the operations of addition modulo p and multipli-
cation modulo p is a finite field or Galois field often denoted Fp or GF (p). If N
is not prime, then ZN is not a finite field. For any integer N , we let Z∗

N denote
the set of numbers x in ZN where x and N are coprime. These are precisely

TEAM LinG

132 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

the integers x ∈ {0, 1, 2, . . . , N − 1} for which there exists an integer y with
xy ≡ yx ≡ 1 (mod N); for each such x, y is unique and is called the inverse
of x modulo N . We call Z∗

N (with the operation of multiplication mod N) the
multiplicative group of the ring ZN .

For every prime power pm, m > 1 there also exists a finite field Fpm of that
order, but it is not equivalent to Zpm . For most of this introductory textbook,
we do not need to work with the more general notions of groups, rings, and fields,
and will usually just work with very simple concrete examples of such objects
like ZN . We will just point out that the problems of finding orders and discrete
logarithms (to be described in the following sections) can be defined in more
general families of groups including F∗

pm (the multiplicative group of the finite
field Fpm), Z∗

N , and even very different looking groups like the additive group
of points on an elliptic curve (of much use today in public key cryptography).
No knowledge of group theory (beyond the most basic properties of groups like
Z∗

N) is required to understand the algorithms in this chapter. We will illustrate
the mechanics of these algorithms using the simple concrete groups of the form
Z∗

N .

Integer Factorization Problem

Input: An integer N .
Problem: Output positive integers p1, p2, . . . , pl, r1, r2, . . . , rl where the pi are
distinct primes and N = pr1

1 pr2
2 . . . prl

l .

Suppose we wish to factor the integer N . Since it is easy to remove factors
of 2, we will assume N is odd. Furthermore, one can easily factor any inte-
ger N that is a prime power (see Exercise 7.3.3). Thus, we will further assume
that the factorization of N contains at least two distinct odd prime factors.
If we could split any odd non-prime-power integer into two non-trivial factors,
then we can completely factor N into its prime factors using at most log N
splittings. There are efficient classical probabilistic algorithms for testing pri-
mality, and also polynomial time classical deterministic algorithms (though at
present the polynomials have a fairly high degree), so we know when we can
stop trying to split the factors. Thus, the problem of factoring N can be re-
duced to O(log N) instances of the problem of splitting an odd non-prime-power
integer.

Splitting an Odd Non-Prime-Power Integer

Input: An odd integer N that has at least two distinct prime factors.
Problem: Output two integers N1, N2, 1 < N1 < N , 1 < N2 < N , such that
N = N1 ×N2.

TEAM LinG

FINDING-ORDERS 133

Exercise 7.3.3 Suppose N = mn for some integers m > 1 and n > 1. Show how to
find a non-trivial splitting of N in time polynomial in log(N).

Miller showed in 1975 how the problem of splitting integers reduces probabilis-
tically to the problem of order finding. This means that if we have an efficient
algorithm for order finding, it is possible to give an efficient probabilistic algo-
rithm for splitting integers (the splitting algorithm will use the order finding
algorithm as a subroutine). We will sketch this reduction.

Order-Finding Problem

Input: Integers a and N such that GCD(a,N) = 1 (i.e. a is relatively prime
to N).
Problem: Find the order of a modulo N .

To split N , we would start by finding the order of a random integer a that
is coprime with N . To do this, we first need to have some means of finding
such an integer a. If a is not coprime with N , then the GCD of a and N , de-
noted GCD(a,N), is a non-trivial factor of N . As we saw in Section 7.1.3, the
GCD of two numbers can be found efficiently using the EEA. So one can uni-
formly sample elements a coprime to N by uniformly sampling {2, 3, . . . , N −2}
and then applying the EEA to test if the sampled integer is coprime with N .
(If GCD(a,N) > 1, then we have hit the jackpot as we have already found a
non-trivial factor of N .) If a is randomly selected with GCD(a,N) = 1, then
the order r of a will be even with probability at least 1

2 . If r is even, then
b = ar/2 mod N satisfies b2 − 1 = 0 mod N , and thus N divides (b − 1)(b + 1).
The hope is that GCD(b − 1, N) will be a non-trivial factor of N . If N has
at least two distinct prime factors, then for an integer a selected uniformly
at random with even order r, the probability that GCD(ar/2 − 1 mod N,N)
is a non-trivial factor of N is at least 1

2 . Thus, only a constant number of
values a need to be tried in order to successfully split N with high
probability.

Recalling Theorem 7.1.12, we can reduce the order-finding problem to the task
of sampling fractions k

r for integers k chosen uniformly at random between 1 and
r−1. Using a beautiful piece of number theory, the theory of continued fractions
(recall Theorem 7.1.7), we can reduce the task of exactly determining a fraction
k
r to the task of finding an estimate x

2n with |kr − x
2n | ≤ 1

2r2 .

It is important to note that all of the above reductions are classical. To sum-
marize, therefore, finding the order r of a modulo N with bounded error can be
reduced to the following sampling problem.

TEAM LinG

134 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

Sampling Estimates
to an Almost Uniformly Random Integer Multiple of 1

r

Input: Integers a and N such that GCD(a,N) = 1. Let r denote the (unknown)
order of a.
Problem: Output a number x ∈ {0, 1, 2, . . . , 2n−1} such that for each
k ∈ {0, 1, . . . , r − 1} we have

Pr
(∣∣∣∣ x

2n
− k

r

∣∣∣∣ ≤ 1
2r2

)
≥ c

1
r

for some constant c > 0.

Fact: Write a =⇒ b to mean that problem a reduces to a problem b. We
have

Factoring any integer
⇓ deterministic classical polytime reduction

Splitting odd non-prime-power N

⇓ probabilistic classical polytime reduction

Finding the orders of integers modulo N

⇓ probabilistic classical polytime reduction

Sampling estimates to a random integer multiple of
1
r

(where r is the order of some integer a mod N).

This sampling problem is where a quantum algorithm is used. In the following
section we show how eigenvalue estimation can solve the above sampling problem
(and thus the integer factorization problem).

7.3.3 The Eigenvalue Estimation Approach to Order Finding

As we show later, Shor’s order-finding algorithm can be viewed as an application
of the eigenvalue estimation algorithm we saw in Section 7.2.

Let Ua be the operator that maps

Ua :|s〉 �→ |sa mod N〉, 0 ≤ s < N. (7.3.3)

Since a is coprime with N , then a has an inverse modulo N , and so the trans-
formation performed by Ua is reversible and thus unitary. Also, Ua can be im-
plemented efficiently. When implementing this operation say using m qubits
where 2m > N , we can simply extend the action of Ua in any reversible way, for

TEAM LinG

FINDING-ORDERS 135

example

Ua :|s〉 �→ |sa mod N〉, s < N

|s〉 �→ |s〉, 0 ≤ s ≥ N. (7.3.4)

We will restrict attention to the action of Ua restricted to the state space spanned
by {|0〉, |1〉, . . . , |N − 1〉}.
Note that since ar ≡ 1 (mod N), we have

Ur
a :|s〉 �→ |sar mod N〉 = |s〉. (7.3.5)

That is, Ua is an rth root of the identity operation.

In other words, since we know how to multiply by a modulo N , we therefore
know how to implement a unitary transformation that is an rth root of the
identity operation. In Exercise 7.3.4 you will verify that the eigenvalues of a
unitary operation that is an rth root of the identity operation must be rth roots
of 1, that is, of the form e2πi k

r for some integer k.

Exercise 7.3.4 Prove that if a operator U satisfies Ur = I, then the eigenvalues of U
must be rth roots of 1.

Consider the state

|uk〉 =
1√
r

r−1∑
s=0

e−2πi k
r s|as mod N〉. (7.3.6)

We have

Ua|uk〉 =
1√
r

r−1∑
s=0

e−2πi k
r sUa|as mod N〉

=
1√
r

r−1∑
s=0

e−2πi k
r s|as+1 mod N〉

= e2πi k
r

1√
r

r−1∑
s=0

e−2πi k
r (s+1)|as+1 mod N〉

= e2πi k
r |uk〉 (7.3.7)

and so |uk〉 is an eigenstate for Ua with eigenvalue e2πi k
r . The last equality in

the above equations follows from the fact that e2πi k
r r|ar mod N〉 = e2πi k

r 0|a0

mod N〉.

TEAM LinG

136 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

Exercise 7.3.5 Let b be an integer coprime with N . Give a set of eigenvectors |ψb
j〉 of

Ua so that |b〉 =
∑r−1

j=0
1√
r
|ψb

j〉.

For any value of k between 0 and r− 1, if we were given the state |uk〉, we could
apply the eigenvalue estimation algorithm and perform

|0〉|uk〉 �−→ |k̃/r〉|uk〉. (7.3.8)

Referring to Theorem 7.1.5, we see that measuring the first register of this state
would solve the sampling problem, and therefore solve the order finding problem.

Without knowing r, we do not know how to prepare such states |uk〉. Fortunately,
we do not have to. The key insight is the following. Instead of preparing an eigen-
state having eigenvalue e2πi k

r for a randomly selected k ∈ {0, . . . , r−1}, it would
suffice to prepare any superposition or mixture that contains each eigenvalue with
sufficient weight. For example, a uniform superposition of the eigenstates would
suffice. Then the eigenvalue estimation algorithm will produce a superposition
of these eigenstates entangled with estimates of their eigenvalues, and when a
measurement is performed, the result is an estimate of a random eigenvalue. We
shall see that such a superposition of eigenstates is possible to prepare, without
knowing r. Consider

1√
r

r−1∑
k=0

|uk〉 =
1√
r

r−1∑
k=0

1√
r

r−1∑
s=0

e−2πi k
r s|as mod N〉. (7.3.9)

Notice that |as mod N〉 = |1〉 iff s ≡ 0 (mod r). The amplitude of |1〉 in the
above state is then the sum over the terms for which s = 0. This is

1√
r

1√
r

r−1∑
k=0

e−2πi k
r 0 =

1
r

r−1∑
k=0

(1)

= 1. (7.3.10)

So the amplitude of state |1〉 is 1, and thus the amplitude of all other basis
states must be 0. So we have

1√
r

r−1∑
k=0

|uk〉 = |1〉. (7.3.11)

This means that the eigenvalue estimation algorithm maps the input state

|0〉|1〉 = |0〉
(

1√
r

r−1∑
k=0

|uk〉
)

(7.3.12)

=
1√
r

r−1∑
k=0

|0〉|uk〉 (7.3.13)
TEAM LinG

FINDING-ORDERS 137

to the output state

1√
r

r−1∑
k=0

|k̃/r〉|uk〉. (7.3.14)

If we trace out or ignore the second register, we see that the first register is
in an equally weighted mixture of the states |k̃/r〉, for k ∈ {0, 1, . . . , r − 1}.
Therefore, a measurement of the first register at the end of the eigenvalue esti-
mation algorithm yields an integer x such that x

2n is an estimate of k
r for some

k ∈ {0, 1, . . . , r − 1} selected uniformly at random. As mentioned above, with
high probability this estimate will allow us to exactly determine the fraction k

r ,
using the continued fractions algorithm.

A quantum circuit implementing the quantum part of the order-finding algorithm
is shown in Figure 7.14.

The order-finding algorithm is summarized below.

Order-Finding Algorithm

1. Choose an integer n so that 2n ≥ 2r2. The value n = �2 log N� will suffice.
2. Initialize an n-qubit register to |0〉⊗n. Call this the control register.
3. Initialize an n-qubit register to |1〉 = |00 . . . 01〉. Call this the target regis-

ter.
4. Apply the QFT to the control register.
5. Apply c-Ux

a control and target registers.
6. Apply the QFT−1 to the control register.
7. Measure the control register to obtain an estimate x1

2n of a random integer
multiple of 1

r .
8. Use the continued fractions algorithm to obtain integers c1 and r1 such

that | x1
2n − c1

r1
| ≤ 1

2
n−1

2
. If no such pair of integers is found, output ‘FAIL’.

9. Repeat Steps 1–7 to obtain another integer x2 and a pair of integers c2

and r2 such that | x2
2n − c2

r2
| ≤ 1

2
n−1

2
. If no such pair of integers is found,

output ‘FAIL’.
10. Compute r = LCM(r1, r2). Compute ar mod N .
11. If ar mod N = 1, then output r. Otherwise, output ‘FAIL’.

Fig. 7.14 A circuit for sampling estimates to a random integer multiple of 1
r
, which can

be used to solve the order-finding problem. The measured bits are a binary represen-

tation of an integer x such that x
2n is an estimate of k

r
for a random integer k.TEAM LinG

138 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

To see why this algorithm works, note that Step 6 is effectively measuring | k̃r 〉 for
an integer k selected uniformly at random from {0, 1, . . . , r − 1}. The following
theorem thus follows by the reductions given in Section 7.3.2.

Theorem 7.3.2 The order-finding algorithm will output the correct order r of
a with probability at least 384

π6 > 0.399, and otherwise outputs a multiple of r or
‘FAIL’.

The computational bottleneck of this algorithm is the controlled exponentiations
of the operator Ua, that is, the c-U2j

a operations for j = 0, 1, 2, . . . , 2n−1 that
constitute the c-Ux

a , as we saw for eigenvalue estimation in Section 7.2. The
obvious way to compute c-U2j

a requires 2j applications of the c-Ua operation.
A critical observation is that c-U2j

a = c-Ua2j ; in other words, multiplying by
a modulo N a total of 2j times is equivalent to multiplying by a2j

mod N
only once. We can (classically) precompute a2j

mod N with only j multipli-
cations modulo N (by repeated squaring modulo N , starting with a), which
provides an exponential improvement over multiplying by a modulo N a total
of 2j times. The quantum circuit we would implement would simply be a circuit
for multiplying by the number aj mod N (which is a number between 1 and
N − 1). Standard arithmetic techniques can implement this multiplication with
only O((log N) log log(N) log log log(N)) elementary gates. Thus, the required
exponentiation can be done with only O((log N)2 log log(N) log log log(N)) ele-
mentary gates. The QFT require O((log N)2) gates. Thus this quantum circuit
requires only O((log N)2 log log(N) log log log(N)) elementary quantum gates.
Note that it only needs to be repeated a constant number of times to success-
fully factor N into two non-trivial factors with a high probability of success.

In contrast, the best-known ‘heuristic’ classical algorithm uses
eO((log N)

1
3 (log log N)

2
3) elementary classical gates. The best-known rigorous clas-

sical algorithm uses eO((log N)
1
2 (log log N)

1
2).

It is important to note that the order-finding algorithm will work for any group
for which we can represent group elements uniquely and perform the group op-
eration. In other words, the order-finding algorithm works for ‘black-box groups’
(with unique encodings5). In the black-box group model, each element is encoded
by a string of some length n, and one can perform group operations (multiplica-
tion, inverse, and recognizing the group identity element) on these encodings via
a black-box. An algorithm in this model cannot access any information about
the structure of the group except through the black-box. The complexity of

5In order for quantum interference to occur, each group element must be represented by some
unique quantum encoding. Thus, it is sufficient if each group element has a unique classical
encoding. However, more sophisticated unique quantum encodings might also possible, such as
letting each group element be represented by a uniform superposition of all its valid classical
encodings.

TEAM LinG

FINDING-ORDERS 139

algorithms in the black-box model can be measured in terms of the number
of applications of the black box (as well as the number of other operations).
Appendix A.6 discusses the black-box group model in more detail.

The classical and quantum complexities for order finding are summarized below.

Complexities for Order Finding

• Finding the order of a random element in Z∗
N

- Quantum complexity is in O((log N)2 log log(N) log log log(N)).
- Best-known rigorous probabilistic classical algorithm has complexity

in eO(
√

log N log log N).
- Best-known heuristic6 probabilistic classical algorithm has complexity

in eO((log N)
1
3 (log log N)

2
3).

• Order finding in a black-box group
- Quantum black-box complexity (for groups with unique encodings of

group elements) is O(log r) black-box multiplications and O(n+log2 r)
other elementary operations.

- Classical black-box complexity is in Θ(
√

r) black-box multiplications.

7.3.4 Shor’s Approach to Order Finding

The above is not the analysis outlined by Shor in his landmark 1994 paper on
integer factorization. It is equivalent, however, as we will show in this section.
Understanding both approaches is useful when trying to generalize the algorithms
to solve other problems.

The original approach to order finding (in particular, to estimating a random
integer multiple of 1

r) was the following:

Original Approach to Estimating a Random Integer Multiple of 1
r

1. Create the state

|ψ0〉 =
2n−1∑
x=0

1√
2n
|x〉|ax mod N〉. (7.3.15)

We can rewrite the above state as (see Exercise 7.3.6)

|ψ0〉 =
r−1∑
b=0

(
1√
2n

mb−1∑
z=0

|zr + b〉
)
|ab mod N〉. (7.3.16)

where mb is the largest integer so that (mb − 1)r + b ≤ 2n − 1 (see Equa-
tion (7.1.35)).

6By ‘heuristic’ algorithm, we mean the proof of its running time makes some plausible but
unproven assumptions.

TEAM LinG

140 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

2. Measure the second register. We will get a value ab mod N for b chosen
almost7 uniformly at random from {0, 1, . . . , r− 1}. The first register will
be left in a superposition of the form

1√
mb

mb−1∑
z=0

|zr + b〉. (7.3.17)

If we were able to implement the QFT−1
mbr and apply it to the above state

(recall Section 7.1.2), then we would produce the superposition

r−1∑
j=0

e−2πi b
r j |mbj〉. (7.3.18)

In other words, we will only measure values x such that x
rmb

= j
r for

some integer j. However, since we do not know what r and mb are, we use
QFT−1

2n .
3. Apply QFT−1

2n to the first register, and then measure. Let x denote the
measured value.

4. Output x
2n .

The rest of the algorithm can proceed identically to the algorithm in
Section 7.3.3.

Theorem 7.3.3 The above algorithm outputs an integer x ∈ {0, 1, 2, . . . , 2n−1}
such that for each j ∈ {0, 1, 2, . . . , r − 1} with probability at least 4

rπ2 we have

| x
2n − j

r | ≤ 1
2n+1 .

Therefore, this algorithm solves the problem of estimating an almost uniformly
random integer multiple of 1

r .

Exercise 7.3.6

(a) For every integer x ∈ {0, 1, 2, . . . , 2n − 1} show that there are unique integers zx

and bx where x = zxr + bx and 0 ≤ bx < r.

(b) Using the result of part (a) above, show that Equation (7.3.15) can be rewritten as
Equation (7.3.16).

7Note that for the values b satisfying 0 ≤ b < (2n mod r) the probability of measuring ab

is 1
r

+
r−(2n mod r)

r2n , and for b satisfying (2n mod r) ≤ b < r, the probability of measuring ab

is 1
r
− (2n mod r)

r2n . In other words, the probability lies in the interval (1
r
− 1

2n , 1
r

+ 1
2n).

TEAM LinG

FINDING-ORDERS 141

Note that, as was the case in Simon’s algorithm, since we never use the measured
value in Step 2, we can ignore that step. Furthermore, a very natural way to
create the state in Step 1 is to first prepare the state

|ψ0〉 =
2n−1∑
x=0

1√
2n
|x〉|1〉 (7.3.19)

and then perform the operation that maps |x〉|y〉 �→ |x〉|yax mod N〉.
Thus Shor’s algorithm is implemented by the circuit in Figure 7.15. Note that
this is exactly the same circuit we described in the previous section. The only
difference between the two approaches is the basis in which the state of the
system is analysed. In the previous section we expressed the state of the second
register in the eigenvector basis. In this section we expressed the state of the
second register in the computational basis. This equivalence is illustrated in
Figure 7.16.

Note that constructing a circuit that implements c-Ux
a : |x〉|y〉 �→ |x〉|yax mod N〉

is not actually necessary. It suffices to create the state
∑

x |x〉|ax〉
which can instead be constructed easily using a circuit that implements
Va : |x〉|y〉 �→ |x〉|y⊕ ax〉. Appendix A.6 discusses the relationship between these
different types of black-boxes.

Exercise 7.3.7 Show how the order-finding algorithm can be generalized to solve
a special case of the period finding problem. More specifically, let f : Z → X, for
some finite set X, be a periodic function with period r. That is, for any x we have
f(x) = f(x+r) = f(x+2r) = In other words, f(x) = f(y) if r|x−y (where r|x−y
denotes the condition that r divides x − y). Furthermore, assume that f(x) = f(y)
unless r|x − y, so that f(x) = f(y) if and only if r|x − y. Given a black-box Uf that
maps |x〉|0〉 �→ |x〉|f(x)〉, describe an algorithm for finding the period of f , and prove
that it works.

Fig. 7.15 A circuit for implementing the quantum part of Shor’s algorithm. The mea-

sured string x gives an estimate x
2n of a random integer multiple of 1

r
.

TEAM LinG

142 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

Fig. 7.16 Equivalence of Shor’s analysis and the eigenvalue estimation analysis of the

order-finding algorithm. Each column represents the same state as viewed in each of

the two analyses at each step of the algorithm. The last line illustrates the state after

tracing out the second register. In the last two lines of the table, we illustrate the

amplitudes of the states graphically, by drawing peak where the probability amplitude

will be concentrated.

7.4 Finding Discrete Logarithms

Not all public key cryptosystems in use today rely on the difficulty of factoring.
Breaking many cryptosystems in use today can be reduced to finding discrete
logarithms in groups such as the multiplicative group of finite fields or the ad-
ditive group of points on elliptic curves. Shor also showed how to find discrete
logarithms in Z∗

p and the algorithm easily extends to other groups, including the
widely used elliptic curve groups.

The discrete logarithm problem in Z∗
p is the following.

The Discrete Logarithm Problem

Input: Elements b and a = bt in Z∗
p, where t is an integer from {0, 1, 2, . . . , r−

1} and r is the order of a.
Problem: Find t. (The number t is called the discrete logarithm of b with
respect to the base a.)

TEAM LinG

FINDING DISCRETE LOGARITHMS 143

As in Section 7.3.3, let Ua be the operator that maps

Ua :|s〉 �→ |sa mod N〉, s < N, (7.4.1)

and let Ub be the operator that maps

Ub :|s〉 �→ |sb mod N〉, s < N. (7.4.2)

We assume that we know r, the order of b.

Because of the quantum factoring algorithm, we assume that we can factor r into
its prime factors, and we can therefore reduce the discrete logarithm problem
to the base a to less than log r instances of the discrete logarithms problem for
elements a′ of prime order (see Appendix A.2). We will therefore assume for
convenience that r is prime, but the algorithm would also work for composite r
with a slightly more complicated analysis.

The operators Ua and Ub share the eigenvectors |uk〉 defined in Section 7.3.3,
with respective eigenvalues e2πi k

r and e2πi kt
r . The idea is to apply the eigenvalue

estimation algorithm to estimate8 these two eigenvalues accurately enough to
determine both k

r and kt mod r
r . Since (unlike with the order-finding problem)

we know r, we only need to estimate these eigenvalues with an error of at most
1
2r in order to find the correct numerator (which only requires n ≥ log2 r + 1).
In particular, since we know r we do not need to apply the continued fractions
algorithm (which used n ≥ log2

2 r + 1). If k �= 0 (which occurs with probability
1− 1

r) we can simply compute

t ≡ k−1kt mod r ≡ (k mod r)−1(kt mod r) mod r. (7.4.3)

Thus, we can apply the eigenvalue estimation algorithm twice, as shown in Fig-
ure 7.17 in order to find discrete logarithms.

The circuit in Figure 7.17 maps |0〉⊗n|0〉⊗n|uk〉 to | k̃r 〉|
˜kt mod r

r 〉|uk〉. Therefore
starting with |0〉⊗n|0〉⊗n|1〉 = |0〉⊗n|0〉⊗n

∑r−1
k=0 |uk〉 yields the state

r−1∑
k=0

| k̃r 〉|
˜kt mod r

r 〉|uk〉. (7.4.4)

Tracing out the last register, the first two registers are in an equally weighted

mixture of the states | k̃r 〉|
˜kt mod r

r 〉 for k ∈ {0, 1, . . . , r − 1}.

8In fact, by Theorem 7.1.1, since we know r, we efficiently approximate the QFTr with
arbitrary precision. Thus we could assume for convenience that we can implement the QFTr

and QFT−1
r exactly, which allows us to obtain k and kt mod r exactly. We will make this

assumption for the hidden subgroup algorithm later, but for this section we will stick with
QFT2n which we have shown how to implement in detail.

TEAM LinG

144 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

Note that with probability at least
(

8
π2

)2, the two values x and y that are mea-
sured will simultaneously satisfy∣∣∣∣ x

2n
− k

r

∣∣∣∣ ≤ 1
2n

(7.4.5)

and ∣∣∣∣ y

2n
− kt mod r

r

∣∣∣∣ ≤ 1
2n

. (7.4.6)

In other words, ∣∣∣xr

2n
− k

∣∣∣ ≤ r

2n
(7.4.7)

and ∣∣∣yr

2n
− kt mod r

∣∣∣ ≤ r

2n
. (7.4.8)

Thus if we choose n so that 2r ≤ 2n, we can determine the integers k and
kt mod r by simply rounding off x

2n and y
2n to the nearest integers.

In summary, the quantum circuit shown in Figure 7.17, followed by the above
post-processing will find the correct value of t with probability at least r−1

r

(
8

π2

)2
>

0.657 r−1
r . As with the order-finding circuit, this quantum circuit requires only

O((log N)2 log log(N) log log log(N)) elementary quantum gates.

The discrete logarithm algorithm is summarized below.

Discrete Logarithm Algorithm

1. Initialize two n-qubit register to |0〉⊗n. Call this these the first and second
control registers respectively.

2. Initialize an n-qubit register to |1〉 = |00 . . . 01〉. Call this the target regis-
ter.

3. Apply the QFT to each of the first and second registers.
4. Apply c-Ux

a to the target register and first control register.
5. Apply c-Ux

b to the target register and second control register.
6. Apply the QFT−1 to each of the first and second registers.
7. Measure the first register to obtain an estimate x

2n of k
r for a randomly

selected k ∈ {0, 1, . . . , r − 1}.
8. Measure the second register to obtain the estimate y

2n of kt mod r
r (for the

same k as obtained in the previous step).
9. Round off ry

2n to the nearest integer ỹ. Round off xr
2n to the nearest in-

teger x̃. If x̃ = 0, output ‘FAIL’. If x̃ �= 0, compute t̃ = ỹx̃−1 mod r. If
b = at̃ mod p, then output t̃. Otherwise, output ‘FAIL’.

TEAM LinG

FINDING DISCRETE LOGARITHMS 145

Fig. 7.17 A circuit for finding the discrete logarithm of a to the base b. The

value x measured at the first register provides the estimate x
2n of k

r
for a random

k ∈ {0, 1, . . . , r − 1}, and the outcome measured at the second register provides an

estimate of (kt mod r)
r

for the same random k.

As was the case with the order-finding algorithm, the discrete logarithm algo-
rithm will work for any group for which we can represent group elements uniquely
and perform the group operation. That is, the discrete logarithm algorithm works
in ‘black-box groups’ (with unique encodings). Thus, this algorithm also applies
to the additive group of points on an elliptic curve, which is commonly used in
public-key cryptography.

Furthermore, it suffices to have any circuit that produces the state∑
x,y |x〉|y〉 |bxay〉 (which equals the state in Equation 7.4.4), for example, using

the mapping Va,b : |x〉|y〉|z〉 �→ |x〉|y〉|z ⊕ axby〉 would also suffice (as discussed
in Appendix A.6).

The classical and quantum complexities for the discrete logarithm problem are
summarized below.

Complexities of the Discrete Logarithm Problem

• Finding discrete logarithms in F ∗
q

- Quantum complexity is in O((log q)2 log log(q) log log log(q)).
- Best-known rigorous probabilistic classical algorithm has complexity

in eO(
√

log q log log q).
- Best-known heuristic probabilistic classical algorithm has complexity

in eO((log q)
1
3 (log log q)

2
3).

• Discrete logarithms in a black-box group represented with strings of length
n

- Quantum black-box complexity (for groups with unique encodings of
group elements) is O(log r) black-box multiplications and O(n+log2 r)
other elementary operations.

- Classical black-box complexity is in Θ(
√

r).

TEAM LinG

146 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

The discrete logarithm algorithm was originally discovered by Shor in a manner
analogous to the order-finding algorithm description in Section 7.3.4. In the next
section, we show a generalization of the order-finding and discrete logarithm
algorithms, and analyse it in this way.

7.5 Hidden Subgroups

In Section 6.5 we stated a generalized version of Simon’s problem, which is a
special case of the ‘Hidden Subgroup Problem’.

The problem can be stated for any group G.

The Hidden Subgroup Problem

Let f : G → X map a group G to some finite set X with the property that
there exists some subgroup S ≤ G such that for any x, y ∈ G, f(x) = f(y) if
and only if x + S = y + S. In other words, f is constant on cosets of S and
distinct on different cosets.

Notice how we can rephrase most of the problems we have already discussed,
along with some other ones, in this framework.

Hidden Subgroup Problems

Deutsch’s Problem:
G = Z2, X = {0, 1}, and S = {0} if f is balanced, and S = Z2 if f is
constant.

Generalized Simon’s problem:
G = Zn

2 , X = {0, 1}n, and S is any subgroup of Zn
2 .

Finding orders:
G = Z, X = any finite group H, r is the order of a ∈ H. The subgroup
S = rZ is the hidden subgroup of G, and a generator for S reveals r.

Finding the period of a function:
G = Z, X = any set, r is the period of f (see Exercise 7.3.7). The subgroup
S = rZ is the hidden subgroup of G, and a generator for S reveals the
period r.

Discrete logarithms in any group: G = Zr × Zr, X = any group H.
Let a be an element of H with ar = 1 and suppose b = ak. Consider the
function f(x1, x2) = ax1bx2 . We have f(x1, x2) = f(y1, y2) if and only if
(x1, x2)− (y1, y2) ∈ {(t,−tk), t = 0, 1, . . . , r− 1}. The hidden subgroup S
is the subgroup generated by (1,−k) (k is the discrete logarithm).

Hidden linear functions: G = Z × Z. Let g be some permutation of
ZN for some integer N . Let h be a function from Z × Z to ZN defined
by h(x, y) = x + ay mod N . Let f = g ◦ h. The subgroup S is the hidden
subgroup generated by (−a, 1), and the generator reveals the hidden linear
function h.

TEAM LinG

HIDDEN SUBGROUPS 147

Self-shift-equivalent polynomials: Given a polynomial P in l variables
X1, X2, . . . , Xl over Fq (the finite field with q elements), the function f
which maps (a1, a2, . . . , al) ∈ Fl

q to P (X1 − a1, X2 − a2, . . . , Xl − al) is
constant on cosets of a subgroup S of Fl

q. This subgroup S is the set of
self-shift equivalences of the polynomial P .

Abelian stabilizer problem: Let G be any group acting on a finite set
X. That is, each element of G acts as a map from X to X in such a way
that for any two elements a, b ∈ G, a(b(x)) = (ab)(x) for all x ∈ X. For a
particular element x ∈ X, the set of elements which fix x (i.e. the elements
a ∈ G such that a(x) = x) form a subgroup. This subgroup is called the
stabilizer of x in G, denoted StG(x). Let fx denote the function from G to
X which maps g ∈ G to g(x). The hidden subgroup of fx is StG(x).

Graph automorphism problem: Consider G = Sn, the symmet-
ric group on n elements, which corresponds to the permutations of
{1, 2, . . . , n}. Let G be a graph on n vertices labelled {1, 2, . . . , n}. For
any permutation σ ∈ Sn, let fG map Sn to the set of n-vertex graphs by
mapping fG(σ) = σ(G), where σ(G) is the graph obtained by permuting
the vertex labels of G according to σ. For the function fG, the hidden
subgroup of G is the automorphism group of G.

Note that for the graph automorphism problem above, the group G is non-
Abelian.9 If we restrict attention to finite Abelian groups, or more generally,
finitely generated Abelian groups, then we can efficiently solve the hidden sub-
group problem. Below we outline how the algorithm works for finite Abelian
groups.

7.5.1 More on Quantum Fourier Transforms

We have seen two generalizations of the Hadamard transformation. The first
was formed by taking the tensor product H⊗n = H ⊗ H ⊗ · · · ⊗ H of several
Hadamard transformations. The second generalization was formed by increasing
the dimension of the single system, giving the QFTN , for arbitrarily large N ,
where QFT2 = H.

We can perform both type of generalizations at the same time, giving us
QFT⊗n

N = QFTN ⊗ QFTN ⊗ · · · ⊗ QFTN or even more generally QFTN1
⊗

QFTN2
⊗ · · · ⊗QFTNk

, for possibly different Ni.

Note that

QFTN1
⊗QFTN2

⊗ · · · ⊗QFTNk
(7.5.1)

operates on the vector space HN1 ⊗HN2 ⊗ · · · ⊗HNk
, and we also denote it as

QFTN1,N2,...,Nk
.

9A group is said to be Abelian if for any two group elements x, y, we have xy = yx (i.e. if
the group operation is commutative).

TEAM LinG

148 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

We can verify that

QFTN1,N2,...,Nk
|x1〉|x2〉 · · · |xk〉 =

∑
(y1,y2,...,yk)

∈ZN1
×ZN2

×···×ZNk

e
2πi(

y1x1
N1

+
y2x2
N2

+···+ xkyk
Nk

)|y1〉|y2〉 · · · |yk〉.

(7.5.2)

If N1 = N2 = · · · = Nk we can more compactly write

QFT⊗k
N |x〉 =

1√
Nk

∑
y∈Zk

N

e
2πi
N x·y|y〉 (7.5.3)

where x · y = x1y1 + x2y2 + · · ·+ xkyk mod N .

Let S be any subgroup of Zk
N , and define

|S〉 =
1√
|S|

∑
s∈S

|s〉. (7.5.4)

We let S⊥ denote {t : t · s = 0 for all s ∈ S}. We can verify that QFT⊗k
N |S〉 =∑

t∈S⊥ |t〉. For any b ∈ Zk
N we define b + S = {b + s : s ∈ S}, and

|b + S〉 =
1√
|S|

∑
s∈S

|b + s〉. (7.5.5)

We can verify that QFT⊗k
N |b + S〉 = 1√

|S⊥|

∑
t∈S⊥ e

2πi
N t·b|t〉.

More generally, we can consider any Abelian group G = ZN1 ×ZN2 × · · · ×ZNk
,

and for any subgroup S ≤ G, we similarly define

|S〉 =
1√
|S|

∑
s∈S

|s〉 (7.5.6)

and for any coset b + S of S we define

|b + S〉 =
∑
s∈S

|b + s〉. (7.5.7)

We can define S⊥ to be the set {t : t1s1
N1

+ t2s2
N2

+· · ·+ tksk

Nk
= 0 mod 1 for all s ∈ S},

where x = 0 mod 1 if x ∈ Z. Another way of expressing the condition that
t1s1

N1
+

t2s2

N2
+ · · ·+ tksk

Nk
= 0 mod 1 (7.5.8)

is to say that

e
2πi

(
t1s1
N1

+
t2s2
N2

+···+ tksk
Nk

)
= 1. (7.5.9)

For convenience, let us denote

χt(s) = e
2πi

(
t1s1
N1

+
t2s2
N2

+···+ tksk
Nk

)
. (7.5.10)

For the reader familiar with group representation theory, the function χt is a
character of the Abelian group G, and for Abelian groups there is a one-to-one

TEAM LinG

HIDDEN SUBGROUPS 149

correspondence between G and the characters of G by the obvious correspon-
dence t↔ χt. The QFTG maps |x〉 �→∑

y∈G χy(x)|y〉.
One important observation is that

QFT−1
G |b + S〉 =

∑
t∈S⊥

χt(b)|t〉. (7.5.11)

Exercise 7.5.1 Prove Equation (7.5.11).

7.5.2 Algorithm for the Finite Abelian Hidden Subgroup Problem

For convenience, we will assume that we can efficiently perform the QFTN ex-
actly for any N . In practice, we can perform it with arbitrary precision, as we
described in Theorem 7.1.1

Let N =
∏

i Ni. Let N = pn1
1 pn2

2 . . . pnl

l be the prime factorization of N , and
let n =

∑
j nj . We have the following algorithm for the finite Abelian hidden

subgroup problem. We let HX denote the Hilbert space of the output register of
Uf .

Algorithm for the Finite Abelian HSP

1. Set i = 1.
2. Start with

|0〉|0〉 · · · |0〉|0〉 ∈ HN1 ⊗HN2 ⊗ . . .⊗HNk
⊗HX . (7.5.12)

3. Apply QFTN1,N2,...,Nk
to the input registers.

4. Apply Uf to create the state ∑
x

|x〉|f(x)〉. (7.5.13)

5. (optional) Measure the second register.
6. Apply QFT−1

N1,N2,...,Nk
to the input registers.

7. Measure the first register to obtain a value ti.
8. If i < n + 4, increment i and go to Step 1; otherwise proceed to Step 7.
9. Find generators k1,k2, . . . for the solution space of the equation

TxT = 0 mod 1 (7.5.14)

where T is the matrix whose ith row is (ti,1
Ni

,
ti,2
Ni

, . . . ,
ti,k

Ni
).

10. Output k1,k2,

TEAM LinG

150 ALGORITHMS WITH SUPERPOLYNOMIAL SPEED-UP

Note that the group G = ZN1 × ZN2 × · · · × ZNk
can be partitioned into the

cosets y + S of the subgroup S, and we can rewrite the state in Step 3 as∑
y

|y + S〉|f(y)〉 (7.5.15)

where the summation is over a set of coset representatives. Thus the (optional)
measurement in Step 4 will leave the first register in a random coset state |y+S〉.
As we saw in Equation 7.5.11, the final QFT−1

G produces a uniform superposi-
tion of elements of S⊥ (where the value of the coset representative y is encoded
in the phase factors). Thus the values ti we measure in Step 7 will be ele-
ments of S⊥ and thus satisfy the linear equation in Equation 7.5.8. With high
probability (see Theorem 7.5.1), the values t1, t2, . . . , tn+4 will generate S⊥, in
which case the elements of S will be the only solutions to the linear system in
Equation 7.5.14. The linear system can be solved in time polynomial in n.

Theorem 7.5.1 The group 〈t1, t2, . . . , tn+4〉 generated by the ti is a subgroup
of K⊥. With probability at least 2

3 we have 〈t1, t1, . . . , tn+4〉 = K⊥.

The proof of this theorem follows by a similar argument to that used in the proof
of Theorem A.3.1 in Appendix A.3 (which was used in analysing the zero-error
version of Simon’s algorithm).

Corollary 7.5.2 The hidden subgroup K of f is contained in the span of
k1,k2, With probability at least 2

3 we have K = 〈k1,k2, . . .〉.

Note that we can test if f(ki) = 0 for all i, and thus we can test if K =
〈k1,k2, . . .〉 with n + O(1) evaluations of f .

Corollary 7.5.3 There exists a bounded-error quantum algorithm for finding
generators for the hidden subgroup K ≤ G = ZN1 × ZN2 × · · · × ZNl

of f using
O(log N) evaluations of f and O(log3 N) other elementary operations.

Exercise 7.5.2 Assume that N is prime.

(a) Find a basis for the Hilbert space spanned by {|f(x)〉 : x ∈ Z⊗k
N } that consists of

eigenvectors of the maps |f(x)〉 �→ |f(x + y)〉.
Hint: There is a one-to-one correspondence between these eigenvectors and the elements
of S⊥.

(b) Rewrite Equation 7.5.13 by expressing the state of the second register in this new
basis.

(c) What is the result of applying the inverse of QFT⊗k
N to the first register, with the

second register expressed in this new basis?

TEAM LinG

RELATED ALGORITHMS AND TECHNIQUES 151

Exercise 7.5.3 Show that the hidden subgroup problem can be efficiently reduced
to the finite Abelian hidden subgroup problem if G is finitely generated, generators
g1, g2, . . . , gn are given, and X is finite.

7.6 Related Algorithms and Techniques

The great success of quantum algorithms for solving the Abelian hidden sub-
group problem leads to the natural question of whether it can solve the hidden
subgroup problem for non-Abelian groups. This question has been studied by
many researchers, and quantum algorithms can be found for some non-Abelian
groups. However, at present, there is no algorithm for most non-Abelian groups,
like the symmetric group (which would directly solve the graph automorphism
problem). One can generalize the QFT to non-Abelian groups, and it can be
implemented efficiently in some cases. However, it is not yet clear if an efficient
QFT for a group suffices in order to efficiently solve the hidden subgroup problem
for that group.

There are also a handful of problems, such as ‘hidden shift’ problems, and approx-
imating the Jones polynomial, for which quantum algorithms offer a superpoly-
nomial advantage over the best-known classical algorithms. These algorithms do
not seem to be a special case of the hidden subgroup problem.

One very important class of problems, which in fact motivated Feynman to invent
the notion of a quantum computer, is that of simulating quantum mechanical
systems. There are quantum algorithms that can simulate quantum mechanical
systems exponentially more efficiently than any known classical algorithm.

Last, we have focussed attention on quantum algorithms for solving classical
problems. But there are many information-processing tasks like entanglement
concentration and quantum data compression (which we do not deal with in this
textbook), where both the input and output are quantum, so they cannot be
done at all using classical computation.

TEAM LinG

8

ALGORITHMS BASED
ON AMPLITUDE
AMPLIFICATION

8.1 Grover’s Quantum Search Algorithm

In this section, we discuss a broadly applicable quantum algorithm that provides
a polynomial speed-up over the best-known classical algorithms for a wide class
of important problems.

The quantum search algorithm performs a generic search for a solution to a very
wide range of problems. Consider any problem where one can efficiently recog-
nize a good solution and wishes to search through a list of potential solutions in
order to find a good one. For example, given a large integer N , one can efficiently
recognize whether an integer p is a non-trivial factor of N , and thus one naive
strategy for finding non-trivial factors of N is to simply search through the set
{2, 3, 4, . . . , �

√
N�} until a factor is found. The factoring algorithm we described

in Chapter 7 is not such a naive algorithm, as it makes profound use of the
structure of the problem. However, for many interesting problems, there are no
known techniques that make much use of the structure of the problem, and the
best-known algorithm for solving these problems is to naively search through the
potential solutions until one is found. Typically the number of potential solutions
is exponential in the size of the problem instance, and so the naive algorithm
is not efficient. Often the best-known classical search makes some very limited
use of the structure of the problem, perhaps to rule out some obviously impos-
sible candidates, or to prioritize some more likely candidates, but the overall
complexity of the search is still exponential.

Quantum searching is a tool for speeding up these sorts of generic searches
through a space of potential solutions.

It is worth noting that having a means of recognizing a solution to a problem,
and knowing the set of possible solutions, means that in some sense one ‘knows’
the solution. However, one cannot necessarily efficiently produce the solution.

152
TEAM LinG

GROVER’S QUANTUM SEARCH ALGORITHM 153

For example, it is easy to recognize the factors of a number, but finding those
factors can take a long time.

We give this problem a more general mathematical structure as follows. We
assume that the solutions are expressible as binary strings of length n. Define a
function f : {0, 1}n → {0, 1} so that f(x) = 1 if x is the binary encoding of a
‘good’ string (i.e. a solution to the search problem), and f(x) = 0 otherwise.

The Search Problem

Input: A black box Uf for computing an unknown function
f : {0, 1}n → {0, 1}.
Problem: Find an input x ∈ {0, 1}n such that f(x) = 1.

If the function f is only provided as such a black box, then Ω(
√

2n) applications
of the black box are necessary in order to solve the search problem with high
probability for any input (see Section 9.2). Thus quantum algorithms can provide
at most a quadratic speed-up over classical exhaustive search.

For convenience, let us initially restrict attention to functions with exactly one
solution x = w. Let us assume that we wish our procedure to find the solution
with probability at least 2

3 for every such function f .1

If we are only allowed to make one query, the best our algorithm can do is to
guess a solution x1 uniformly at random, and then use the query to check if
f(x1) = 1. If x1 is the correct answer, output x1. Otherwise, guess a string x2

uniformly at random from the set {0, 1}n − {x1} and output x2. Note that this
procedure outputs the correct value x = w with probability 2

2n .

If we have two queries, the best we can do is to continue with the above procedure,
and use the second query to test if f(x2) = 1. If f(x2) = 1, we output x2, and
otherwise, we guess a string x3 uniformly at random from {0, 1}n−{x1, x2}, and
output the guess x3. This procedure outputs x = w with probability 3

2n .

If we continue the above procedure, with k queries, for k < 2n, the proce-
dure will output the correct value x = w with probability k+1

2n . Note that we
can guess the correct answer with probability 1

2n without any queries, and that
each additional query boosts the probability of outputting the correct answer
by 1

2n .

Consider a quantum version of the naive algorithm that makes a guess without
making any queries. This procedure guesses the correct answer with probability
1
2n , and so the quantum version does this with a probability amplitude of 1√

2n
. If

there were some quantum way to boost the amplitude by 1√
2n

after each query,

then we could solve the search problem with only O
(√

2n
)

queries. Finding such

1As pointed out in Appendix A.1, the choice of the value 2
3

for the success probability is

arbitrary. Any constant strictly between 1
2

and 1 would suffice.

TEAM LinG

154 ALGORITHMS BASED ON AMPLITUDE AMPLIFICATION

a quantum-boosting algorithm is not straightforward since we are constrained
by laws of quantum mechanics; therefore, we are not able to use handy tools
like cloning. Grover devised a quantum algorithm that achieves this amplitude
boosting.

Grover’s algorithm performs the search quadratically faster than can be done
classically. If there is exactly one solution, a classical deterministic brute-force
search takes 2n − 1 queries in the worst case. In fact, any classical algorithm,
that for any function f finds a solution with probability at least 2

3 , must make
Ω(2n) queries in the worst case. Grover’s quantum search algorithm takes only
O
(√

2n
)

= O
(
2

n
2
)

queries.

Although this is not as dramatic as the exponential quantum advantage achieved
by Shor’s algorithm for factoring, the extremely wide applicability of searching
problems makes Grover’s algorithm interesting and important. In particular,
Grover’s algorithm gives a quadratic speed-up in the solution of NP-complete
problems (see Section 9.1.1), which account for many of the important hard
problems in computer science. We describe Grover’s algorithm in the remainder
of this section.

We assume we have a means for recognizing a solution, and therefore, we can
without loss of generality assume we have a quantum black box Uf for f as
follows.

Uf : |x〉|b〉 �→ |x〉|b⊕ f(x)〉. (8.1.1)

Suppose we set the target register |b〉 (which consists of a single qubit) to |0〉.
Then, given a query value x encoded in the query register as |x〉, suppose we
query Uf . The result is

|x〉|0〉 Uf�−→ |x〉|f(x)〉 (8.1.2)

and by measuring the target qubit, we get the answer to the oracle query to f .
But this is no better than just applying the oracle for f classically. As was the
case for the QFT algorithms, to gain a ‘quantum advantage’, we need to use
quantum superpositions.

We can easily prepare the first register in a superposition of all possible query
values, 1√

N

∑N−1
x=0 |x〉 (where N = 2n).

We can split the sum 1√
N

∑N−1
x=0 |x〉 into two parts. The first part is a sum over

all the x for which f(x) = 0; that is, the ‘bad’ x that are not solutions to the
search problem. Let Xbad be the set of such bad x. The second part is a sum over
all the x for which f(x) = 1; that is, the ‘good’ solutions to the search problem.
Let Xgood be the set of such good x. For convenience, let us assume for now that
there is only one solution, w, so Xgood = {w}.

TEAM LinG

GROVER’S QUANTUM SEARCH ALGORITHM 155

Fig. 8.1 The oracle Uf for quantum searching.

Define the states

|ψgood〉 = |w〉

|ψbad〉 =
1√

N − 1

∑
x∈Xbad

|x〉. (8.1.3)

Suppose we prepare the target qubit of Uf in the state |0〉, and the query register
in a superposition of the form

1√
N

∑N−1
x=0 |x〉 = 1√

N
|w〉+

√
N−1

N |ψbad〉, (8.1.4)

as shown in Figure 8.1.

Now with probability 1
N a measurement of the target qubit will give |1〉, and the

query qubits will be left in the good state |w〉. Although this procedure uses the
quantum superposition principle, it does not make any use of quantum interfer-
ence and can easily be simulated using classical randomness. This procedure is
equivalent to simply sampling an input x uniformly at random and computing
f(x).

The quantum search algorithm is an iterative procedure that uses quantum in-
terference to nudge up the amplitude of the good state |w〉 before measuring the
query register.

We saw in Chapter 6 that if we set the query register to some query index |x〉,
and we set the target qubit to 1√

2

(
|0〉 − |1〉

)
the effect of the oracle is:

|x〉
(|0〉 − |1〉√

2

)
Uf�−→ (−1)f(x)|x〉

(|0〉 − |1〉√
2

)
. (8.1.5)

Since the second register is in an eigenstate, we can ignore it, considering only
the effect on the first register.

Uf : |x〉 �−→ (−1)f(x)|x〉. (8.1.6)

So the effect is to encode the answer to the oracle query in a phase shift (recall
this idea of encoding an answer in a quantum phase was key to the operation
of the QFT algorithms as well). It is convenient, for the rest of this chapter,
to redefine Uf to be the n-qubit operator that performs the transformation of
(8.1.6).

TEAM LinG

156 ALGORITHMS BASED ON AMPLITUDE AMPLIFICATION

Exercise 8.1.1 Suppose f : {0, 1, . . . N} → {0, 1}, with the promise that f(0) = 0.

Show how one application of an oracle that maps |x〉 �→ (−1)f(x)|x〉 can be used to
implement the oracle that maps |x〉|b〉 �→ |x〉|b ⊕ f(x)〉.

We will also define an n-qubit phase shift operator U0⊥ that acts as follows:

U0⊥ :

{
|x〉 �→ −|x〉, x �= 0
|0〉 �→ |0〉

. (8.1.7)

This operator applies a phase shift of −1 to all n-qubit states orthogonal to the
state |00 . . . 0〉. If we denote the vector space spanned by the basis state |0〉 by
V0, then the vector space orthogonal to V0 is the space spanned by all the basis
states |x〉 �= |00 . . . 0〉, and can be denoted by V ⊥

0 . The operator U0⊥ applies a
phase shift of −1 to vectors in V ⊥

0 .

Now we can define the operator that does the job of increasing the amplitude
of |ψgood〉 = |w〉. This operator G = HU0⊥HUf is called the Grover iter-
ate or the quantum search iterate. It is defined by the following sequence of
transformations.

The Grover Iterate G

1. Apply the oracle Uf .
2. Apply the n-qubit Hadamard gate H.
3. Apply U0⊥ .
4. Apply the n-qubit Hadamard gate H.

A circuit implementing the Grover iterate is shown in Figure 8.2. Note that the
target qubit for the oracle operator Uf (which we prepared in the eigenstate
1√
2
(|0〉 − |1〉)) is omitted in Figure 8.2, since we are working with the simplified

definition of Uf as described by Equation (8.1.6) above.

Now that we have defined the Grover iterate, Grover’s quantum searching algo-
rithm can be written succinctly as follows.

Fig. 8.2 The Grover iterate.

TEAM LinG

GROVER’S QUANTUM SEARCH ALGORITHM 157

Grover’s Quantum Search Algorithm

1. Start with the n-qubit state |00 . . . 0〉.
2. Apply the n-qubit Hadamard gate H to prepare the state 1√

N
|ψ〉 =∑N−1

x=0 |x〉 (where N = 2n).

3. Apply the Grover iterate G a total of
⌊

π
4

1√
N

⌋
times.

4. Measure the resulting state.

Grover’s algorithm is shown schematically in Figure 8.3.

We next show that the Grover iterate G actually does the job of increasing the
probability amplitude of |w〉.
Let

|ψ〉 = H|00 . . . 0〉, (8.1.8)

consider the action of the operator HU0⊥H. We have that

HU0⊥H : |ψ〉 �→ |ψ〉. (8.1.9)

Let V ⊥
ψ denote the vector space orthogonal to |ψ〉. This space is spanned by the

states H|x〉 for x �= 00 . . . 0, and for all such states we have

HU0⊥H : H|x〉 �→ −H|x〉. (8.1.10)

So the operator HU0⊥H applies a phase shift of −1 to vectors in V ⊥
ψ . We can

therefore denote
Uψ⊥ = HU0⊥H (8.1.11)

and write the Grover iterate more succinctly as

G = Uψ⊥Uf . (8.1.12)

Exercise 8.1.2 Let |ψ〉 = 1√
N

∑N−1
x=0 |x〉. Show that the operator HU0⊥H can be

written as (2|ψ〉〈ψ| − I).

Exercise 8.1.3 Prove that any n-qubit state |φ〉 that is orthogonal to H|00 . . . 0〉 has
the sum of its amplitudes equal to 0.

Fig. 8.3 Grover’s quantum searching algorithm.

TEAM LinG

158 ALGORITHMS BASED ON AMPLITUDE AMPLIFICATION

Exercise 8.1.4 Prove that Uψ⊥ ‘inverts about the mean’. More precisely, consider any
superposition

|φ〉 =
∑

x

αx|x〉

where

µ =
1

N

∑
x

αx

is the mean of the amplitudes. Show that Uψ⊥ |φ〉 =
∑

x(µ − αx)|x〉.

Hint: Decompose |φ〉 as |φ〉 = α|ψ〉 + β|ψ〉 where |ψ〉 is orthogonal to |ψ〉.

Since H|00 . . . 0〉 has only real amplitudes, and the Grover iterate does not intro-
duce any complex phases, then the amplitudes always remain real. This allows
us to represent the amplitudes as lines above (for positive amplitudes) or below
(for negative amplitudes), an axis labelled by the N possible inputs, as done
in Figure 8.4. Initially, the state is |ψ〉 = H|00 . . . 0〉, so the mean value of the
amplitudes is simply 1√

N
.

After the application of Uf , the amplitude of |w〉 picks up a −1 phase shift,
and thus the mean value of the amplitudes shifts down slightly, as illustrated in
Figure 8.5.

The operator Uψ⊥ can be viewed as an ‘inversion about the mean’, which nearly
triples the size of the amplitude of |w〉, and slightly nudges down the amplitudes
of all the other basis states, as illustrated in Figure 8.6.

Another application of Uf makes the amplitude of |w〉 negative again, slightly
pushing down the mean value of the amplitudes, and the inversion about the
mean operation adds roughly another 2√

N
to the size of the amplitude of |w〉

and slightly nudges down the amplitudes of all the other basis states.

M

Fig. 8.4 Real valued amplitudes represented as lines above and below a horizontal

axis labelled by the N possible inputs to the search problem. The state |ψ〉 depicted

above is a uniform superposition over all possible inputs.
TEAM LinG

GROVER’S QUANTUM SEARCH ALGORITHM 159

M

Fig. 8.5 State after a single application of Uf (omitting the normalization factor).

Fig. 8.6 Inversion about the mean.

We can see that roughly
√

N
2 iterations of the Grover iterate should boost the

amplitude of |w〉 to be close to 1. The following is a precise analysis.

First note that we can write |ψ〉 = H|00 . . . 0〉 in terms of |w〉 and |ψbad〉 as

|ψ〉 = 1√
N
|w〉+

√
N−1

N |ψbad〉. (8.1.13)

It is important to observe that starting in the state |ψ〉 and repeatedly applying
Uf and Uψ⊥ leaves the state of the system in the subspace spanned by |w〉 and
|ψbad〉, that is, a 2-dimensional subspace of the N = 2n-dimensional state space.

In order to analyse Grover’s algorithm, it helps to define two bases for this
2-dimensional subspace: {

|w〉, |ψbad〉
}

(8.1.14)

and {
|ψ〉, |ψ〉

}
(8.1.15)

where we define the state |ψ〉 orthogonal to |ψ〉:

|ψ〉 =
√

N−1
N |w〉 − 1√

N
|ψbad〉. (8.1.16)

Note that the mean value of the amplitudes of |ψ〉 is 0 (see Exercise 8.1.3).
TEAM LinG

160 ALGORITHMS BASED ON AMPLITUDE AMPLIFICATION

Define θ so that
sin(θ) =

1√
N

. (8.1.17)

Then we have cos(θ) =
√

N−1
N .

Note that
|ψ〉 = sin(θ)|w〉+ cos(θ)|ψbad〉, (8.1.18)

|ψ〉 = cos(θ)|w〉 − sin(θ)|ψbad〉 (8.1.19)

and also
|w〉 = sin(θ)|ψ〉+ cos(θ)|ψ〉, (8.1.20)

|ψbad〉 = cos(θ)|ψ〉 − sin(θ)|ψ〉 (8.1.21)

so we can easily convert between the two bases.

Figures 8.7 and 8.8 illustrate the states |ψ〉 and |ψ〉 in terms of |w〉 and |ψbad〉.
The quantum searching algorithm starts off in the state

|ψ〉 = sin(θ)|w〉+ cos(θ)|ψbad〉.

The operator Uf gives the state

Uf |ψ〉 = − sin(θ)|w〉+ cos(θ)|ψbad〉 = cos(2θ)|ψ〉 − sin(2θ)|ψ〉
illustrated in Figures 8.9 and 8.10.

Fig. 8.7 The state |ψ〉 in terms of |w〉 and |ψbad〉. Note that θ satisfies sin(θ) = 1√
2n .

Fig. 8.8 The state |ψ〉 in terms of |w〉 and |ψbad〉.

TEAM LinG

GROVER’S QUANTUM SEARCH ALGORITHM 161

−

Fig. 8.9 The state after one application of Uf . Compare with Figure 8.7.

−

Fig. 8.10 The state in Figure 8.9 can be expressed in terms of the {|ψ〉, |ψ〉} basis.

Then the inversion about the mean, U⊥
ψ , gives the state

U⊥
ψ Uf |ψ〉 = cos(2θ)|ψ〉+ sin(2θ)|ψ〉 = sin(3θ)|w〉+ cos(3θ)|ψbad〉,

illustrated in Figures 8.11 and 8.12.

It is easy to verify by induction that after k iterations of the Grover iterate
starting with state |ψ〉 = H|00 . . . 0〉, we are left with the state

(U⊥
ψ Uf)k|ψ〉 = cos(2kθ)|ψ〉+ sin(2kθ)|ψ〉

= sin
(
(2k + 1)θ

)
|w〉+ cos

(
(2k + 1)θ

)
|ψbad〉, (8.1.22)

illustrated in Figure 8.13.

Exercise 8.1.5 Verify that for any real number j

sin((2j + 1)θ)|w〉 + cos((2j + 1)θ)|ψbad〉 = cos(2jθ)|ψ〉 + sin(2jθ)|ψ〉.

In order to have a high probability of obtaining |w〉, we wish to select k so that
sin((2k + 1)θ) ≈ 1, which means that we would like (2k + 1)θ ≈ π

2 , and thus
k ≈ π

4θ − 1
2 ≈ π

4

√
N .

TEAM LinG

162 ALGORITHMS BASED ON AMPLITUDE AMPLIFICATION

Fig. 8.11 The state after the inversion about the mean.

Fig. 8.12 The state in Figure 8.11 expressed in terms of the {|w〉, |ψbad〉} basis.

Fig. 8.13 The state after k iterations of the Grover iterate.

TEAM LinG

AMPLITUDE AMPLIFICATION 163

Let k̃ satisfy (2k̃ + 1)θ = π
2 . Let k = �k̃�.

Note that (2k + 1)θ = π
2 + ε where |ε| ∈ O

(
1√
N

)
. Thus, sin

(
π
2 + ε

)
= cos(ε) ≥

1− ε2

2 ∈ 1−O
(

1
N

)
.

Rounding off

For any real number x we are using the standard notation �x� and �x� to
denote the nearest integer greater than x (rounding x ‘up’) and the nearest
integer less than x (rounding x ‘down’), respectively.

We also use the notation [x] to denote the nearest integer to x (in the case that
x is exactly in between two integers, rounding off to either one will do for the
purposes of this textbook).

Since in some cases the algorithms we describe require us to round off a real
number x, given as an expression like π

4

√
N, arcsin(1√

N
), or N sin2(x

M), it is
worth mentioning that this is not a computational bottleneck in any of the
circumstances in which we use it.

All of the functions that our algorithms need to round off can be efficiently
approximated with precision ε > 0 (i.e. in time polynomial in log(1

ε) and also
in the description length of x, which is logarithmic in N,M, and x in the above
examples). That is, for any ε > 0, we can efficiently compute an integer y such
that y − ε ≤ x ≤ y + 1 (an approximate version of �x�), or |y − x| ≤ 1

2 + ε (an
approximate version of [x]).

For simplicity, we will just use the �x�, �x�, or [x] notation in the description
of the algorithms with the understanding that if we are concerned with the
efficiency of the classical part of the algorithm, then an approximate round off
will suffice.

Theorem 8.1.1 Let f be a function with exactly one solution. Let k = �k̃�,
for k̃ = π

4θ − 1
2 . Running the quantum search algorithm with k applications of

the Grover iteration will find a solution to f(x) = 1 with probability at least
1−O

(
1
N

)
.

The assumption of having only one solution is not necessary. Before analysing
how the algorithm works when there is more than one solution, we describe a
more general version of quantum searching.

8.2 Amplitude Amplification

Grover’s search algorithm can be generalized substantially to apply to any al-
gorithm A for ‘guessing’ a solution. In the previous section we had A = H⊗n

which guessed the solution by setting up a uniform superposition of all possible
solutions. More generally, consider any algorithm A that starts with the generic

TEAM LinG

164 ALGORITHMS BASED ON AMPLITUDE AMPLIFICATION

input state |00 . . . 0〉, which can include additional workspace, and maps to some
superposition of guesses |ψ〉 =

∑
x αx|x〉|junk(x)〉 which might have some ‘junk’

information left in the workspace qubits. That is

|ψ〉 ≡ A|00 . . . 0〉 =
∑

x

αx|x〉|junk(x)〉. (8.2.1)

Note that we can naturally split |ψ〉 into two parts:

|ψ〉 =
∑

x∈Xgood

αx|x〉|junk(x)〉+
∑

x∈Xbad

αx|x〉|junk(x)〉. (8.2.2)

Note that
pgood =

∑
x∈Xgood

|αx|2 (8.2.3)

is the probability of measuring a good state x, and

pbad =
∑

x∈Xbad

|αx|2 = 1− pgood (8.2.4)

is the probability of measuring a bad state x.

If pgood = 1, no amplification is necessary, and if pgood = 0, amplification will
not help since there is no good amplitude to amplify. In the interesting cases
that 0 < pgood < 1, we can renormalize the good and the bad components into

|ψgood〉 =
∑

x∈Xgood

αx√
pgood

|x〉|junk(x)〉 (8.2.5)

and
|ψbad〉 =

∑
x∈Xbad

αx√
pbad
|x〉|junk(x)〉. (8.2.6)

We can then write

|ψ〉 =
√

pgood|ψgood〉+
√

pbad|ψbad〉 (8.2.7)

or
|ψ〉 = sin(θ)|ψgood〉+ cos(θ)|ψbad〉 (8.2.8)

where θ ∈
(
0, π

2

)
satisfies sin2(θ) = pgood.

We define a more general search iterate to be Q = AU⊥
0 A−1Uf , which one can

easily verify to be equivalent to U⊥
ψ Uf , where as before we define U⊥

ψ |ψ〉 = |ψ〉
and U⊥

ψ |φ〉 = −|φ〉 for all states |φ〉 that are orthogonal to |ψ〉.

TEAM LinG

AMPLITUDE AMPLIFICATION 165

The state just before the first application of Q is the superposition

|ψ〉 = sin(θ)|ψgood〉+ cos(θ)|ψbad〉. (8.2.9)

For convenience, let us define the state

|ψ〉 = cos(θ)|ψgood〉 − sin(θ)|ψbad〉 (8.2.10)

which is orthogonal to |ψ〉. Note that

{|ψgood〉, |ψbad〉} (8.2.11)

and
{|ψ〉, |ψ〉} (8.2.12)

are orthonormal bases for the same 2-dimensional subspace.

We show that if we start with the state |ψ〉, then alternately applying Uf and U⊥
ψ

leaves the system in the 2-dimensional subspace over the real numbers spanned
by |ψgood〉 and |ψbad〉.
Since the amplitudes will be real numbers (any complex phases are absorbed in
the definitions of |ψgood〉, |ψbad〉, |ψ〉, and |ψ〉), we can conveniently draw the
states on the unit circle in the plane, as seen in Figure 8.14.

Note that Uf will map

sin(θ)|ψgood〉+ cos(θ)|ψbad〉 �→ −sin(θ)|ψgood〉+ cos(θ)|ψbad〉, (8.2.13)

as illustrated in Figure 8.15.

Fig. 8.14 The states |ψ〉 = A|00 . . . 0〉 = sin(θ)|ψgood〉 + cos(θ)|ψbad〉 and

|ψ〉 = cos(θ)|ψgood〉 − sin(θ)|ψbad〉 illustrated on the unit circle in the plane.

TEAM LinG

166 ALGORITHMS BASED ON AMPLITUDE AMPLIFICATION

Fig. 8.15 The state Uf |ψ〉 = − sin(θ)|ψgood〉 + cos(θ)|ψbad〉.

The action of U⊥
ψ is most easily seen in the basis{

|ψ〉, |ψ〉
}
, (8.2.14)

so it is convenient to first rewrite

Uf |ψ〉 = − sin(θ)|ψgood〉+ cos(θ)|ψbad〉 (8.2.15)

= cos(2θ)|ψ〉 − sin(2θ)|ψ〉 (8.2.16)

and then it is clear that

U⊥
ψ Uf |ψ〉 = U⊥

ψ (− sin(θ)|ψgood〉+ cos(θ)|ψbad〉) (8.2.17)

= cos(2θ)|ψ〉+ sin(2θ)|ψ〉 (8.2.18)

and can be expressed in the
{
|ψgood〉, |ψbad〉

}
basis as

U⊥
ψ Uf |ψ〉 = sin(3θ)|ψgood〉+ cos(3θ)|ψbad〉. (8.2.19)

This state is illustrated in Figure 8.16.

Notice that more generally for any real number φ, the operation Uf does the
following:

Uf (sin(φ)|ψgood〉+ cos(φ)|ψbad〉) = − sin(φ)|ψgood〉+ cos(φ)|ψbad〉 (8.2.20)

and so Uf performs a reflection about the axis defined by the vector |ψbad〉.
Similarly, the operation U⊥

ψ does the following in general:

U⊥
ψ

(
sin(φ)|ψ〉+ cos(φ)|ψ〉

)
= sin(φ)|ψ〉 − cos(φ)|ψ〉 (8.2.21)

and so U⊥
ψ performs a reflection about the axis defined by the |ψ〉.

TEAM LinG

AMPLITUDE AMPLIFICATION 167

Fig. 8.16 The state U⊥
ψ Uf |ψ〉 = sin(3θ)|ψgood〉 + cos(3θ)|ψbad〉.

Fig. 8.17 The state UfU⊥
ψ Uf |ψ〉 = − sin(3θ)|ψgood〉 + cos(3θ)|ψbad〉.

Two such refections correspond to a rotation through an angle 2θ in the
2-dimensional subspace. Thus, repeated application of Q = U⊥

ψ Uf a total of
k times rotates the initial state |ψ〉 to

Qk|ψ〉 = cos
(
(2k + 1)θ

)
|ψbad〉+ sin

(
(2k + 1)θ

)
|ψgood〉, (8.2.22)

as illustrated in Figures 8.17–8.19.

Searching by amplitude amplification works by applying Q an appropriate num-
ber of times until the state is such that a measurement will yield an element
of the subspace spanned by |ψgood〉 with high probability. It remains to analyse
how many iterations of Q are needed.

To get a high probability of measuring a good value, the smallest positive k we
can choose is such that (2k+1)θ ≈ π

2 , implying k ∈ Ω
(

1
θ

)
. Note that for small θ,

sin(θ) ≈ θ and since sin(θ) = √pgood, searching via amplitude amplification uses

TEAM LinG

168 ALGORITHMS BASED ON AMPLITUDE AMPLIFICATION

Fig. 8.18 The state
(
U⊥

ψ Uf

)2 |ψ〉 = sin(5θ)|ψgood〉 + cos(5θ)|ψbad〉.

Fig. 8.19 The state
(
U⊥

ψ Uf

)k |ψ〉 = sin
(
(2k + 1)θ

)
|ψgood〉+ cos

(
(2k + 1)θ

)
|ψbad〉. We

choose k so this state is close to |ψgood〉.

only2 O
(√

1
pgood

)
queries to Uf . Assuming pgood ≥ 1

2n , any classical algorithm

would need Ω
(

1
pgood

)
queries to Uf or guesses uses the algorithm A.

Exercise 8.2.1 Suppose there are t solutions to f(x) = 1, with 0 < t < N , with t
known.

Show how to use amplitude amplification to find a solution with probability at least 2
3

using O

(√
N
t

)
applications of Uf .

2One could do better in the case that pgood < 1
2n by abandoning amplitude amplification

with A once K exceeds 2n and just exhaustively searching. TEAM LinG

AMPLITUDE AMPLIFICATION 169

You may have noticed that to apply this algorithm we have to know ahead of
time how many times to apply Q. In the case that A uniformly samples the
input, this requires knowing the number of solutions to the search problem.
For more general A it requires knowing the probability with which A guesses
a solution to f(x) = 1, that is, sin2(θ). However, in many search problems of
interest we will not know in advance how many solutions there are. Later, in
Section 8.4, we will address this technical problem of searching without know-
ing in advance how many search iterates are ideal. In the next section we will
study the related question of approximating the amplitude with which A maps
|00 . . . 0〉 to the subspace of solutions. In other words, we study the problem of
estimating the amplitude sin(θ) (or equivalently, the probability sin2(θ)) when
A|00 . . . 0〉 = sin(θ)|ψgood〉+ cos(θ)|ψbad〉.

Exercise 8.2.2

Let Uf be a black box that implements Uf : |x〉|b〉 �→ |x〉|b ⊕ f(x)〉.

(a) Suppose f : {00, 01, 10, 11} → {0, 1} has the property that exactly one string x
satisfies f(x) = 1.

Show how to find with certainty the unique x satisfying f(x) = 1 with only one appli-
cation to Uf .

(b) Suppose f : {0, 1}n → {0, 1}, and the unitary operator A has the property that
A|00 . . . 0〉 =

∑
x αx|x〉|junk(x)〉 with the property that the probability of measuring a

good string x upon measuring A|00 . . . 0〉 is 1
4
.

Show how to find with certainty the unique x satisfying f(x) = 1 with only one appli-
cation to Uf .

(c) Suppose f : {0, 1}n → {0, 1}, and the unitary operator A has the property that
A|00 . . . 0〉 =

∑
x αx|x〉|junk(x)〉 with the property that the probability of measuring a

good string x upon measuring A|00 . . . 0〉 is 1
2
.

Show how to find with certainty an x satisfying f(x) = 1 with only one application to
Uf .

Hint: Add an extra qubit in the state 1
2
|1〉+

√
3
4
|0〉, and define a new function f̃(x, b) =

b · f(x), where b ∈ {0, 1}.

(d) Suppose f : {0, 1}n → {0, 1}, and the unitary operator A has the property that
A|00 . . . 0〉 =

∑
x αx|x〉|junk(x)〉 with the property that the probability of measuring a

good string x upon measuring A|00 . . . 0〉 is p > 0.

Show that if we know p we can define a circuit that finds a solution to f(x) with

certainty using O
(

1√
p

)
applications of Uf .

Exercise 8.2.3 Suppose we have an algorithm A that outputs a good solution with
probability 1

4
− ε. Show how one iteration of the search iterate gives us an algorithm

that succeeds with probability 1 − O(ε2).

Note: There is also an algorithm that succeeds with probability 1 − O(ε3).

TEAM LinG

170 ALGORITHMS BASED ON AMPLITUDE AMPLIFICATION

8.3 Quantum Amplitude Estimation and Quantum Counting

Note that the material in Sections 8.1 and 8.2 on quantum searching and ampli-
tude amplification are prerequisites to the present section on quantum amplitude
estimation and counting.

Suppose instead of being interested in finding a solution to a search problem
we are interested in counting how many solutions exist. That is, given a search
space with N elements, indexed by {0, 1, . . . , N − 1}, t of which are solutions to
f(x) = 1, we want to determine t. This is the counting problem associated with
f . We will also consider the easier problem of approximately counting t.

As in Section 8.1, let Xbad be the set of x that are not solutions to the search
problem, and let Xgood be the set of x that are solutions to the search problem.
We again defined |ψgood〉 and |ψbad〉 as in Equations (8.2.5) and (8.2.6).

The counting algorithm we describe is a special case of amplitude estimation,
which estimates the amplitude with which an n-qubit circuit A maps |00 . . . 0〉
to the subspace of solutions to f(x) = 1.

Amplitude Estimation Problem

Input:

• The operator A with the property that A|00 . . . 0〉 = sin(θ)|ψgood〉 +
cos(θ)|ψbad〉, 0 ≤ θ ≤ π

2 .
• The operator Uf that maps |ψgood〉 �→ −|ψgood〉 and |ψbad〉 �→ |ψbad〉.

Problem: Estimate sin(θ) (or equivalently, sin2(θ)).

Quantum counting is a special case of quantum amplitude estimation, where we
choose A so that A|00 . . . 0〉 = 1√

N

∑N−1
j=0 |j〉.3

So if A|0〉 = 1√
N

∑N−1
j=0 |j〉 and 0 < t < N , then we have

|ψgood〉 =
∑

j∈Xgood

1√
t
|j〉 (8.3.1)

|ψbad〉 =
∑

j∈Xbad

1√
N−t
|j〉 (8.3.2)

and

A|00 . . . 0〉 =
√

t
N |ψgood〉+

√
N−t
N |ψbad〉. (8.3.3)

Thus, we have sin2(θ) = t
N and thus an estimation of sin2(θ) gives us an esti-

mation of t.

3In fact, it suffices that A|00 . . . 0〉 = 1√
N

∑N−1
j=0 eiφj |j〉 for any φj ∈ [0, 2π).

TEAM LinG

QUANTUM AMPLITUDE ESTIMATION AND QUANTUM COUNTING 171

We can consider any n-qubit circuit A so that A|00 . . . 0〉 =
∑2n−1

j=0 αj |j〉. Define
θ, 0 ≤ θ ≤ π

2 to satisfy ∑
j∈Xgood

|αj |2 = sin2 θ (8.3.4)

∑
j∈Xbad

|αj |2 = cos2 θ. (8.3.5)

We will initially restrict attention to the cases where 0 < sin(θ) < 1, and so

A|00 . . . 0〉 = sin θ|ψgood〉+ cos θ|ψbad〉. (8.3.6)

The cases that sin(θ) = 0 and sin(θ) = 1 are easily analysed separately. Recall
that in the non-trivial cases the amplitude amplification Q is a rotation in the
space spanned by |ψbad〉 and |ψgood〉 through an angle 2θ. So in the subspace
spanned by {|ψbad〉, |ψgood〉}, Q is described by the rotation matrix[

cos θ − sin θ
sin θ cos θ

]
. (8.3.7)

A simple calculation shows that two independent eigenvectors for this matrix are(
i√
2

1√
2

)
,

(
− i√

2
1√
2

)
(8.3.8)

with corresponding eigenvalues ei2θ and e−i2θ, respectively. The above eigenvec-
tors are expressed in the

{
|ψbad〉, |ψgood〉

}
basis, and so this means that

|ψ+〉 = 1√
2
|ψbad〉+ i√

2
|ψgood〉,

|ψ−〉 = 1√
2
|ψbad〉 − i√

2
|ψgood〉 (8.3.9)

are eigenvectors for Q with corresponding eigenvalues ei2θ and e−i2θ, respectively.
It is easy to check that

|ψ〉 = 1√
N

∑N−1
x=0 |x〉

= eiθ 1√
2
|ψ+〉+ e−iθ 1√

2
|ψ−〉. (8.3.10)

So |ψ〉 is an equally weighted superposition of eigenvectors for Q having eigen-
values ei2θ and e−i2θ. The quantum amplitude estimation algorithm works by
applying eigenvalue estimation (Section 7.2) with the second register in the su-
perposition |ψ〉 = eiθ 1√

2
|ψ+〉 + eiθ 1√

2
|ψ−〉. This gives us an estimate of either

2θ or −2θ, from which we can compute an estimate of sin2(θ) = sin2(−θ). The
quantum amplitude estimation circuit is shown in Figure 8.20.

The circuit outputs an integer y ∈ {0, 1, 2, . . . , M − 1}, where M = 2m, m ≥ 1,
and the estimate of p = sin2(θ) is p̃ = sin2

(
π y

M

)
.

TEAM LinG

172 ALGORITHMS BASED ON AMPLITUDE AMPLIFICATION

Fig. 8.20 Circuit for quantum amplitude estimation where M = 2m applications of

the search iterate, and thus M applications of Uf , are used. A measurement of the top

register gives a string representing an integer y. The value 2πy
M

is an estimate of either

2θ or 2π − 2θ.

Note that if A|00 . . . 0〉 = |ψgood〉, which is the case that θ= π
2 , then QA|00 . . . 0〉=

−A|00 . . . 0〉. Thus eigenvalue estimation will be estimating the eigenvalue −1 =
e2πi 1

2 . Since M is even, eigenvalue estimation will output y = M
2 with certainty,

and thus we will determine the correct eigenvalue −1 = eiπ with certainty. So
our estimate p̃ = sin2

(
π 1

2

)
= 1 will be exactly correct with certainty.

Similarly, if A|00 . . . 0〉 = |ψbad〉, which is the case that θ = 0, then QA|00 . . . 0〉 =
|00 . . . 0〉, and thus eigenvalue estimation will be estimating the eigenvalue 1.
Thus eigenvalue estimation will output y = 0 with certainty, and we will deter-
mine the correct eigenvalue 1 = ei0 with certainty. So our estimate p̃ = sin2(0) =
0 will be exactly correct with certainty.

Amplitude Estimation Algorithm

1. Choose a precision parameter m. Let M = 2m.
2. Let Q = A−1U0⊥AUf .
3. Prepare an m-qubit control register, and a second register containing the

state A|00 . . . 0〉.
4. Apply the QFTM to the first register
5. Apply a controlled Qx.
6. Apply the QFT−1

M to the first register.
7. Measure the first register to obtain a string representing some integer

y ∈ {0, 1, . . . , M − 1}.
8. Output sin2(π y

M).

Theorem 8.3.1 For any positive integers k and m, M = 2m, the amplitude
estimation algorithm outputs p̃, 0 ≤ p̃ ≤ 1 such that

|p̃− p| ≤ 2πk

√
p(1− p)

M
+ k2 π2

M2
(8.3.11)

with probability at least 8
π2 when k = 1 and with probability greater than

1 − 1
2(k−1) for k ≥ 2. If p = 0 then p̃ = 0 with certainty, and if p = 1 and then

p̃ = 1 with certainty.
TEAM LinG

QUANTUM AMPLITUDE ESTIMATION AND QUANTUM COUNTING 173

Counting with Error in O(
√

t)

1. Run amplitude estimation with M = �
√

N� iterations of the search iterate,
to obtain the estimate p̃.

2. Let t̃ = [p̃N]. Output t̃.

Corollary 8.3.2 The above algorithm outputs a value t̃ such that with proba-
bility at least 8

π2 we have

∣∣t̃− t
∣∣ < 2π

√
t(N − t)

N
+ 11 ∈ O(

√
t). (8.3.12)

It is also possible to vary the parameter M and get an approximate counting
algorithm with the following properties. The tricky part in designing these count-
ing algorithms that use amplitude estimation as a subroutine is to guarantee that
we are very unlikely to use a value M that turns out to be much larger that was
necessary. We omit the proofs of the detailed performance of these algorithms.

Counting with Accuracy ε

1. Set l = 0.
2. Increment l by 1.
3. Run amplitude estimation with M = 2l iterations of the search iterate,

and let t̃ = [p̃N].
4. If t̃ = 0 and 2l < 2

√
N then go to Step 2.

5. Run the amplitude estimation algorithm with parameter M = � 20π2

ε 2l�,
to obtain the estimate p̃.

6. Let t̃ = [p̃N]. Output t̃.

Corollary 8.3.3 The above algorithm outputs a value t̃ such that |t̃ − t| ≤
εt with probability at least 2

3 . The expected number of evaluations of f is in

O
(

1
ε

√
N
t

)
. If t = 0, the algorithm outputs t̃ = t = 0 with certainty and f is

evaluated a number of times in O
(√

N
)
.

Exact Counting

1. Let p̃1 and p̃2 be the results of two independent runs of amplitude estima-
tion with M =

⌈
14π
√

N
⌉
.

2. Let M1 =
⌈

30
√

(Np̃1 + 1)(N −Np̃1 + 1)
⌉
.

Let M2 =
⌈

30
√

(Np̃2 + 1)(N −Np̃2 + 1)
⌉
.

Let M = min{M1,M2}.
3. Let p̃ be the estimate obtained by running amplitude estimation with M

iterations of the search iterate.
4. Let t̃ = [p̃N]. Output t̃.

TEAM LinG

174 ALGORITHMS BASED ON AMPLITUDE AMPLIFICATION

Theorem 8.3.4 The Exact Counting algorithm requires an expected number
of application of Uf in O

(√
(t + 1)(N − t + 1)

)
and outputs the correct value of

t with probability at least 2
3 .

We will see in Section 9.2 that this algorithm uses an optimal number (up to a
constant factor) of applications of Uf .

Exercise 8.3.1 Suppose we are promised that the number of solutions is either 0 or
some integer t (that we are given).

Show how to decide whether f has a solution with certainty using O

(√
N
t

)
applica-

tions of Uf .

Hint: Recall Exercise 8.2.2 (d).

Example 8.3.5 One application of counting is to compute the mean of a function
g : X → Y , where X is some discrete finite domain, which for convenience we assume
is {0, 1}n, and Y is a subset of the real numbers, which we can assume without loss of
generality is contained in the interval [0, 1). For convenience, we will assume g(x) = x

2m

for some integer x ∈ {0, 1, . . . 2m − 1}. Note that if g : {0, 1}n �→ {0, 1} (i.e. m = 0),
then this problem is exactly the counting problem.

One way to estimate the mean (
∑

x g(x))/2n of a function g(x) is to estimate the
amplitude with which an operation A that maps

|00 . . . 0〉|0〉 �→
∑

x

1√
2n

|x〉(
√

1 − g(x)|0〉 +
√

g(x)|1〉)

produces a |1〉 value in the rightmost qubit.

Exercise 8.3.2 shows how to implement this operator A given a circuit for implementing
g (equivalently, for implementing f(x) where g(x) = f(x)/2m).

An alternative method is to express g(x) as the concatentation of n binary functions
gn−1(x)gn−2(x) . . . g0(x). Since g(x) =

∑
i 2igi(x), then

∑
x g(x) =

∑
i 2i ∑

x gi(x).
Thus we can first use quantum counting to approximate each

∑
x gi(x) with g̃i and

then combine the sum estimates to get an estimate of
∑

x g(x) equal to

g̃ =
∑

i 2ig̃i.

Note: If X is continuous, like the interval [0, 1], then the integral of well-behaved
functions g can be approximated arbitrarily well by discretizing the set X, and
multiplying the mean value of g on those discrete points by the measure of the
set X.

Exercise 8.3.2 Suppose you are given a circuit Ug for implementing g : {0, 1}n �→
{0, 1, . . . , 2m − 1}, where Uf |x〉|y〉 = |x〉|y + g(x) mod 2m〉.

TEAM LinG

SEARCHING WITHOUT KNOWING THE SUCCESS PROBABILITY 175

1. Show how to implement the operation

|x〉 1√
2
(|0〉 + |1〉) �→ |x〉 1√

2
(|0〉 + e2πi

g(x)
2m |1〉).

2. Show how to approximate the operation

|x〉|0〉 �→ |x〉
√

1 − g(x)

2m
|0〉 +

√
g(x)

2m
|1〉)

with accuracy in O(1
2n).

Hint: Recall the ARCSINn,m circuit from Example 1.5.1.

8.4 Searching Without Knowing the Success Probability

Recall that the searching and amplitude amplification algorithms described in
Section 8.1 required k iterations of the search iterate, where k ≈ π

4θ . However,
if we do not know the value θ, the following procedure gives an algorithm that
uses O

(
1
θ

)
applications of the search iterate without prior knowledge of θ.

Observe that when 0 < sin2(θ) < 1, the amplitude estimation network produces
the state

1√
2
eiθ|2̃θ〉|ψ+〉+ 1√

2
| ˜2π − 2θ〉|ψ−〉. (8.4.1)

Since 0 < θ < π
2 , then increasing the parameter M = 2m in the quantum

amplitude estimation algorithm means that |2̃θ〉 and | ˜2π − 2θ〉 become better
estimates of 2θ and 2π−2θ, and thus become more orthogonal (since 2θ �= 2π−2θ
if 0 < θ < π

2).

In fact, if the eigenvalue estimation is done with an m-bit control register, it is
easy to verify that the inner product between the two estimates is

|〈 ˜2π − 2θ|2̃θ〉| ∈ O

(
1

2mθ

)
. (8.4.2)

Exercise 8.4.1 Prove Equation 8.4.2.

Note that once 2m >> 1
θ , the states | ˜2π − 2θ〉 and |2̃θ〉 are almost orthogonal.

If the states were orthogonal, then tracing out the first register leaves the second
register in the state

1
2 |ψ+〉〈ψ+|+ 1

2 |ψ−〉〈ψ−| (8.4.3)

TEAM LinG

176 ALGORITHMS BASED ON AMPLITUDE AMPLIFICATION

Fig. 8.21 The circuit diagram on the left illustrates how the quantum counting circuit

can be used to search by measuring the second register. Since the first register is

discarded, this circuit can be simplified to a circuit, illustrated on the right, that applies

the quantum search iterate Q a total of x times, where x is selected uniformly at random

from {0, 1, . . . , 2m − 1}.

and we can easily verify that

1
2 |ψ+〉〈ψ+|+ 1

2 |ψ−〉〈ψ−| = 1
2 |ψgood〉〈ψgood|+ 1

2 |ψbad〉〈ψbad|. (8.4.4)

Note that the probability of measuring a good solution if we measure the state

1
2 |ψgood〉〈ψgood|+ 1

2 |ψbad〉〈ψbad| (8.4.5)

is 1
2 .

However, since |2̃θ〉 and | ˜2π − 2θ〉 are not perfectly orthogonal, but have inner
product in O

(
1

2mθ

)
, we can only say that if we measure the second register of

the quantum counting algorithm (as illustrated on the left side of Figure 8.21)
the probability of measuring a good state is in

1
2
−O

(
1

2mθ

)
. (8.4.6)

Exercise 8.4.2 Let |ψ〉 = 1√
2
|φ1〉

(
1√
2
|0〉 + 1√

2
|1〉

)
+ 1√

2
|φ2〉

(
1√
2
|0〉 − 1√

2
|1〉

)
for some

normalized states |φ1〉 and |φ2〉 with the property that |〈φ1|φ2〉| = ε. Find a tight upper
bound on the probability that measuring the first register in the computational basis
results in the outcome |0〉 in the second register.

If for a fixed m we run this quantum search routine twice,4 then the probability
of finding a solution is in 3

4 −O
(

1
2mθ

)
.

4Repeating twice is not of fundamental importance. This is just one way to guarantee that
the probability of success p′ will be strictly above 1

r
once M > 1√

p′ , where r is the rate at

which we increase the interval size M . We want rp′ < 1 because the expected running time
will depend on the value of the geometric series

∑
n(rp′)n. For simplicity, we choose r = 2

and thus we wish to boost the probability p′ above 1
2
. Alternatively, we could choose any rate

r < 1
2
.

TEAM LinG

SEARCHING WITHOUT KNOWING THE SUCCESS PROBABILITY 177

Consider the following procedure:

Quantum Searching Without Knowing Success Probabilities I

1. Set m = 1.
2. Perform eigenvalue estimation with an m-qubit control register. Measure

the target register to obtain a value |y〉. If f(y) = 1, go to Step 5.
3. Perform eigenvalue estimation with an m-qubit control register. Measure

the target register to obtain a value |y〉. If f(y) = 1, go to Step 5. Otherwise
increment m.

4. If 2m < N , go to Step 2. If 2m ≥ N , do an exhaustive search to find a value
y such that f(y) = 1. If no such y is found, output ‘NO SOLUTION’.

5. Output y.

Theorem 8.4.1 If θ > 0, the above procedure will output a value y satisfying
f(y) = 1. The expected number of queries to Uf and applications of A and A−1

used is in O(1
θ) and is never greater than O(N). If θ = 0, the algorithm uses

Θ(N) queries and applications of A and A−1 and outputs ‘NO SOLUTION’.

It is interesting to note that we never use the value of the first register, which
means that the following algorithm is equivalent to the above algorithm (and, in
the case A uniformly samples the inputs, this is equivalent to the first quantum
counting algorithm invented by Brassard, Høyer, and Tapp).

Quantum Searching Without Knowing Success Probability II

1. Set m = 1.
2. Pick a random integer y ∈ {0, 1, 2, . . . , 2m−1} and compute QyA|00 . . . 0〉.

Measure the register to obtain a value |y〉. If f(y) = 1, go to Step 5.
3. Pick a random integer y ∈ {0, 1, 2, . . . , 2m−1} and compute QyA|00 . . . 0〉.

Measure the register to obtain a value |y〉. If f(y) = 1, go to Step 5.
Otherwise increment m.

4. If 2m < N go to Step 2. If 2m ≥ N , do an exhaustive search to find a value
y such that f(y) = 1. If no such y is found, output ‘NO SOLUTION’.

5. Output y.

Exercise 8.4.3 Note that the first of the above two algorithms (‘Quantum search-
ing without knowing success probabilities I’) outputs a solution with probability 1

2
−

O
(

1
2mθ

)
using 2m applications of Uf . Devise a quantum algorithm using O(2m) appli-

cations of Uf that outputs a solution with probability in 1 − O
((

1
2mθ

)2)
.

TEAM LinG

178 ALGORITHMS BASED ON AMPLITUDE AMPLIFICATION

8.5 Related Algorithms and Techniques

We have mentioned how amplitude amplification is a very broadly applicable
computational primitive. It can also be applied in more subtle ways to solve
problems like element distinctness more efficiently than any classical algorithm.
The element distinctness problem consists of deciding if there exist distinct in-
puts x and y so that f(x) = f(y), where we are provided with a black box for
implementing the function f .

It is also possible to define continuous time versions of the quantum searching
algorithm which offer the same quadratic speed-up. Continuous-time computa-
tional models may or may not be practical to implement directly, but they can
be simulated efficiently by the quantum circuit model we have described. Such
alternative models might be a novel way to discover new quantum algorithms.
One interesting continuous-time algorithmic paradigm is that of adiabatic al-
gorithms, which are inspired by the adiabatic theorem. For example, one can
naturally derive an adiabatic searching algorithm that offers the same quadratic
speed-up provided by amplitude amplification. A more general notion of adia-
batic computation is in fact polynomial time equivalent to the quantum circuit
model.

There are also several ways to derive a quantum equivalent of a classical random
walk, which we call quantum walks. Quantum walks are another interesting par-
adigm in which to discover new quantum algorithms. For example, the optimal
quantum algorithm for element distinctness can be found using a quantum walk
algorithm.

TEAM LinG

9

QUANTUM
COMPUTATIONAL
COMPLEXITY THEORY
AND LOWER BOUNDS

We have seen in the previous chapters that quantum computers seem to be more
powerful than classical computers for certain problems. There are limits on the
power of quantum computers, however. Since a classical computer can simulate a
quantum computer, a quantum computer can only compute the same set of func-
tions that a classical computer can. The advantage of using a quantum computer
is that the amount of resources needed by a quantum algorithm might be much
less than what is needed by the best classical algorithm. In Section 9.1 we briefly
define some classical and quantum complexity classes and give some relationships
between them. Most of the interesting questions relating classical and quantum
complexity classes remain open. For example, we do not yet know if a quantum
computer is capable of efficiently solving an NP-complete problem (defined later).

One can prove upper bounds on the difficulty of a problem by providing an
algorithm that solves that problem, and proving that it will work within in a
given running time. But how does one prove a lower bound on the computational
complexity of a problem?

For example, if we wish to find the product of two n-bit numbers, computing
the answer requires outputting roughly 2n bits and that requires Ω(n) steps (in
any computing model with finite-sized gates). The best-known upper bound for
integer multiplication is O(n log n log log n) steps.

O, Ω, and Θ Notation

Let f and g be functions from the positive integers to the real numbers.
O(f(n)) denotes the set of functions g(n) for which there exists a positive real
c and integer N so that g(n) ≤ cf(n) for all n ≥ N .
Ω(f(n)) denotes the set of functions g(n) for which there exists a positive real
c and integer N so that g(n) ≥ cf(n) for all n ≥ N .

179
TEAM LinG

180 QUANTUM COMPUTATIONAL COMPLEXITY THEORY AND LOWER BOUNDS

Θ(f(n)) denotes the set of functions g(n) that are both in O(f(n)) and in
Ω(f(n)).
Note: One will often encounter abuses of this notation, such as ‘g(n) =
O(f(n))’.

It has proved extremely difficult to derive non-trivial lower bounds on the com-
putational complexity of a problem. Most of the known non-trivial lower bounds
are in the ‘black-box’ model (for both classical and quantum computing), where
we only query the input via a ‘black-box’ of a specific form. We discuss the
black-box model in more detail in Section 9.2.

We then sketch several approaches for proving black-box lower bounds. The first
technique has been called the ‘hybrid method’ and was used to prove that quan-
tum searching requires Ω(

√
n) queries to succeed with constant probability. The

second technique is called the ‘polynomial method’. We then describe a tech-
nique based on ‘block sensitivity’, and conclude with a technique known as the
‘adversary method’. All of these techniques have been used to prove interesting
lower bounds in the black-box model.

For concreteness, we can assume our classical computing model is the log-RAM
model, and our quantum computing model that of uniform families of acyclic
quantum circuits (discussed in Section 1.2 and in Chapter 4).

9.1 Computational Complexity

In an attempt to better understand the difficulty of various computational prob-
lems, computer scientists and mathematicians have organized computational
problems into a variety of classes, called ‘complexity classes’, which capture some
aspect of the computational complexity of these problems.

For example, the class P corresponds to the class of problems solvable on a
deterministic classical computer running in polynomial time and PSPACE cor-
responds to the class of problems that can be solved using a polynomial amount
of space.

For convenience, we restrict attention to ‘decision’ problems, where the answer
is either ‘yes’ or ‘no’. Most problems of interest can be reformulated as decision
problems in a very natural way without losing their intrinsic complexity. For
example, the problem of factoring any integer N into two non-trivial factors can
be reduced to O(log N) decision problems of the form ‘Does the integer N have
a non-trivial factor less than T?’, where T is an additional input we can choose.

Decision problems can be treated as the problem of recognizing elements of a
language. This framework of language recognition problems might seem awk-
ward at first, but much of computational complexity theory has been developed
using this terminology; so it is useful to be somewhat familiar with it. Below we
explain this formalism in a bit more detail and define a few of the most common
complexity classes one will encounter in the quantum computing literature.

TEAM LinG

COMPUTATIONAL COMPLEXITY 181

9.1.1 Language Recognition Problems and Complexity
Classes

In order to compute, we need a reasonable way to represent information. Unary
encoding (i.e. representing the number j by a string of 1s of length j) is expo-
nentially less efficient than using strings of symbols from any fixed alphabet of
size at least 2. Going from an alphabet of size 2 to a larger alphabet of fixed size
only changes the length of the problem representation by a constant factor. So
we will simply use the alphabet Σ = {0, 1}. The set Σ∗ denotes all finite length
strings over that alphabet. A language L is a subset of Σ∗. In particular, usually
L is a set of strings with some property of interest.

An algorithm ‘solves the language recognition problem for L’ if it accepts any
string x ∈ L and rejects any string x �∈ L.

For example, the problem of deciding whether an integer n (represented as a
string of bits) is prime is rephrased as the problem of recognizing whether the
string representing n is in the language PRIME = {10, 11, 010, 011, 101, 111, . . .}
(which consists of the set of all strings representing prime numbers, according to
some reasonable encoding, which in this case is standard binary encoding).

As another example, consider the problem of deciding whether a given graph
x (represented by a string of bits in some reasonable way) is 3-colourable. A
graph is 3-colourable if it is possible to assign each vertex v one of three colours
c(v) ∈ {RED, GREEN, BLUE} so that any two vertices joined by an edge
are coloured with different colours. Such an assignment of colours is a proper
3-colouring. This problem is equivalent to recognizing whether the string rep-
resenting x is in the language 3-COLOURABLE, which is the set of strings
representing 3-colourable graphs. Note that there are only 6 possible edges
on a graph with 4 vertices (let us call them v1, v2, v3, v4), namely e1 = {v1, v2},
e2 = {v1, v3}, e3 = {v1, v4}, e4 = {v2, v3}, e5 = {v2, v4}, e6 = {v3, v4}. Thus,
we can naturally represent the graphs on 4 vertices by strings x1x2x3x4x5x6

of length 6, by letting xj = 1 if and only if x contains the edge ej . We can
easily verify that 101111 ∈ 3-COLOURABLE since the c(v1) = RED, c(v2) =
BLUE, c(v3) = RED, c(v4) = GREEN is a valid 3-colouring as shown in
Figure 9.1.

Now that we have shown how to phrase decision problems in terms of recognizing
elements of a language, we can define various classes of languages. For example,
we formally define P (‘polynomial time’) to be the class of languages L for
which there exists a deterministic classical algorithm A running in worst-case
polynomial time1 such that for any input x ∈ Σ∗ the algorithm A on input x,
outputs ‘accept’ if and only if x ∈ L. Note that this class does not capture the
possible advantages of using randomness to solve problems.

1More precisely, there exists a polynomial p(n) such that A runs for time at most p(n) on
inputs of length n.

TEAM LinG

182 QUANTUM COMPUTATIONAL COMPLEXITY THEORY AND LOWER BOUNDS

Fig. 9.1 The above graph x is represented by the string 101111. Since it is possible to

colour the vertices with 3 colours so that adjacent vertices are coloured differently, we

say that x is 3-colourable, or equivalently 101111 ∈ 3-COLOURABLE.

The class BPP (‘bounded-error probabilistic polynomial time’) consists of all
languages L for which there exists a randomized classical algorithm A running
with worst-case polynomial time such that for any input x ∈ Σ∗ we have

• if x ∈ L then the probability that A accepts x is at least 2
3

• if x �∈ L then the probability that A accepts x is at most 1
3 .

It is important to note that when we refer to ‘the probability that A accepts’, we
are referring to the probability over random choices of paths of the computation
on the fixed input x ∈ L, and not an average over all x ∈ L. It is also worth noting
that there is nothing special about 2

3 . Any constant 1
2 +δ, where δ > 0 will work.

For any fixed δ, we can repeat the algorithm A a total of n independent times
and take the majority answer. We now get the correct answer with probability
at least 1− εn for some constant ε, 0 < ε < 1 (see Appendix A.1).

The class BQP (‘bounded-error quantum polynomial time’) consists of all lan-
guages L for which there exists a quantum algorithm A running with worst-case
polynomial time such that for any input x ∈ Σ∗ we have

• if x ∈ L then the probability that A accepts x is at least 2
3

• if x �∈ L then the probability that A accepts x is at most 1
3 .

Polynomials have the property that their sum, product, and composition are still
polynomials. By only concerning ourselves with the computational complexity of
an algorithm up to a polynomial factor we get a crude but very robust measure
of computational complexity. Most reasonable changes in architecture one would
imagine do not affect whether the computational complexity is polynomial or
not (since using one architecture to simulate another only incurs a polynomial

TEAM LinG

COMPUTATIONAL COMPLEXITY 183

‘blow-up’ in complexity). Thus distinguishing problems that can be solved with
a polynomial complexity from those that cannot is a distinction that will not
depend on the details of your computer architecture.

It is thus convenient to treat algorithms with polynomial complexity as ‘efficient’
and problems that can be solved with polynomial complexity as ‘tractable’, and
problems without polynomial solutions as ‘intractable’. Note that in any com-
puting model where information cannot travel arbitrarily fast, and where an
exponential number of operations cannot be crammed into a polynomial sized
space (e.g. the Turing machine model), the space used cannot be superpolyno-
mially more than the running time, and so in such computing models, we can
equate polynomial time complexity with efficiency or tractability.

For practical purposes, having a polynomial complexity is (almost) necessary for
being solvable in practice, but might not be sufficient. At the very least, finding
a polynomial time algorithm is a good start towards finding a feasible solution.

One type of change in computational model that might drastically change the
computational complexity is to change the implicit physical framework in which
the computing model is based. For example, deterministic classical computa-
tion is implicitly only referring to a deterministic classical theory of physics.
By adding the possibility of a randomness, we get probabilistic classical com-
putation. By working in a quantum mechanical framework, we get quantum
computation.

We traditionally view decision problems corresponding to recognizing languages
in BPP as tractable on a probabilistic classical computer, and problems without
such worst-case polynomial time solutions intractable on a classical computer.
Analogously, we view decision problems corresponding to recognizing languages
in BQP as tractable on a quantum computer, and problems without such worst-
case polynomial time solutions intractable on a quantum computer.

Some problems seem to elude any efficient solution in the worst-case, such as de-
ciding whether a given graph is 3-colourable. Note that although it might be very
difficult to decide if a graph x is 3-colourable, it is very easy to check if a given
colouring y is a proper 3-colouring. That is, there exists a polynomial time algo-
rithm CHECK-3-COLOURING(a, b) such that CHECK-3-COLOURING(x, y) =
1 if and only if y is a valid colouring of the graph x (the algorithm simply goes
through every edge of the graph x and checks that according to the colouring y
the two vertices of each edge are coloured differently).

This property inspires the class NP (‘non-deterministic polynomial time’) which
consists of all languages L for which there exists a polynomial time algorithm
A(a, b) such that for any input x ∈ Σ∗ we have

• if x ∈ L then there exists an input y such that A(x, y) outputs ‘accept’
• if x �∈ L then A(x, y) outputs ‘reject’ for all y

and the length of y is bounded by a polynomial in the length of x.

TEAM LinG

184 QUANTUM COMPUTATIONAL COMPLEXITY THEORY AND LOWER BOUNDS

Another way of looking at the class NP is as the class of languages L for which
for any x ∈ L a prover can convince a verifier that x is in L by providing a
short proof that the verifier can deterministically verify on a classical computer
using time polynomial in the size of x (the prover’s computation time is not
bounded). Note that this does not imply that there is a short proof to verify
some x /∈ L. There are many variations on this class including MA (‘Merlin–
Arthur games’) where the verifier (Arthur) uses the short proof (provided by
Merlin) to probabilistically verify on a classical computer that x ∈ L. Clearly
NP ⊆ MA and BPP ⊆ MA. Other complexity classes can be defined based on
interactive proofs, proofs with more than one prover, and proofs using quantum
computers, quantum communication, or entanglement. We will not cover this
rich landscape of complexity classes in this textbook.

There is a special subclass of problems within NP that are called ‘NP-complete’.
These problems have the property that an efficient solution to any one of these
problems implies an efficient solution to any problem in NP. More precisely, let
L be any NP-complete language. Then for any language L′ ∈ NP, there exists
a classical deterministic polynomial time algorithm that computes a function
f : {0, 1}∗ → {0, 1}∗ with the property that x ∈ L′ if and only if f(x) ∈ L.
In other words, one query to an oracle for solving L will solve any problem in
NP. Well-known examples of NP-complete problems include circuit satisfiability,
3-satisfiability (defined below), 3-colouring, the traveling salesman problem (the
decision version), and the subset sum problem. Integer factorization and graph
isomorphism are in NP but not believed to be NP-complete.

We will refer to the NP-complete problem 3-satisfiability (3-SAT) later, so we
define it here. An instance of 3-SAT is specified by a Boolean formula Φ in a
particular form, called ‘3-conjunctive normal form’ (3-CNF). A Boolean formula
is in 3-CNF if it is a conjunction (logical AND) of clauses, each of which is
a disjunction (logical OR) of three Boolean variables (or their negations). For
example, the following is a 3-CNF formula in the variables b1, b2, . . . , b6:

Φ = (b1 ∨ b2 ∨ b3) ∧ (b1 ∨ b4 ∨ b5) ∧ (b6 ∨ b2 ∨ b3).

A ‘satisfying assignment’ of a particular 3-CNF formula Φ is an assignment of
0 or 1 values to each of the n variables such that the formula evaluates to 1.
For example, b1b2b3b4b5b6 = 110010 is a satisfying assignment (the first clause
evaluates to 1 because b1 = 1, the second clause evaluates to 1 because b5 = 1,
and the third clause evaluates to 1 because b2 = 1; therefore, the conjunction
of the three clauses evaluates to 1). The language 3-SAT is the set of 3-CNF
formulas (represented by some reasonable encoding) for which there exists at
least one satisfying assignment. Note that given a satisfying assignment, it is
easy to check if it satisfies the formula.

The class PSPACE consists of all languages L for which there exists a classical
algorithm A using worst-case polynomial space such that for any input x ∈ Σ∗

the algorithm A accepts x if and only if x ∈ L.
TEAM LinG

THE BLACK-BOX MODEL 185

C

I

M

Fig. 9.2 This diagram illustrates the known relationships between some of the most

important complexity classes. At present, none of the inclusions are known to be strict.

For example, there is currently no proof that P = PSPACE.

Figure 9.2 illustrates the known relationships between the complexity classes we
just defined. For example, clearly P ⊆ BPP ⊆ BQP ⊆ PSPACE, and P ⊆ NP ⊆
PSPACE. Unfortunately, to date, there is no proof that any of the containments
drawn are strict. But it is widely believed that P �= NP and that NP �= PSPACE.
We also expect that BPP �= BQP.

Note that resolving the question of whether P = NP is considered one of the
greatest open problems in mathematics (e.g. it is one of the million dollar
‘Millennium Problems’ of the Clay Mathematics Institute)

We have only sketched a very small number of complexity classes. See, for ex-
ample, Aaronson’s complexity ‘zoo’ for a listing of virtually all the complexity
classes studied to date.

The biggest challenge of quantum algorithmics is to find problems that are in
BQP but not in BPP; that is, to find problems that are efficiently solvable on a
quantum computer but not a classical computer. The study of these complexity
classes and the relationships between them can be helpful in understanding the
difficulty of these problems.

Most of the interesting lower bounds have been proved in some sort of black-
box model. The black-box lower bounds we describe in the next sections provide
some evidence that BQP does not contain all of NP, though the possibility is not
explicitly ruled out at present. The lower bound methods also prove the optimal-
ity of several of the black-box quantum algorithms we described in Chapters 6,
7 and 8.

9.2 The Black-Box Model

In the black-box model, the input to the problem is provided by a black-box (or
‘oracle’) OX for accessing information about an unknown string X = X1, . . . , XN ,
where we will assume the N variables Xi are binary. The oracle allows us to make
queries about the binary values of the individual variables. We usually assume

TEAM LinG

186 QUANTUM COMPUTATIONAL COMPLEXITY THEORY AND LOWER BOUNDS

the quantum black-box implements

OX : |j〉|b〉 → |j〉|b⊕Xj〉. (9.2.1)

The objective is usually to compute some function F (X) of the string X. Though
in general the task at hand might be more complicated.2 Solving the search
problem for X is no easier than solving the decision problem for X, which is to
decide if there exists some j such that Xj = 1. This decision problem can be
thought of as evaluating the OR function of the binary variables X1, . . . , XN :

OR(X1 . . . XN) = X1 ∨X2 ∨ · · · ∨XN . (9.2.2)

A computation in the black-box model is one which computes such a function
F : {0, 1}N → {0, 1} given access to the black-box OX for X. The computation
can perform any unitary operation (i.e. we do not worry about decomposing
the unitaries into gates from a finite gate set) and makes queries to the black-
box OX. Note that with no queries to OX, we cannot evaluate any non-trivial
F (X) since we have no information about the input X. The goal of a black-box
computation is to extract enough information about X using OX in order to be
able to reliably compute F (X).

The ‘query complexity’ of an algorithm is the number of queries used by the
algorithm. The query complexity of a problem is the number of queries needed
in order to solve the problem. The black-box model of computation has proved
useful both for algorithmic design and for understanding the limitations of algo-
rithms for certain problems. Most of the algorithms we have seen in this textbook
are essentially black-box algorithms. For example, the period-finding formula-
tion of Shor’s algorithm is a black-box algorithm, and the quantum searching
and counting algorithms are black-box algorithms. In the black-box model, it
can be shown that Ω(

√
r) queries are required to find the period r of a periodic

function f on a classical computer. A quantum algorithm finds the period with
high probability using O(1) queries.

Black-boxes can be replaced with ‘white boxes’, which are circuits that actually
implement the black boxes. For example, Shor’s order-finding algorithm replaces
the black box for Uf by an actual circuit that computes the function f(x) = ax

mod N .

When we replace black boxes by white boxes, the total complexity of the algo-
rithm can be upper bounded by TB + A, where T is the query complexity of the
black-box algorithm, B the computational complexity of actually implementing
a query, and A the computational complexity of all the non-query operations
performed by the black-box algorithm. For Shor’s order-finding algorithm, T , B,
and A are all polynomials in the input size, and thus the running time of the
algorithm is polynomial.

2For example, in Section 8.1 we addressed the problem of outputting j such that Xj = 1.
This corresponds to having a relation R consisting of pairs (b, j) where Xj = b, and wishing
to sample an element with b = 1.

TEAM LinG

THE BLACK-BOX MODEL 187

Lower bounds in the black-box model do not automatically carry over to the
white-box model. However, the query lower bounds do apply to any algorithm
that only probes the input to the problem in a way equivalent to a black-box
query. For example, we will prove later that any quantum algorithm for searching
for a solution to f(x) = 1, where f : {1, 2, . . . , N} → {0, 1} must make T ∈
Ω(
√

N) queries to the black-box for Uf . The quantum searching algorithm solves
this problem with O(

√
N) queries, and thus any algorithm that tries to find a

solution to f(x) = 1 and only probes the function f by implementing f(x) must
have complexity TB + A, for some B ≥ 1 and A ≥ 0. Thus, the computational
complexity of any algorithm of this form must be in Ω(

√
N).

For example, consider a 3-SAT formula (defined Section 9.1.1) Φ in n variables,
x1, x2, . . . , xn, N = 2n, and let the numbers 1, 2, . . . , N encode the 2n assign-
ments of the variables x1, x2, . . . , xn. Define the function fΦ so that fΦ(y) = 1
if setting x1 = y1, x2 = y2, . . . , xn = yn satisfies the formula Φ, and fΦ(y) = 0
otherwise.

We can rephrase the 3-SAT problem as follows.

Define N binary variables X1, . . . , XN such that Xj = fΦ(j) and solve the search
problem for X = X1X2, . . . XN . The function fΦ can be evaluated in time in
O(logc N) for some positive constant c. Thus, quantum searching would find a
solution in time in O

(
(logc N)

√
N
)
.

Although we are actually given the formula Φ, or a circuit for evaluating fΦ, if
we restrict attention to algorithms that probe the input only by evaluating fΦ,
the query lower bound of Ω(

√
N) proved later in this section applies. In order

to ‘beat’ these lower bounds, one must exploit the structure of Φ in some clever
way.

9.2.1 State Distinguishability

The general approach for proving that T queries are necessary is to show that
with fewer than T queries, the algorithm cannot reliably distinguish the black-
box OX for an input X satisfying f(X) = 1 from the black-box OY for some
input Y satisfying f(Y) = 0. Consider any algorithm A that makes T queries,
and let |ψX〉 be the state produced by the algorithm A with the oracle OX and
let |ψY〉 be the state produced by the algorithm A with the oracle OY. For the
algorithm to reliably compute F (X) and F (Y) it is necessary that the states |ψX〉
are |ψY〉 are reliably distinguishable. It will be useful to state one of the earliest
results in the vast literature of quantum state estimation and distinguishability.

Distinguishing Two Pure Quantum States With Minimum Error

Input: One of two known states |ψX〉 or |ψY〉, with the property that
|〈ψX|ψY〉| = δ.
Output: A guess ‘X’ or ‘Y’.
Problem: Maximize the probability 1− ε that the guess is correct.

TEAM LinG

188 QUANTUM COMPUTATIONAL COMPLEXITY THEORY AND LOWER BOUNDS

The following theorem is proved in Appendix A.9, which also describes the op-
timal measurement.

Theorem 9.2.1 Any procedure that on input |ψZ〉 guesses whether Z = X or
Z = Y will guess correctly with probability at most 1− ε = 1

2 + 1
2

√
1− δ2, where

δ = |〈ψX|ψY〉|. This probability is achievable by an optimal measurement.

There are many other ways of formulating the distinguishability question. For
example, Helstrom originally addressed this question assuming a uniform prior
distribution on |ψX〉 and |ψY〉. The same procedure is optimal in order to maxi-
mize the expected probability of guessing the correct answer (averaging over the
inputs).

As another example, one might want a procedure that outputs ‘z = x’, ‘z = y’
or ‘do not know’, with the guarantee that the procedure is never wrong. In
this case, for example, the objective might be to minimize the probability that
it will output ‘do not know’. The literature on quantum state estimation and
distinguishability is extensive. For the rest of this chapter, we will only need the
result above.

9.3 Lower Bounds for Searching in the Black-Box Model:
Hybrid Method

Given a function f : {1, 2, . . . , N} → {0, 1}, the searching problem is to find
a y ∈ {1, 2, . . . , N} such that f(y) = 1. This framework is very general as it
applies to any problem where we can recognize a solution and wish to actually
find a solution.

The decision problem is to determine whether or not there exists a solution to
the search problem. A solution to the searching problem yields a solution to the
decision problem, so a lower bound on the difficulty of the decision problem
implies a lower bound on the difficulty of the searching problem.

In Section 8.1, we saw a bounded error quantum algorithm for solving the prob-
lem of searching a solution space having N elements, making O(

√
N) queries to

the black-box Uf . It is natural to wonder whether we could be even more clever,
and get a quantum algorithm that solves this problem with even fewer oracle
queries. We might even hope to get an exponential speed-up. In this section we
prove a lower bound result showing that Grover’s algorithm is the best possible.
That is, no black-box search algorithm can solve the searching problem making
fewer than Ω(

√
N) queries.

Consider an algorithm making T queries. Without loss of generality it has the
form shown in Figure 9.3.

Exercise 9.3.1 Show how the circuit in Figure 9.4 can be simulated by a circuit of
the form in Figure 9.3 with the same number of black-box queries.

TEAM LinG

LOWER BOUNDS FOR SEARCHING IN THE BLACK-BOX MODEL: HYBRID METHOD 189

Fig. 9.3 Without loss of generality, any network which makes T black-box queries is

equivalent to a network which starts with the state |00 . . . 0〉, applies a unitary operator

U0, followed by a black-box query on the first n + 1 qubits, followed by a unitary

operation U1 and so on, with a final unitary operation UT after the last black-box

call.

Fig. 9.4 This circuit with two queries done in parallel can be simulated by a

circuit with two queries performed in series (i.e. a circuit of the same form as

Figure 9.3).

Definition 9.3.1 Let Xx denote the string with a 1 in position x and 0 elsewhere
(i.e. Xx = 1 and Xy = 0 for all y �= x). Let S = {Xx : x = 1, 2, . . . , N} be the
set of all strings {0, 1}N with exactly one 1 in the string.

We will prove the following theorem.

Theorem 9.3.2 Any bounded-error quantum algorithm that will for each
X ∈ S ∪ {0} determine whether there exists a j such that Xj = 1 must make

Ω(
√

N) queries to OX.

This implies the following corollaries.

Corollary 9.3.3 Let T ⊆ {0, 1}N satisfy S ∪ {0} ⊆ T . Any bounded-error
quantum algorithm that will for each X ∈ T determine whether there exists j
such that Xj = 1 must make Ω(

√
N) queries to OX.

Corollary 9.3.4 Let T ⊆ {0, 1}N satisfy S ⊆ T . Any bounded-error quantum
algorithm that will for each X ∈ T will find a j such that Xj = 1 must make

Ω(
√

N) queries to OX.

TEAM LinG

190 QUANTUM COMPUTATIONAL COMPLEXITY THEORY AND LOWER BOUNDS

Let us relate these results to the question of solving NP-complete problems, like
3-SAT, on a quantum computer. Note that there are 2O(n3) distinct
3-SAT formulas Φ, each corresponding to a string X ∈ {0, 1}N , N = 2n (where
Xj = fΦ(j)). However, there are 2N strings X ∈ {0, 1}N (where since N = 2n, we
have 2N � 2O(n3)). So the relevance of a result pertaining to algorithms that suc-
ceed for all X ∈ {0, 1}N to the problem of solving 3-SAT is not so clear. However,
since the set of all strings X = X1X2 . . . XN of the form Xj = fΦ(j) for some
3-SAT formula Φ contains S ∪ {0}, this lower bound also applies to black-box
algorithms for 3-SAT.

Exercise 9.3.2 Prove that the set of all strings X = X1X2 . . . XN of the form Xj =
fΦ(j) for some 3-SAT formula Φ in n variables contains S ∪ {0}, the set of all strings
of length N with at most one 1.

Corollary 9.3.5 Any bounded-error black-box quantum algorithm that will for
each 3-SAT formula Φ in n variables determine whether there exists a satisfying
assignment must make Ω(

√
N) queries to the black-box that evaluates fΦ.

The proof of Theorem 9.3.2 follows from this lemma.

Lemma 9.3.6 Any bounded-error black-box quantum algorithm that success-
fully recognizes the all-zero string and also recognizes at least Ω(N) of the strings
Xx ∈ S as being non-zero requires Ω(

√
N) queries.

Proof Consider any algorithm that makes T queries. Recall Xx is the string
with exactly one 1, located at position x.

Let

|Ψj〉 =
N∑

y=1

αy,j |y〉|φy〉

be the state of the quantum computer just before the (j + 1)st query, assuming
X = 00 . . . 0, the all-zeroes string. Let |ψT 〉 be the final state of the computer
before outputting the answer.

For the quantum algorithm to recognize that any string X is not equal to
0 = 00 . . . 0, the T queries must nudge the state of the computer to something
almost orthogonal to |ψT 〉. Let |ψx

T 〉 be the final state of the computer querying
an oracle 0X.

When querying a black-box OXx for any non-zero Xx, after the jth query,

the total amount of nudging will be at most
∑j−1

k=0 2|αx,k| (see Exercise 9.3.4).
For the algorithm to successfully recognize the all-zero string with probability at
least 2

3
and successfully distinguish a non-zero string X from the all-zero string

with probability at least 2
3
, the total amount of nudging must be greater than

some constant c > 0.338 (combine Theorem 9.2.1 and Exercise 9.3.3). In other
words, for each X = 00 . . . 0, say Xx,

T−1∑
k=0

|αx,k| ≥
1

2
‖|ψT 〉 − |ψx

T 〉‖ ≥ c

2
>

1

6
.

TEAM LinG

GENERAL BLACK-BOX LOWER BOUNDS 191

So for the quantum algorithm to successfully recognise M of the non-zero
strings (with bounded probability) as being distinct from the all-zero string, we
must have

N∑
x=1

T−1∑
k=0

|αx,k| >
1

6
M.

On the other hand, we know that
∑

x |αx,k| can not be too big, since∑
x αx,k|x〉|φx〉 is a quantum state. Since

∑N
x=1 |αx,k|2 = 1, the Cauchy–Schwartz

inequality3 implies
∑

x |αx,k| ≤
√

N .
Thus

N∑
x=1

T∑
k=0

|αx,k| ≤ T
√

N.

This implies that T ≥ 1
6

M√
N

, which proves the lemma. �

Exercise 9.3.3 Let |φ0〉 and |φ1〉 be any two quantum states of the same dimension.

Prove that ∥∥|φ0〉 − |φ1〉
∥∥ ≤ c

implies ∣∣〈φ0|φ1〉
∣∣ ≥ 1 − c2

2
.

Exercise 9.3.4 Let |ψx
j 〉 be the state of the quantum computer on input Xx just before

the jth query, for j ∈ {0, 1, . . . , T − 1}. So |ψx
j+1〉 = UjOXx |ψx

j 〉. Let |ψ̃x
j+1〉 = Uj |ψx

j 〉.

(a) Prove that ∥∥∥|ψ̃x
j+1〉 − |ψx

j+1〉
∥∥∥ ≤ 2|αx,j |.

Note that this means |ψx
j+1〉 = |ψ̃x

j+1〉 + βj+1|Ej+1〉 for complex βj+1 and normalized
state |Ej+1〉, with |βj+1| ≤ 2|αx,j |.

(b) Let |ψj〉 =
∑

y αy,j |y〉|φy〉 be the state of the quantum computer that is querying

the black box OX for the string X = 00 . . . 0 just before the (j + 1)st query. Prove that∥∥|ψj〉 − |ψx
j 〉
∥∥ ≤ 2|αx,0| + · · · + 2|αx,j−1|.

9.4 General Black-Box Lower Bounds

We applied this hybrid method to one particular problem, which corresponds to
computing the OR of N binary variables. We will describe the next three methods
in the context of computing an arbitrary function F of N binary variables.

3The Cauchy–Schwartz inequality implies that for any real numbers a1, a2, . . . ,
aN , b1, b2, . . . , bN we have (a1b1+a2b2+· · · +aN bN)2 ≤ (a2

1+a2
2+· · · +a2

N)(b21+b22+· · · +b2N).

TEAM LinG

192 QUANTUM COMPUTATIONAL COMPLEXITY THEORY AND LOWER BOUNDS

We call a function F that is defined for all possible input values in {0, 1}N a ‘total
function’. Otherwise, we say F is a ‘partial function’. For example, the Deutsch-
Jozsa problem of Section 6.4 evaluates the partial function F defined on strings
that are either constant or ‘balanced’. We can also view the problem of finding the
period of a function f as evaluating a partial function. If we represent the periodic
function f by a bit string of length n2n corresponding to the concatenation of
f(0)f(1)f(2) . . . f(2n − 1), then the period-finding problem is only defined on
strings corresponding to functions f for which f(0), f(1), . . . , f(r − 1) are all
distinct, and f(x) = f(x+r) for x ≥ 0. We can also call the problem of evaluating
a partial function a ‘promise problem’, since we are promising that the input to
the function has some specific form.

Before we detail the techniques for proving lower bounds in the black box model,
we will show that quantum algorithms give at most a polynomial advantage over
classical algorithms for total functions. Thus, in order to get a superpolynomial
advantage, we need to consider promise problems.

Definition 9.4.1 The deterministic query complexity D(F) of F is the mini-
mum number of queries to OX required by a deterministic classical procedure
for computing F (X) for any X ∈ {0, 1}N .

Note that the jth index to be queried can depend on the outcome of the previous
j − 1 queries.

The quantum equivalent of D(F) is the exact quantum query complexity QE(F)
of F .

Definition 9.4.2 The exact quantum query complexity QE(F) of F is the min-
imum number of queries to OX required by a quantum algorithm which correctly
computes F (X) with probability 1 for any X ∈ {0, 1}N .

Exact quantum computation is not as natural a computing model as its classical
counterpart, since when we translate an exact black-box algorithm into a circuit
composed of gates from a finite set of gates, the probability of success will not
usually be exactly one. Furthermore, as is the case with classical computation,
in practice we can never implement gates exactly, and thus it makes sense for
any practical purpose to focus attention on bounded-error computations. A more
relevant quantity is the 2-sided error quantum query complexity Q2(F) of F .

Definition 9.4.3 The 2-sided error quantum query complexity Q2(F) of F is
the minimum number of queries to OX required by a quantum algorithm which,
on any input X ∈ {0, 1}N , outputs a {0, 1} value that with probability at least
2
3 is equal to F (X).

Theorem 9.4.4 If F is a total Boolean function, then D(F) ≤ 212Q2(F)6.

We say a function F is symmetric if permuting the bits of X does not change the
value of F . In other words, F only depends on the number of 1s in the string X.

TEAM LinG

POLYNOMIAL METHOD 193

Theorem 9.4.5 If F is a symmetric Boolean function, then D(F) ∈ O(Q2(F)2).

What do Theorems 9.4.4 and 9.4.5 mean for the quantum complexity of com-
puting F given a black-box for computing Xj? Suppose the best deterministic
classical strategy for evaluating F (X) requires in the worst case T = D(F)
queries of the bits of X. Theorem 9.4.4 tells us that any quantum algorithm

computing F requires at least T
1
6

4 queries, and if F is symmetric then Ω(
√

T)
queries are required.

Theorem 9.4.4 tells us that quantum query complexity is at most polynomial
better than classical query complexity for total functions.

In order to get a superpolynomial advantage in the black-box model, we need to
consider ‘partial functions’, which are only defined on a subset of {0, 1}N . For ex-
ample, the black-box version of Shor’s period-finding algorithm is only required
to work on strings X that encode periodic functions. The classical bounded-error
query complexity for such a partial function is in Θ(

√
r) where r is the period,

while the quantum query complexity is in O(1). The Deutsch–Jozsa algorithm
is only required to work on ‘constant’ or ‘balanced’ strings X. The classical ex-
act query complexity of the Deutsch–Jozsa problem is N

2 + 1, while the query
complexity for an exact quantum algorithm is 1 (recall that bounded-error clas-
sical algorithms only required a constant number of queries, so the gap is not so
significant in that case).

All of the methods described below can be adapted to work on partial functions
as well as total functions.

9.5 Polynomial Method

In this section we show how a quantum circuit which queries the string X a total
of T times will have amplitudes that are polynomials of degree T in the variables
X1, X2, . . . , XN . If T = 0, the amplitudes are independent of the variables, and
the circuit computes a function that is constant. The higher T is, the more so-
phisticated the functions that the circuit can compute. In the subsequent section
we describe several applications of this fact.

Lemma 9.5.1 Let N be a quantum circuit that uses a total of m-qubits and
makes T queries to a black-box OX. Then there exist complex-valued N -variate
multi-linear polynomials p0, p1, . . . , p2m−1 , each of degree at most T , such that
the final state of the circuit is the superposition

2m−1∑
y=0

py(X)|y〉

for any oracle OX.

TEAM LinG

194 QUANTUM COMPUTATIONAL COMPLEXITY THEORY AND LOWER BOUNDS

Proof We can assume that N = 2n. We can assume that the black-box queries
to OX are done sequentially and always to the first n + 1 qubits (see Exer-
cise 9.3.1). Let Uj denote the unitary transformation which we apply between
the jth and (j + 1)th black-box query. We thus have the circuit illustrated in
Figure 9.3. For the proof, it will help to consider the register in three parts: the
first n-qubits, the 1 output bit, and the remaining l = m − n − 1 ancilla bits.

Just before the first black-box application the m-qubits will be in some state∑
j,k

αj0k|j0k〉 + αj1k|j1k〉,

where 0 ≤ j < 2n, 0 ≤ k < 2l, b ∈ {0, 1}, and the αjbk, are independent of
the string X. In other words the amplitudes αjbk are polynomials of degree 0 in

X1, X2, . . . , XN . For b ∈ {0, 1} we use the notation b = not(b) = 1 − b. After
the first black-box call, we have the state

∑
j,k

αj0k|jXjk〉 + αj1k|jXjk〉

=
∑
j,k

[(1 − Xj)αj0k + Xjαj1k]|j0k〉 + [(1 − Xj)αj1k + Xjαj0k]|j1k〉. (9.5.1)

Therefore, the amplitudes are polynomials in the Xj of degree at most 1.
The unitary operation U1 is linear, and thus the amplitudes just after U1 is
applied are still polynomials of degree at most 1. Suppose that for some j ≥ 1,
after Uj−1 is applied the amplitudes are polynomials of degree at most j − 1.
Then, the jth black-box call adds at most 1 to the degree of the amplitude
polynomials so they are of degree at most j. The Uj replaces the amplitude
polynomials with linear combinations of amplitude polynomials, and thus the
degrees remain at most j. By induction, the amplitudes are polynomials of degree
T after UT . Since x2 = x for x ∈ {0, 1}, we can assume the polynomials are multi-
linear. �

We get the following corollary from the fact that if the amplitudes of a basis
state is a polynomial α(X) of degree T in the variables X1, X2, . . . , XN , then
the probability of measuring that basis state, α(X)α(X)∗, will be a polynomial
of degree 2T with real coefficients.

Corollary 9.5.2 Let N be a quantum circuit that makes T queries to a black-
box OX, and B be a set of basis states. Then there exists a real-valued multi-linear
polynomial P of degree at most 2T , which equals the probability of observing a
state from the set B after applying the circuit N using black-box OX.

9.5.1 Applications to Lower Bounds

Let us start by defining the quantities deg(F) and d̃eg(F) related to the N -
variate function F . Although the function F is only defined on values of 0 and
1, it is useful to extend this function to the reals.

Definition 9.5.3 An N -variate polynomial p : RN → R represents F if p(X) =
F (X) for all X ∈ {0, 1}N .

TEAM LinG

POLYNOMIAL METHOD 195

Lemma 9.5.4 Every N -variate function F : {X1, . . . , XN} → {0, 1}, has a
unique multi-linear polynomial p : RN → R which represents it.

Proof The existence of a representing polynomial is easy: let

p(X) =
∑

Y ∈{0,1}N

F (Y)
N∏

k=1

[
1 − (Yk − Xk)2

]
.

To prove uniqueness, let us assume that p1(X) = p2(X) for all X ∈ {0, 1}N .
Then p(X) = p1(X) − p2(X) is a polynomial that represents the zero function.
Assume that p(X) is not the zero polynomial and without loss of generality, let
αX1X2 . . . Xk be a term of minimum degree, for some α = 0. Then the string
X with X1 = X2 = · · · = Xk = 1 and the remaining Xj all 0 has p(X) = α = 0.
This contradiction implies that p(X) is indeed the zero polynomial and p1 = p2.

�

The degree of such a p is a useful measure of the complexity of F .

Definition 9.5.5 The degree of the polynomial p which represents F is denoted
deg(F).

For example, the OR function is represented by the polynomial 1−
N∏

j=1

(1−Xj)

which has degree N . Thus deg(OR) = N .

In practice, it would suffice to have a polynomial p which approximates F at
every X ∈ {0, 1}N . For example OR(X1, X2) ≈ 2

3 (X1 + X2).

Definition 9.5.6 An N -variate polynomial p : RN → R approximates F if
|p(X)− F (X)| ≤ 1

3 for all X ∈ {0, 1}N .

The minimum degree of such a polynomial p is another useful measure of the
complexity of F .

Definition 9.5.7 The minimum degree of a p approximating F is denoted

d̃eg(F).

We have the following theorems relating the quantum query complexities QE(F)
and Q2(F) to deg(F), d̃eg(F).

Theorem 9.5.8 If F is a Boolean function, then QE(F) ≥ deg(F)
2 .

Proof Consider the result of a quantum algorithm for evaluating F exactly
using QE(F) queries. By Corollary 9.5.2, the probability of observing 1 is p1(X),
a polynomial of degree at most 2QE(F). We will observe 1 if and only if
F (X) = 1. In other words p1(X) = F (X) for all X ∈ {0, 1}N . This implies
that 2QE(F) ≥ deg(F). �

TEAM LinG

196 QUANTUM COMPUTATIONAL COMPLEXITY THEORY AND LOWER BOUNDS

Theorem 9.5.9 If F is a Boolean function, then Q2(F) ≥ d̃eg(F)
2 .

Proof Consider the result of a quantum algorithm for evaluating F approx-
imately using Q2(F) queries. By corollary 9.5.2, the probability of observ-
ing 1 is p1(X), a polynomial of degree at most 2QE(F). If F (X) = 1, then
p1(X) ≥ 2

3
. Similarly, if F (X) = 0 then 1 − p1(X) ≥ 2

3
. In other words

|p1(X) − F (X)| ≤ 1
3

for all X ∈ {0, 1}N , which means p1 approximates F .

This implies that 2QE(F) ≥ d̃eg(F). �

9.5.2 Examples of Polynomial Method Lower Bounds

We have already seen that deg(OR) = N , and thus QE(OR) ≥ N
2 . A more

careful application of the polynomial method actually shows that QE(OR) = N .

It can be shown that d̃eg(OR) ∈ Θ(
√

N), and thus Q2(OR) ∈ Ω(
√

N). Note
that this lower bound is tight (up to a constant factor), since quantum searching
evaluates the OR function with bounded-error using O(

√
N) queries.

Consider the MAJORITY function, defined as MAJORITY(X) = 1 if X has
more than N

2 ones, and 0 if it has fewer or equal to N
2 ones. It can be shown

that d̃eg(MAJORITY) ∈ Θ(N). Thus Q2(MAJORITY) ∈ Ω(N), so quantum
algorithms are not very useful for computing majorities.

A generalization of MAJORITY is the THRESHOLDM function, defined as
THRESHOLDM (X) = 1 if X has at least M ones, and 0 otherwise. It can be
shown that d̃eg(THRESHOLDM) ∈ Θ(

√
M(N −M + 1)). Note that this means

that the exact quantum counting algorithm described in Section 8.3 makes an
optimal number of queries (up to a constant factor).

The PARITY function is defined as PARITY(X) = 1 if X has an odd number
of ones, and 0 if X has an even number of ones. The degree of the PARITY
function is deg(PARITY) = N , and so QE(PARITY) ≥

⌈
N
2

⌉
. It can be shown

d̃eg(PARITY) = N as well, and thus Q2(PARITY) ≥
⌈

N
2

⌉
.

Exercise 9.5.1 Find a real polynomial of degree N that represents the PARITY func-
tion.

Exercise 9.5.2 Show that QE(PARITY) = Q2(PARITY) =
⌈

N
2

⌉
by finding an algo-

rithm that achieves the bound.

The polynomial method can be extended to partial functions F defined on proper
subsets S ⊂ {0, 1}N in a very natural way by finding the minimum degree of a real
polynomial P that satisfies |F (X)−P (X)| ≤ 1

3 on all X ∈ S and 0 ≤ P (X) ≤ 1
for all X ∈ {0, 1}N .

TEAM LinG

BLOCK SENSITIVITY 197

For example, the minimum degree of a polynomial representing OR on inputs
with at most one 1 is still in Ω(

√
N) and thus the polynomial method provides

another proof of Theorem 9.3.2.

9.6 Block Sensitivity

Intuitively, one expects functions that are very sensitive to changes of the values
of almost any of the bits in the string X will require us to probe more bits
of X than functions which are relatively indifferent to such changes. One way
of rigorously capturing this concept of sensitivity is by the notion of the block
sensitivity of F .

Definition 9.6.1 Let F : {0, 1}N → {0, 1} be a function, X ∈ {0, 1}N , and
B ⊆ {1, 2, . . . , N} be a set of indices.

Let XB denote the string obtained from X by flipping the values of the variables
in B.

The function F is sensitive to B on X if f(X) �= f(XB).

The block sensitivity bsX(F) of F on X is the maximum number t for which
there exist t disjoint sets of indices B1, . . . , Bt, such that F is sensitive to each
Bi on X.

The block sensitivity bs(F) of F is the maximum of bsX(F) over all X ∈ {0, 1}N .

Theorem 9.6.2 If F is a Boolean function, then QE(F) ≥
√

bs(F)
8 and

Q2(F) ≥
√

bs(F)
16 .

Intuitively, in order to distinguish a string X from the set of strings Y for which
F (X) �= F (Y) (which includes XBi for every block Bi to which F is sensitive on
X), we have to query each of the bsX(F) blocks Bi to be confident that they are
consistent with X and not XB . This is at least as hard as searching for a block
which is not consistent with X, which gives a Ω(

√
bsX(F)) lower bound for any

X, which implies a lower bound of Ω(
√

bs(F)) for F .

We omit a detailed proof of Theorem 9.6.2. A lower bound of Ω(
√

bs(F)) can be
proved by hybrid or polynomial methods, or as a special case of the technique
we describe in the next section (see Exercise 9.7.4). Note that since we can never
have more than N blocks, the greatest lower bound that this method can provide
is Ω(

√
N).

9.6.1 Examples of Block Sensitivity Lower Bounds

The block sensitivity of the OR function is N because bs(0) = N (each individual
bit is a block). This proves that Q2(OR) ≥

√
N
4 and leads to another proof of

Theorem 9.3.2.

TEAM LinG

198 QUANTUM COMPUTATIONAL COMPLEXITY THEORY AND LOWER BOUNDS

Exercise 9.6.1 Prove that the block sensitivity of the THRESHOLDM function is
N − M + 1.

This method provides a lower bound of Ω(
√

N −M + 1) for computing
THRESHOLDM . This lower bound is not tight like the one provided by the
polynomial method.

The block sensitivity of the PARITY function is N , giving a lower bound of
Ω(
√

N) that is also not tight.

In the next section we describe a more general and powerful method for which
the block sensitivity method is a special case.

9.7 Adversary Methods

Consider any algorithm A that guesses F (Z) after t calls to a black-box for Z.
Let |ψZ

j 〉 be the state just after the jth call to the oracle for string Z.

Since this algorithm is trying to compute F (Z) for some unknown string Z, it
must try to decide whether |ψZ

t 〉 ∈ Y = {|ψY
t 〉|F (Y) = 1} or |ψZ

t 〉 ∈ X =
{|ψX

t 〉|F (X) = 0}. Thus, a good algorithm will try to make these two sets as
distinguishable as possible.

Our goal is to correctly guess F (Z) for any input Z (recall we are interested in
the worst-case performance). Suppose our algorithm A has the property that for
any input Z the probability of guessing the correct answer is at least 1− ε. This
means that the final stage of A can correctly distinguish |ψX

t 〉 from |ψY
t 〉 for any

X,Y with F (X) �= F (Y) with probability at least 1− ε. By Theorem 9.2.1, we
know that we must have |〈ψX

t |ψY
t 〉| = δ ≤ 2

√
ε(1− ε).

Let R be any subset of X × Y. Notice that before any oracle queries we have
|ψX

0 〉 = |ψY
0 〉 for all X,Y and thus∑

|ψX
0 〉,|ψY

0 〉:
X,Y∈R

|〈ψX
0 |ψY

0 〉| = |R|. (9.7.1)

If after t oracles queries the algorithm always answers correctly with probability
at least 1− ε we must have∑

(x,y)∈R

|〈ψX
t |ψY

t 〉| ≤ 2
√

ε(1− ε)|R|. (9.7.2)

If we have ε < 1
2 , then

2
√

ε(1− ε)|R| < |R|. (9.7.3)

TEAM LinG

ADVERSARY METHODS 199

In other words, if we define

W j =
∑

(x,y)∈R

1√
|X ||Y|

|〈ψX
j |ψY

j 〉| (9.7.4)

(we renormalize it for notational convenience later), then we know that

W t −W 0 ≥ |R|

(
1− 2

√
ε(1− ε)

)
√
|X ||Y|

∈ Ω

(
|R|√
|X||Y |

)
.

Thus if we can upper bound the rate at which the quantity W j can decrease with
each oracle query, we will get a lower bound on the query complexity. In other
words, we wish to prove that there is some value ∆ > 0 so that W j−W j−1 < ∆.
This would imply that t ≥ W t−W 0

∆ .

We have the following lemma which is proved in Appendix A.5.

Lemma 9.7.1 Let b and b′ satisfy the following.

• For every X ∈ X and i ∈ {1, 2, . . . , N}, there are at most b different Y ∈ Y
such that (X,Y) ∈ R and Xi �= Yi.

• For every Y ∈ Y and i ∈ {1, 2, . . . , N}, there are at most b′ different Y ∈ Y
such that (X,Y) ∈ R and Xi �= Yi.

Then W k −W k−1 ≤
√

bb′.

Proof See Appendix A.5. �

This implies the following lemma.

Lemma 9.7.2 Let F be a function defined on any subset of {0, 1}N . Let X =
{X|F (X) = 0} and Y = {Y|F (Y) = 1}, and R ⊆ X × Y, and b, b′ satisfy the
same hypotheses as in Lemma 9.7.1. Then the number of queries to OZ required
in order to compute F (Z) with probability at least 1− ε (for constant ε < 1

2) is

t ≥ |R|

(
1− 2

√
ε(1− ε)

)
√
|X ||Y|

√
bb′

∈ Ω

(
|R|√

|X ||Y|
√

bb′

)
. (9.7.5)

To get some intuition behind why lower values of b and b′ give a larger lower
bound on the query complexity, note that to recognize that X ∈ X given the
black-box OX, we must rule out all the Y ∈ Y. A single (classical) query to OX

can rule out at most b values of Y ∈ Y. Similarly, if we have the black-box OY,
a single (classical) query to OY will rule out at most b′ values of X ∈ X .

A further simplification to this equation is achieved with the help of the following
lemma.

TEAM LinG

200 QUANTUM COMPUTATIONAL COMPLEXITY THEORY AND LOWER BOUNDS

Lemma 9.7.3 Let m and m′ be any integers satisfying:

• For every X ∈ X there are at least m different Y ∈ Y such that (X,Y) ∈ R.

• For every y ∈ Y there are at least m′ different X ∈ X such that (X,Y) ∈ R.

Then |R| ≥
√
|X ||Y|mm′.

Proof Note that since for each X ∈ X there are at least m strings Y ∈ Y such
that (X,Y) ∈ R, we must have |R| ≥ m|X |. Similarly, we must have |R| ≥ m′|Y|,
and thus |R| must be at least as large as the average of these two numbers. Since
the arithmetic mean of two non-negative real numbers is always greater than or
equal to the geometric mean of the same two numbers we have

|R| ≥ m|X |+ m′|Y|
2

≥
√
|X ||Y|mm′. (9.7.6)

�

This implies the following theorem.

Theorem 9.7.4 Let F be a function defined on any subset of {0, 1}N . Let
X = {X|F (X) = 0} and Y = {Y|F (Y) = 1}, and R ⊂ X ×Y and b, b′ satisfy the
same hypotheses as in Lemma 9.7.1, and m and m′ satisfy the same hypotheses
as in Lemma 9.7.1.

Q2(F) ∈ Ω

(√
mm′

bb′

)
. (9.7.7)

9.7.1 Examples of Adversary Lower Bounds

Lower Bound for Searching

To reprove the lower bound on searching, we can let X = {0}, Y be the set of
all strings with exactly one 1, and R = X × Y. It is easy to verify that m = N ,
m′ = b = b′ = 1, which gives the Ω(

√
N) lower bound.

Exercise 9.7.1 Use the adversary method to prove that Ω(N) queries are required to
decide the MAJORITY function with bounded error.

Hint: Let X be the strings with N/2 ones, and Y be the strings with N/2 + 1 strings.
Choose the relation R carefully.

Exercise 9.7.2 Use the adversary method to prove that Ω(N) queries are required to
decide the PARITY function.

TEAM LinG

ADVERSARY METHODS 201

It is worth noting that all of these lower bounds were already obtained by the
polynomial or block-sensitivity method. The following lower bound is one which
has not yet been achieved using the previous methods.

Lower bound for AND–OR trees

Consider a function F consisting of the AND of ORs of the N variables
X1, X2, . . . , XN taken in groups of size M =

√
N (for convenience we assume N

is a perfect square). In other words

F (X) = (X1 ∨X2 ∨ · · · ∨XM) ∧ (XM+1 ∨XM+2 ∨ · · · ∨X2M) ∧ · · ·
· · · ∧ (X(M−1)M+1 ∨X(M−1)M+2 ∨ · · · ∨XM2).

(9.7.8)

A nice way of depicting this function is by a tree where the inputs are located at
the leaves of the tree. Each vertex denotes the operation to apply to the inputs
coming in from the edges below and are output along the edge above the vertex.
Figure 9.5 illustrates the AND–OR tree that evaluates F (X).

In order for F (X) to equal 1, there must be at least one 1 in each OR sub-tree.

There are bounded-error quantum algorithms for solving this problem using
O(
√

N) queries (in Exercise 9.7.3 you are asked to give an algorithm using
O(
√

N log N) queries). The straightforward application of the block sensitivity
or polynomial method gives a lower bound of Ω(N

1
4).

Fig. 9.5 This tree illustrates the computation of the ‘AND–OR’ function F . The

input bits are at the leaves of the tree. Each OR vertex computes the OR of the bits

along the edges below it, and outputs the answer along the edge above it. All the OR

outputs are the inputs to the AND vertex, which computes the AND and outputs the

answer.

TEAM LinG

202 QUANTUM COMPUTATIONAL COMPLEXITY THEORY AND LOWER BOUNDS

Fig. 9.6 This diagram illustrates an input X to the AND–OR tree where F (X) = 1.

Note that each OR has exactly one 1 input, and thus outputs a 1. Thus the AND has

all 1s as input, and outputs 1.

Exercise 9.7.3 Give a bounded-error quantum algorithm for computing the AND −
OR function F on N inputs using O(

√
N log N) queries.

Using the adversary method, we get a lower bound of Ω(
√

N).

Theorem 9.7.5 Any bounded-error quantum algorithm that evaluates F on all
X ∈ {0, 1}N has query complexity in Ω(

√
N).

Proof Let X correspond to the set of all strings with exactly one 1 in each
of the M inputs to each OR function (see Figure 9.6 for an example). Let Y
correspond to the set of all strings where exactly one OR function has only 0
inputs (see Figure 9.7 for an example), and the remaining ORs have exactly
one 1.

Let R consist of every ordered pair (X,Y) ∈ X × Y where X and Y differ
in exactly one bit position.

Then m =
√

N since for every X ∈ X there are M =
√

N ones (one per OR)

that could be flipped in order to give a string Y ∈ Y. Similarly m′ =
√

N since
for each Y ∈ Y there is one OR that has all M inputs equal to 0, and flipping
any one of those M 0s to 1 gives a string in X .

Furthermore b = 1 since for each X ∈ X and each i ∈ {1, 2, . . . , N},
there is at most one Y ∈ Y that differs from X in the ith position. Similarly,
b′ = 1.

Theorem 9.7.4 implies that Q2(F) ∈ Ω
(√

mm′
bb′

)
= Ω(

√
N). �

The bounded-error classical complexity of F is in Θ(N).

TEAM LinG

ADVERSARY METHODS 203

Fig. 9.7 This diagram illustrates an input X to the AND–OR tree where F (X) = 0.

Note that one of the ORs has no 1 inputs, and thus outputs a 0. Thus, the AND has

at least one 0 input and must output a 0.

Exercise 9.7.4 Prove that the block sensitivity lower bound of Q2(F) ∈ Ω
(√

bs(F)
)

can be derived by adversary arguments.

Hint: Let X consist of a string that achieves bs(F).

9.7.2 Generalizations

There are several ways of generalizing the adversary method we have presented
in order to get more powerful tools for proving lower bounds. For example, one
way of looking at the definition of W j (recall Equation (9.7.4)) is summing over
all ordered pairs (X,Y) ∈ X × Y and weighing each pair with some weight
which we took to be 1 if (X,Y) ∈ R, and 0 otherwise. This suggests a more
general family of ‘weighted’ adversary methods which indeed have been defined.
Other methods use spectral or Kolmogorov complexity techniques. A large class
of these generalizations are in fact equivalent in that they will prove the same
lower bounds.

TEAM LinG

10

QUANTUM ERROR
CORRECTION

A mathematical model of computation is an idealized abstraction. We design
algorithms and perform analysis on the assumption that the mathematical oper-
ations we specify will be carried out exactly, and without error. Physical devices
that implement an abstract model of computation are imperfect and of limited
precision. For example, when a digital circuit is implemented on a physical cir-
cuit board, unwanted electrical noise in the environment may cause components
to behave differently than expected, and may cause voltage levels (bit-values)
to change. These sources of error must be controlled or compensated for, or
else the resulting loss of efficiency may reduce the power of the information-
processing device. If individual steps in a computation succeed with probability
p, then a computation involving t sequential steps will have a success probability
that decreases exponentially as pt.

Although it may be impossible to eliminate the sources of errors, we can devise
schemes to allow us to recover from errors using a reasonable amount of addi-
tional resources. Many classical digital computing devices use error-correcting
codes to perform detection of and recovery from errors. The theory of error-
correcting codes is itself a mathematical abstraction, but it is one that explicitly
accounts for errors introduced by the imperfection and imprecision of realistic
devices. This theory has proven extremely effective in allowing engineers to build
computing devices that are resilient against errors.

Quantum computers are more susceptible to errors than classical digital comput-
ers, because quantum mechanical systems are more delicate and more difficult to
control. If large-scale quantum computers are to be possible, a theory of quantum
error correction is needed. The discovery of quantum error correction has given
researchers confidence that realistic large-scale quantum computing devices can
be built despite the presence of errors.

10.1 Classical Error Correction

We begin by considering fundamental concepts for error correction in a classical
setting. We will focus on three of these concepts: (a) the characterization of

204
TEAM LinG

CLASSICAL ERROR CORRECTION 205

the error model, (b) the introduction of redundancy through encoding, and (c)
an error recovery procedure. We will later see that these concepts generalize
quite naturally for quantum error correction. For the remainder of this section
we discuss how classical bits of information (in a classical computer, or being
transmitted from one place to another) can be protected from the effects of
errors.

10.1.1 The Error Model

The first step in protecting information against errors is to understand the nature
of the errors we are trying to protect against. Such an understanding is expressed
by an error model. It describes the evolution of set of bits. In analogy to the
evolution or transformation that occurs on bits when they are being stored, or
being moved around from one point of the computer to another, it is often called
a channel. Ideally, we would like the state of our bits to be unaffected by the
channel (i.e. we do not want a bit to change its value while it is in storage, or
being moved from one place to another). We say that an error-free channel is an
identity channel. When errors occur on the bits being stored or moved around,
the channel provides a description of these errors. Ultimately, we will want to
consider errors that occur during a computation. To understand error-correction
methods, it is very useful to first consider the simpler case of just sending bits
through a channel.

The simplest classical error model is the bit-flip channel. In this model, the state
of a bit is flipped with probability p, and is unaffected with probability 1 − p.
The bit-flip channel is illustrated in Figure 10.1.

For the bit-flip channel, the probability p of a bit flip is independent of whether
the bit is initially 0 or 1. A more complicated error model might have a different
probability of error for bits in the state 0 than state 1. The bit-flip channel we
consider is one where errors occur independently from bit to bit. More general
error models would account for correlated errors between different bits. When
errors described by a given model act on a register of bits in a circuit, we show
this by a block labeled EC , as illustrated in Figure 10.2. The superscript C is

Fig. 10.1 The classical bit-flip channel.

TEAM LinG

206 QUANTUM ERROR CORRECTION

Fig. 10.2 A block representing the effect of errors on a register in a circuit diagram.

Fig. 10.3 Encoding operation taking a logical string b, and an ancilla of bits in the

state 0, into the codeword benc.

used to distinguish the classical from the quantum cases, which we will discuss
later.

The error model EC is composed of different operations EC
i , where each EC

i

corresponds to a specific error that occurs with probability pi.

10.1.2 Encoding

Once we have a description of an error model, we want to encode information in
a way that is robust against these errors. This can be done by adding a number
of extra bits to a logical bit that we wish to protect, and thereby transforming
the resulting string into an encoded bit. The string of bits corresponding to an
encoded bit is called a codeword. The set of codewords (one for each of the two
possible bit values 0 and 1) is called a code. The codewords are designed to add
some redundancy to the logical bits they represent. The basic idea behind the
redundancy is that even when errors corrupt some of the bits in a codeword,
the remaining bits contain enough information so that the logical bit can be
recovered.

The above scheme can easily be generalized to encode logical strings of n bits
directly (rather than by encoding each logical bit independently). A logical string
b of n bits can be encoded by adding m ancillary bits (in a known state, which
we will assume without loss of generality to be 0) and then transforming the
resulting string into an (n + m)-bit codeword, which we will call benc.

The process of mapping the logical strings b to their respective codewords benc is
called the encoding operation. In a circuit, we implement the encoding by adding
some ancillary bits, initially in the 0 state, and then applying some gates. We
represent this process in a circuit diagram as the Genc operation, as shown in
Figure 10.3.

TEAM LinG

THE CLASSICAL THREE-BIT CODE 207

Fig. 10.4 After a codeword benc is subjected to some errors, the recovery operation

RC corrects these errors and recovers the logical string b.

10.1.3 Error Recovery

After a codeword benc is subjected to some errors the result is a string benc. We
want a procedure for correcting the errors in benc and for recovering the logical
bit (or string) b. This is called the recovery operation. For convenience, we will
have the recovery operation return the ancilla to the all 0’s state (in general
this can be achieved by discarding the old ancilla and replacing it with a freshly
initialized ancilla). The recovery operation is shown in Figure 10.4.

The recovery operation must be able to unambiguously distinguish between code-
words after errors have acted on them. Suppose specific errors are represented
by operations EC

i (where i ranges over all the possible errors that could occur on
a codeword). A recovery operation will work correctly from some subset of these
errors, which we call the correctable errors. Given a code, for a set of errors to
be correctable by that code, we must have

EC
i (kenc) �= EC

j (lenc) , ∀k �= l (10.1.1)

where k and l are logical strings encoded into the codewords kenc and lenc and i, j
range over the correctable errors. Equation (10.1.1) is the condition for (classical)
error correction which says that when any errors act on two distinct codewords,
the resulting strings are never equal. This means that after the errors, from the
resulting strings we can unambiguously determine the original codewords. To
simplify the notation, the identity transformation will always be included in the
set of errors EC

i (where no correction should be required).

Orthogonality conditions of the form in Equation 10.1.1 are possible because
we assume the errors are described by a finite number of discrete effects and
not a continuous spectrum of operations (i.e. the errors are like the discrete
errors we see in digital computation and not like the continuous errors of analog
computation).

The condition for error correction is illustrated in Figure 10.5 for a code with
two codewords, under an error model in which there are four possible errors
(including the identity).

10.2 The Classical Three-Bit Code

To make the above concepts more concrete, here we detail an example of a
classical error-correcting code known as the three-bit code. The error model we

TEAM LinG

208 QUANTUM ERROR CORRECTION

Fig. 10.5 The error correction condition for a code with two codewords, under an error

model in which there are four possible errors EC
1 , EC

2 , EC
3 , EC

4 affecting each codeword.

The condition is that when any errors act on two distinct codewords, the resulting

strings are never equal.

Fig. 10.6 A circuit for the encoding operation for the classical three-bit code. Recall

the circuit symbol for the classical cnot gate from Figure 1.3.

consider for this example is the bit-flip channel, described in Section 10.1.1. For
the bit-flip channel the state of a (classical) bit is flipped with probability p, and
is unaffected with probability 1− p.

A simple encoding scheme to protect information from errors introduced by the
bit-flip channel is to increase the number of bits by adding two ancillary bits,
and then to encode each bit b as a codeword benc of three bits, according to the
rule

0 �→ 000 �→ 000
1 �→ 100 �→ 111. (10.2.1)

First two ancillary bits, initially set to 0, are appended to the logical bit to be
encoded. Then the value of the first bit is copied to the ancillary bits. The result
is that every bit is represented as a codeword consisting of three copies of itself.
A circuit for the encoding operation is shown in Figure 10.6.

After a codeword benc is subjected to the bit-flip channel, the result is a set of
strings benc which occur with probability Pbenc

. That is,

benc → {(benc, Pbenc
)} (10.2.2)

TEAM LinG

THE CLASSICAL THREE-BIT CODE 209

or explicitly

000→ { (000, (1− p)3),
(001, p(1− p)2), (010, p(1− p)2), (100, p(1− p)2),
(011, p2(1− p)), (110, p2(1− p)), (101, p2(1− p)),
(111, p3)}. (10.2.3)

We want to design a recovery operation that takes benc and returns the original
logical bit string b. First we should verify that such a recovery operator exists,
by checking that the classical error-correction condition (Equation (10.1.1)) is
satisfied. For this to hold we will need to restrict the errors so that at most one
bit flip occurs within each codeword (the strings given in the first two lines of
(10.2.3)). This is a set of correctable errors.

Exercise 10.2.1

(a) Consider the restricted bit-flip error model where at most 1 bit flip can occur within
each codeword. For the three-bit code described above, show that Equation (10.1.1)
holds, and so it is possible to unambiguously correct single bit flips using this code.

(b) Show that under an error model in which 2 or more bit flips can occur within each
codeword, Equation (10.1.1) does not hold, and so the three-bit code cannot correct
these errors.

To recover the logical bit b from the corrupted codewords benc we need to learn
which specific noise operator has been applied and undo its effect, restoring the
information. A simple way to accomplish this task is to look at the value of
each bit, take a majority vote of the three bits and reset all the bits to the
value resulting from the majority vote. It will not be possible to generalize this
procedure to the quantum case as it requires measuring all bits and that would
destroy quantum information. We will instead use a different procedure. We will
design the error correction procedure to restore the information in the first bit
and use the last two bits to tell us on which bit the error occurred. This can be
accomplished by comparing the value of the first bit to the remaining two bits
in the code. In other words, we compute the parity (exclusive-OR) of the first
and second bits, and the parity of the first and third bits. If the first bit agrees
with both the other bits (i.e. both parities are 0), we conclude that no error has
occurred. Similarly, if the first bit agrees with only one of the remaining two bits
(and disagrees with the other remaining bit), then the first bit is correct and
the bit with which the parity was 1 has flipped. In the remaining case that both
the parities are 1 (i.e. the first bit disagrees with both the remaining two bits),
we conclude that the first bit must have been flipped. In this last case, we can
correct the first bit by flipping it back to its original value. Note that we never
needed to learn the actual value of any bit, only the parities. The parities provide
enough information to identify the errors that have affected the codeword. This
information is called the error syndrome.

TEAM LinG

210 QUANTUM ERROR CORRECTION

F
G

Fig. 10.7 A circuit for the recovery operation for the three-bit code.

To implement the above recovery operation in a circuit, we first need to compute
the parity of the first and second bits, and the parity of the first and third bits.
This can be achieved with a pair of classical cnot gates controlled on the first
bit (recall Figure 1.3 to see why this works). After each cnot gate, the target
bits equals 0 if its value (before the cnots) agreed with the control bit, and
equals 1 otherwise. Since the first bit is only a control bit for the cnots, the
only way in which the first bit could have been flipped is by an error applied to
the first bit, in which case (assuming at most one bit flip error) both targets of
the cnot gates (parities) will have value 1. So to correct the first bit, we want to
flip it if and only if the remaining two bits (after the cnots) both equal 1. This
can be achieved with a Toffoli (controlled-controlled-cnot) gate. After the first
bit has been corrected, we must reset the two ancillary bits to their initial value
of 0. Erasing bit values cannot be done reversibly, but an alternative approach is
to introduce two fresh ancilla (initialized to 0) and discard (or ignore) the used
ancilla. A circuit for the recovery operation for the three-bit code is shown in
Figure 10.7.

There is a different way to look at the effect of encoding. Instead of looking at the
behaviour of errors on the encoded state, we can think of the encoding operation
as transforming the error operators as in Figure 10.8. The effect of the noise can
be seen as affecting the ancilla by conjugating1 the error EC

i by the encoding
operation Genc and studying its effect on the input (b, 0, 0). As you will see in
Exercise 10.2.2, the transformed error EC′

i flips the first bit if and only if it also
flips the remaining two bits. So the first bit can be corrected by applying just
a Toffoli gate. The Toffoli gate is the new recovery operation RC′

, and this is
equivalent to first applying the encoding operation Genc for the three-bit code,
and then applying the original recovery operation RC for the three-bit code.
This point of view tracks the bit of information itself instead of the values of the
individual bits that form the code.

Exercise 10.2.2

(a) Consider the bit-flip channel, restricted to the case that at most one bit flip occurs
within a block of three bits. For each of the possible errors acting on a block of three
bits (no bit flip, or a bit flip on the first, second, or third qubit), conjugate the error
by the encoding operation for the three-bit code (given in Figure 10.6), and compute

1To conjugate an operator A by another operator B means to multiply A by B−1 on the
left, and by B on the right, forming B−1AB.

TEAM LinG

FAULT TOLERANCE 211

Fig. 10.8 We can insert GencG
−1
enc (the identity) between the error and recovery blocks

from Figure 10.4. Now we can view the error as being conjugated by the encoding

operation (shown in the first dashed box on the left), and study the effect of the

transformed error EC′
on the state of the three bits. The new recovery operator is RC′

,

shown in the dashed box at the right end of the circuit.

the effect of this transformed error EC′
on the input (b, 0, 0). (Notice that EC′

flips the
first bit if and only if it also flips the remaining two bits.)

(b) For the Genc and RC operations given for the three-bit code, show that RC′
=

RCGenc is the Toffoli gate.

The recovery operation for the three-bit code above will only succeed if at most
1 bit flip occurs within each codeword (correctable errors), but this suffices to
reduce the probability of error. For the bit-flip channel, bits are flipped inde-
pendently with probability p. So without error correction, this is the probability
of error on a single bit. When we encode the bit using the three-bit code, the
probability of two or more bits of a codeword being flipped is 3p2(1− p) + p3, so
the probability of an unrecoverable error changes from p to 3p2−2p3 (a change in
the exponent of the error probability). The three-bit code gives an improvement
as long as 3p2−2p3 < p, which happens whenever p < 1

2 (if p > 1
2 , then we could

modify the three-bit code accordingly by encoding 0 as 111 and 1 as 000). If
p = 1

2 then the error channel completely randomizes the information, and there
is no hope of error correction helping.

The three-bit code is an example of a repetition code, since codewords are formed
by simply repeating the value of each logical bit a specified number of times.
We will see later that simple repetition codes do not exist for quantum error
correction, but that the idea can be modified to give codes that protect quantum
information.

10.3 Fault Tolerance

In the scheme described in the previous sections, the recovery operation recovers
the logical string b, and so implicitly decodes the codeword. To protect the
information from errors in later stages of the computation, we would have to
re-encode the information again. However, this approach leaves the information
unprotected between the decoding and re-encoding.

Another shortcoming of the above strategy is that it implicitly assumes that
the encoding and error recovery operations are themselves free from errors. The

TEAM LinG

212 QUANTUM ERROR CORRECTION

C

Fig. 10.9 Error correction for the three-bit code without decoding the state. A code-

word benc = bbb has been exposed to correctable errors, yielding the string benc. The

first stage of the circuit computes the error syndrome (parities) into an ancilla, and the

second stage of the circuit corrects the errors in benc based on the syndrome. The hollow

circles in the controlled gates in the circuit correspond to a 0-control (i.e. conditioned

on that control bit being 0).

method described above will have to be modified when we take into account that
all gates are prone to errors, to ensure that the correction procedure does not
itself introduce more errors than it attempts to correct.

A theory of fault-tolerant computation gives procedures for performing computa-
tions directly on codewords (without the need for decoding), and for performing
encoding and error recovery in ways that are themselves robust against errors.
In this section, we describe an error correction scheme that corrects codewords
directly, without decoding. We will see in Section 10.6 how this approach can
be extended to realize fault-tolerant quantum computing, by performing all our
computations directly on the quantum codewords themselves (so the codewords
are never decoded).

Recall that for the three-bit code, the recovery operator used a classical cnot
gate to compute each of two parities. A cnot gate computes the parity of the
two bits it acts on, and puts the resulting parity on the target bit. So the recovery
operator in Figure 10.7 computes the required parities in place, writing the
resulting parities onto the last two bits of the codeword. An alternative approach
is to compute these parities into two additional ancillary bits (leaving all three
bits of the register initially containing the codeword unaffected). The idea is
to compute the error syndrome into an ancilla, and then use this syndrome
information to control a recovery operation RC′′

. Given a corrupted codeword
benc, the recovery operation RC′′

returns the original codeword benc. The ancilla
is then discarded, and a freshly initialized ancilla is provided for computing the
syndrome in the next round of error correction. This scheme is illustrated for
the three-bit code in Figure 10.9.

10.4 Quantum Error Correction

We will now turn to the quantum case and see that it is possible to generalize
classical error correction despite the facts that

TEAM LinG

QUANTUM ERROR CORRECTION 213

1. the quantum evolution is a continuous process as opposed to the classical
discrete case,

2. the encoding operation cannot make multiple copies of arbitrary quantum
states, and

3. the corruption of encoded quantum state cannot be detected through the
complete measurement of all the qubits.

10.4.1 Error Models for Quantum Computing

When we discussed error models for classical computing, we noted that, in gen-
eral, errors may not affect bits independently, and so the error models would
have to account for any correlation between errors on different bits. The same
is true for errors on quantum bits. It turns out to be simpler to describe codes
for errors that affect qubits independently, and fortunately the important con-
cepts for error correction can be understood under these restricted error models.
For this reason, we will present the theory in the general case, but our exam-
ples will deal only with error models in which errors occur on single qubits
independently.

Errors occur on a qubit when its evolution differs from the desired one. This
difference can occur due to imprecise control over the qubits or by interaction of
the qubits with an environment. By ‘environment’, we mean everything external
to the qubit under consideration. A ‘quantum channel’ is a formal description of
how qubits in a given setting are affected by their environment.

The generic evolution of a qubit in the state |0〉 interacting with an environment
in the state |E〉 will yield a superposition state of the form:

|0〉|E〉 �→ β1|0〉|E1〉+ β2|1〉|E2〉. (10.4.1)

That is, with amplitude β1 the qubit remains in the basis state |0〉 and the
environment evolves to some state |E1〉. With amplitude β2 the qubit evolves
to the basis state |1〉 and the environment evolves to some state |E2〉. Similarly,
when the qubit is initially in state |1〉 with the environment in state |E〉, we have

|1〉|E〉 �→ β3|1〉|E3〉+ β4|0〉|E4〉. (10.4.2)

More generally, when a qubit in a general pure state interacts with the environ-
ment in state |E〉, we will have

(
α0|0〉+ α1|1〉

)
|E〉 �→ α0β1|0〉|E1〉+ α0β2|1〉|E2〉+ α1β3|1〉|E3〉+ α1β4|0〉|E4〉.

(10.4.3)

TEAM LinG

214 QUANTUM ERROR CORRECTION

We can rewrite the state after the interaction as

α0β1|0〉|E1〉+ α0β2|1〉|E2〉+ α1β3|1〉|E3〉+ α1β4|0〉|E4〉
= 1

2

(
α0|0〉+ α1|1〉

)(
β1|E1〉+ β3|E3〉

)
+ 1

2

(
α0|0〉 − α1|1〉

)(
β1|E1〉 − β3|E3〉

)
+ 1

2

(
α0|1〉+ α1|0〉

)(
β2|E2〉+ β4|E4〉

)
+ 1

2

(
α0|1〉 − α1|0〉

)(
β2|E2〉 − β4|E4〉

)
. (10.4.4)

Let |ψ〉 = α0|0〉+ α1|1〉. Then we have

α0|0〉 − α1|1〉 = Z|ψ〉 (10.4.5)
α0|1〉+ α1|0〉 = X|ψ〉 (10.4.6)
α0|1〉 − α1|0〉 = XZ|ψ〉 (10.4.7)

and the interaction between the state and the environment can be written as

|ψ〉|E〉 �→ 1
2 |ψ〉

(
β1|E1〉+ β3|E3〉

)
+ 1

2

(
Z|ψ〉

)(
β1|E1〉 − β3|E3〉

)
+ 1

2

(
X|ψ〉

)(
β2|E2〉+ β4|E4〉

)
+ 1

2

(
XZ|ψ〉

)(
β2|E2〉 − β4|E4〉

)
.

(10.4.8)

This represents the most general evolution that can occur on a single qubit,
whether or not it interacts non-trivially with an environment.

The interesting point is that a generic continuous evolution has been rewritten
in terms of a finite number (4 in this case) discrete transformations; with various
amplitudes (which come from a continuous set) the state is either unaffected,
or undergoes a phase flip Z, a bit flip X or a combination of both XZ = −iY .
This is possible because these operators form a basis for the linear operators on
a Hilbert space of a single qubit (see Exercise 10.4.1).

Exercise 10.4.1 Prove that any unitary operation U acting on a composite Hilbert
space HA ⊗HE , where HA has dimension 2 can be decomposed as U = I ⊗ EI + X ⊗
EX + Z ⊗ EZ + Y ⊗ EY for some operators EI , EX , EZ , EY .

Specific errors can be described as special cases of the right side of expression
10.4.8. For example, suppose we know that the error is a ‘bit flip’, which has the
effect of the not gate X with some amplitude and leaves the qubit unaffected
(applies the identity) with possibly some other amplitude. This would correspond
to states of the environment such that β1|E1〉 = β3|E3〉 and β2|E2〉 = β4|E4〉.
Equation (10.4.8) for the general evolution thus simplifies to

|ψ〉|E〉 �→ β1|ψ〉|E1〉+ Xβ2|ψ〉|E2〉. (10.4.9)

Single qubit errors resulting from a lack of control leading to an imprecise rota-
tion of the qubit about the x-axis of the Bloch sphere will have β1|E1〉 = cβ2|E2〉

TEAM LinG

QUANTUM ERROR CORRECTION 215

for some constant c, so that the environment’s state factors from the qubit’s
state and the operator cβ2I +β2X is unitary. In other words, |ψ〉|E〉 �→ ((cβ2I +
Xβ2)|ψ〉)⊗ |E2〉. The error is then called coherent. When the environment state
does not factor out, the error will be incoherent. The case where β1|E1〉 is or-
thogonal to β2|E2〉 is the quantum description of the classical bit flip error model
where the operator X (bit flip) is applied with probability |β2|2 = p and remains
unaffected with probability |β1|2 = 1 − p. The generic evolution of this latter
case is non-unitary.

The case of the generic evolution of a qubit can be generalized to the situation
of a larger quantum system of interest (e.g. a register of qubits in a quantum
computer) in some logical state |ψ〉, interacting through some error process with
an environment initially in state |E〉. Suppose this process is described by a
unitary operator Uerr acting on the joint state of the system of interest and
the environment. Then the state of the joint system after the interaction is
Uerr|ψ〉|E〉. Its density matrix is

ρ = Uerr|ψ〉|E〉〈E|〈ψ|U †
err. (10.4.10)

The density matrix of the system of interest is obtained by tracing out the
environment:

TrE(ρ) = TrE(Uerr|ψ〉|E〉〈E|〈ψ|U †
err) =

∑
i

EQ
i |ψ〉〈ψ|E

Q
i

†
(10.4.11)

where the EQ
i are operators acting on the system of interest (not including the en-

vironment). Recall from Section 3.5.3 that the map EQ : |ψ〉〈ψ| �→∑
i E

Q
i |ψ〉〈ψ|

EQ
i

†
is a superoperator, and is defined in terms of the Kraus operators EQ

i . The
derivation of Equation (10.4.11) is the subject of Exercise 10.4.2. The error model
is completely described by the EQ

i .

As an example, the bit-flip error discussed above can be described as the inter-
action between a qubit and the environment that applies the identity operator
with probability 1 − p and the X operator with probability p. If the qubit is
initially in the state |ψ〉, then the state after the error process is described by
the density matrix

ρf = (1− p)|ψ〉〈ψ|+ pX|ψ〉〈ψ|X. (10.4.12)

So the EQ
i describing this error model are

EQ
0 =

√
1− p I (10.4.13)

EQ
1 =

√
p X. (10.4.14)

Exercise 10.4.2 Let |ψ〉 and |E〉 be the initial states of a system Q and its envi-
ronment E, respectively. Derive Equation (10.4.11) by evolving |ψ〉 and |E〉 under a
unitary operator Uerr and tracing out the environment.

TEAM LinG

216 QUANTUM ERROR CORRECTION

Hint: Define Uerr =
∑

αp,eSp⊗Ee, where {Sp} and {Eq} are bases for operators acting
on the system of interest and the environment, respectively, and get EQ

q in terms of Sp,
Ee, |E〉, and αp,e.

Exercise 10.4.3 Show that the unitarity requirement for the evolution operator of
the joint system environment state implies that∑

i

EQ
i

†EQ
i = I. (10.4.15)

10.4.2 Encoding

Once we have a description of the potential errors, we need to find a way to
protect the logical states |ψ〉 of our quantum system against these errors. As
in the classical case we will enlarge the system at hand by adding an ancilla
to the logical states. Without loss of generality, we will assume that our ancilla
is initialized to |00 · · · 0〉. We then look for transformations that map the joint
states |ψ〉 ⊗ |00 · · · 0〉 to some encoded states |ψenc〉. The subspace spanned by
the encoded states will define the code. We will then look for transformations of
the encoded states so that the effect of the errors on the quantum information
can be reversed.

As a first idea for a quantum error-correcting code, we might be tempted to
do exactly what was done classically for the three-bit code and just make three
copies of every qubit. The following theorem says a simple repetition code is not
possible for arbitrary quantum states.

Theorem 10.4.1 (No-cloning)

There is no superoperator F that performs

|ψ〉〈ψ| ⊗ |s〉〈s| F�→ |ψ〉〈ψ| ⊗ |ψ〉〈ψ| (10.4.16)

for arbitrary choices of |ψ〉 (where |s〉 is some fixed ancilla state). That is, there
is no quantum operation which can clone an unknown arbitrary quantum state.

Theorem 10.4.1 is called the no-cloning theorem, and it is fundamental to quan-
tum information (e.g. quantum cryptography is based on it). It essentially says
that we cannot build a device that makes perfect copies of arbitrary unknown
quantum states. The theorem follows from Exercise 10.4.4, and also follows di-
rectly from the fact that superoperators are linear, but the cloning map is not.

Exercise 10.4.4

(a) Suppose we have basis elements S =
{
|ψ1〉, |ψ2〉

}
where |ψ1〉, |ψ2〉 are orthogonal

1-qubit states (so 〈ψ1|ψ2〉 = 0). Describe a circuit using cnot and 1-qubit gates that
will clone both |ψ1〉 and |ψ2〉. TEAM LinG

QUANTUM ERROR CORRECTION 217

Hint: Use the basis change operator from the computational basis to the S-basis.

(b) Suppose T =
{
|ψ3〉, |ψ4〉

}
where |ψ3〉, |ψ4〉 are non-orthogonal 1-qubit states (so

〈ψ3|ψ4〉 = 0). Prove that there does not exist a unitary operator on H1⊗H2 that maps

|ψ〉|0〉 �→ |ψ〉|ψ〉

for both |ψ〉 ∈ T .

Fig. 10.10 Encoding a single qubit |ψ〉 by a three-qubit codeword |ψenc〉.

In light of the no-cloning theorem, we will have to use a different principle to
devise an encoding scheme for quantum error correction. Encoding for quantum
error correction must be implemented via a unitary operator Uenc that acts on
the state we wish to encode, tensored with an ancilla of some fixed number of
qubits in some specified initial state. If the state we wish to encode is a qubit
state |ψ〉 and the ancilla is initially in the state |00 · · · 0〉, then the result of the
encoding is the codeword state:

|ψenc〉 = Uenc|ψ〉|00 · · · 0〉. (10.4.17)

As an example, we can define a quantum version of the 3-bit code, that encodes
a 1-qubit state |ψ〉 by a codeword of three qubits. The encoding operation Uenc

will take the qubit |ψ〉 along with two ancillary qubits initially in state |0〉|0〉
and output a three-qubit encoded state |ψenc〉, as shown in Figure 10.10.

In a more formal way, a code C is defined as a subspace of a Hilbert space. An
encoded qubit is a 2-dimensional subspace.

A possible choice for the unitary Uenc for a three-qubit code could be that which
maps (

α0|0〉+ α1|1〉
)
|0〉|0〉︸ ︷︷ ︸
ancilla

�→ α0|0〉|0〉|0〉+ α1|1〉|1〉|1〉. (10.4.18)

Later, we will see that this three-qubit code can be used for correcting a certain
restricted class of single-qubit errors. In the next section, we will see conditions
that the encoding operator Uenc must satisfy for this to be possible.

10.4.3 Error Recovery

As we saw in Section 10.4.1, when a quantum system initially in a state |ψ〉 is
exposed to errors through unwanted interaction with the environment, the result

TEAM LinG

218 QUANTUM ERROR CORRECTION

is the noisy state with density matrix∑
i

EQ
i |ψ〉〈ψ|E

Q
i

†
(10.4.19)

where the EQ
i are operators that define the error model. The goal of error correc-

tion is to find a way to invert the effect of the noise on the quantum information.
Suppose we encode the state |ψ〉 as described in Section 10.4.2,

|ψenc〉 = Uenc|ψ〉|00 · · · 0〉. (10.4.20)

Errors transform |ψenc〉 to a state with density matrix∑
i

ÊQ
i |ψenc〉〈ψenc|ÊQ†

i (10.4.21)

where we write ÊQ
i to emphasize that the noise operators EQ

i must be modified to
correspond to the noise acting on a quantum codeword |ψenc〉 which has higher
dimension than the original quantum state |ψ〉.

Exercise 10.4.5 Suppose the states |ψ〉 are 1-qubit states. Consider the error model

for independent bit flips given by the EQ
i defined in Equations (10.4.13) and (10.4.14).

Suppose we encode each qubit of information by adding two ancillary qubits. Give error

operators ÊQ
i that describe the effect of this error model on this three-qubit system.

Hint: There are 23 = 8 different ÊQ
i .

In general, if we encode the quantum information, subject it to the noise and
decode (using the inverse of the encoding operation, U†

enc) we will not always
recover original state |ψ〉. That is, in some cases

Tranc

[
U†

enc

(∑
i

ÊQ
i |ψenc〉〈ψenc|ÊQ†

i

)
Uenc

]
�= |ψ〉〈ψ|. (10.4.22)

To recover the quantum information we need a quantum operation RQ, called
the recovery operation, that has the effect of undoing enough of the noise on the
encoded state so that after decoding and tracing out the ancilla we are left with
the original state |ψ〉, as shown in Figure 10.11.

In general the recovery operation RQ will be a superoperator defined in terms of
a sum over some operators RQ

j . To define an error-correcting recovery operation,
we first need a notion of error which can be introduced through the notion of
fidelity. For given code subject to noise described by EQ

i , we define the fidelity
of a recovery operation R by

F (R, C, E) = min|ψ〉〈ψ|ρψ|ψ〉 (10.4.23)

TEAM LinG

QUANTUM ERROR CORRECTION 219

Fig. 10.11 We want to define our code so that we can find a recovery operation RQ

such that applying RQ to the state after decoding recovers the original state |ψ〉, with

the noise transferred to the ancilla. Note that in comparison with Figure 10.8, RQ is

the analogue of RC′
and EQ is the analogue of EC .

where

ρψ = Tranc

⎛⎝∑
j

RQ
j U†

e

(∑
i

EQ
i Uenc|ψ〉|00 · · · 0〉〈00 · · · 0|〈ψ|U †

encEQ
i

†)
UeRQ

j

†
⎞⎠

(10.4.24)
and the corresponding worst-case error probability parameter p is

p = 1− F (R, C, E). (10.4.25)

It is worth explaining the meaning of the above definition. Suppose some state
|ψ〉 is encoded into the state Uenc|ψ〉|00 . . . 0〉, then subjected to some noise (cor-
responding to the EQ

i operators), then subjected to a recovery operation (cor-
responding to the RQ

j operators), and then the ancilla workspace is discarded
giving back some state ρψ on the original Hilbert space. We are interested in
how close ρ is to the original state |ψ〉〈ψ|. The probability pψ = 〈ψ|ρψ|ψ〉 can
be regarded as the probability of no error on the encoded state. The quantity
F (R, C, E) is the minimum of all such probabilities pψ over all encoded states
|ψ〉. Thus the error probability parameter defined in Equation 10.4.25 gives us an
upper bound on the probability with which a generic encoded state will end up
at the wrong state (strictly speaking, its square root is the probability amplitude
with which an error has occurred; this will be the more relevant quantity when
consider ‘coherent errors’).

A recovery operation RQ is error correcting with respect to a set of error oper-
ators if the error probability parameter p equals zero when RQ is applied to a
codeword that was exposed only to those error operators. This implies that

Tranc

⎡⎣∑
j

RQ
j

(
U†

enc

(∑
i

ÊQ
i |ψenc〉〈ψenc|ÊQ†

i

)
Uenc

)
RQ†

j

⎤⎦ = |ψ〉〈ψ|.

(10.4.26)

One way of thinking about the action of the recovery operation RQ is that it
pushes all the noise into the ancilla, so that the errors are eliminated when
the ancilla are traced out. The encoding operation can be seen as a way of
transforming the errors so that their action on the encoded states is recoverable.

TEAM LinG

220 QUANTUM ERROR CORRECTION

Inserting |ψenc〉 = Uenc|ψ〉|00 · · · 0〉 into the expression on the left hand side of
Equation (10.4.26) (not showing the trace step), we have

∑
j

RQ
j

(
U†

enc

(∑
i

ÊQ
i Uenc|ψ〉|00 · · · 0〉〈00 · · · 0|〈ψ|U †

encÊQ†
i

)
Uenc

)
RQ†

j .

(10.4.27)

The above state can be rewritten as∑
j

RQ
j

(∑
i

(
U†

encÊQ
i Uenc

)
|ψ〉|00 · · · 0〉〈00 · · · 0|〈ψ|

(
U †

encÊQ†
i Uenc

))
RQ†

j .

(10.4.28)

We can think of the operators
(
U†

encÊQ
i Uenc

)
as representing transformed errors

acting on |ψ〉|00 · · · 0〉. The goal is to choose Uenc in such a way that the behaviour
of these transformed errors allows us to find a recovery operation RQ that gives
back |ψ〉〈ψ|⊗ ρnoise (notice that the noise will in general be a mixed state, so we
have written the final state with a density matrix).

For a code with two logical codewords, applying Uenc to the computational basis
states |0〉 and |1〉 produces the codewords |0enc〉 and |1enc〉, respectively. If the
code is to be useful, there must exist a recovery operationRQ satisfying Equation
(10.4.26) for both |0enc〉 and |1enc〉. It can be shown (by a lengthy calculation)
that for such an RQ to exist, we must have

〈lenc|ÊQ†
i Ê

Q
j |menc〉 = cijδlm (10.4.29)

for l,m ∈ {0, 1}, where the cij are constants. Equation (10.4.29) gives the con-
ditions for quantum error correction. It implies that after being subjected to
errors, the different encoded states (l �= m) remain orthogonal. This condition is
necessary as otherwise we would be unable to reliably determine which codeword
a given corrupted state came from.

Equation (10.4.29) also implies that the noise scales all the encoded states |lenc〉
by the same amount. This ensures that when encoded states in quantum super-
position are exposed to errors, the relative coefficients are undisturbed.

If Equation (10.4.29) is satisfied by some set of correctable errors {ÊQ
j }, then it

is also satisfied for any linear combinations Ê ′Qj of errors from {ÊQ
j }. This means

that if a set of errors is correctable for a given code, then any linear combination
of those errors is correctable for the same code. Furthermore, the same recovery
operation that corrects the errors {ÊQ

j } will correct the errors {Ê ′Qj }.
In particular, it is useful to note the following. Any single-qubit unitary operator
can be written as a linear combination of the Pauli operators I,X, Y, Z. So if
we can devise a quantum error-correcting code for which I,X, Y , and Z are
correctable errors on a qubit, then any single-qubit unitary (with identity on

TEAM LinG

QUANTUM ERROR CORRECTION 221

the remaining qubits) is a correctable error. This is a discretization of errors,
and it implies that when we design quantum error-correcting codes, it suffices to
consider errors from a finite set.

Exercise 10.4.6 Prove that if the error operators {ÊQ
j } satisfy Equation (10.4.29),

then so do the error operators {Ê ′Q
j }, where Ê ′Q

j =
∑

k c′jkÊQ
k for some constants c′jk.

Exercise 10.4.7 Prove that if the recovery operator RQ defined by Kraus operators

{RQ
j } corrects an error model described by the error operators {ÊQ

j }, which satisfy

Equation (10.4.29), then RQ will also correct an error model described by the error

operators {Ê ′Q
j }, where Ê ′Q

j =
∑

k c′jkÊ ′Q
k for some constants c′jk.

Example 10.4.2 Recall from Section 4.2.1 the operator Rx(θ), which corresponds to
a rotation about the x-axis of the Bloch sphere by mapping

|0〉 �→ cos
(

θ
2

)
|0〉 − i sin

(
θ
2

)
|1〉 (10.4.30)

|1〉 �→ cos
(

θ
2

)
|1〉 − i sin

(
θ
2

)
|0〉. (10.4.31)

Consider the error model that randomly selects one qubit out of a block of three qubits

and applies Rx(θ) to it (and does nothing to the other three qubits). Recalling from
Section 4.2.1 that

Rx(θ) = cos
(

θ
2

)
I − i sin

(
θ
2

)
X (10.4.32)

we see that this error model corresponds to the error model with Kraus operators

E ′
1 = 1√

3

((
cos

(
θ
2

)
I − i sin

(
θ
2

)
X
)
⊗ I ⊗ I

)
E2′ = 1√

3

(
I ⊗

(
cos

(
θ
2

)
I − i sin

(
θ
2

)
X
)
⊗ I)

E ′
3 = 1√

3

(
I ⊗ I ⊗

(
cos

(
θ
2

)
I − i sin

(
θ
2

)
X
))

So we have expressed error operators in the error model as a linear combination of

E0 = I ⊗ I ⊗ I ,
E1 =X ⊗ I ⊗ I ,
E2 = I ⊗X ⊗ I ,
E3 = I ⊗ I ⊗X .

(10.4.33)

This implies that if there is a recovery procedure for correcting the errors Ej , then
there is a recover procedure for correcting an Rx(θ) error to at most one of the three
qubits.

TEAM LinG

222 QUANTUM ERROR CORRECTION

Example 10.4.3 In the previous example, we showed that the error operators of the
given error model can be expressed as linear combinations of I ⊗ I ⊗ I, X ⊗ I ⊗ I, I ⊗
X ⊗ I, and I ⊗ I ⊗ X.

Let us assume that there is an error recovery procedure RQ (for simplicity, we will
assume it is unitary, which means there is only one Kraus term) that will correct up
to one bit flip on the three qubits.

This means that, for any codeword |ψenc〉 = Uenc|ψ〉|00〉, encoding a single qubit |ψ〉
there exists a RQ such that

RQU†
encEQ

j |ψenc〉〈ψenc|EQ†
j UencRQ†

= |ψ〉〈ψ| ⊗ |φj〉〈φj | (10.4.34)

for some normalized state vector |φj〉, which means that (up to a global phase) we have

RQU†
encEQ

j |ψenc〉 = |ψ〉|φj〉. (10.4.35)

Suppose the error operator E ′
1, as expressed in the previous example in terms of the

correctable operators {Ej}, is applied to the codeword. Then it evolves to the state

E ′
1|ψenc〉〈ψenc|E ′†

1 = cos2
(

θ
2

) (
I ⊗ I ⊗ I

)
|ψenc〉〈ψenc|

(
I ⊗ I ⊗ I

)
− sin2 (θ

2

) (
X ⊗ I ⊗ I

)
|ψenc〉〈ψenc|

(
X ⊗ I ⊗ I

)
+i sin

(
θ
2

)
cos

(
θ
2

) (
I ⊗ I ⊗ I

)
|ψenc〉〈ψenc|

(
X ⊗ I ⊗ I

)
−i sin

(
θ
2

)
cos

(
θ
2

) (
X ⊗ I ⊗ I

)
|ψenc〉〈ψenc|

(
I ⊗ I ⊗ I

)
.

After we apply U†
enc followed by RQ, we get (using Equation 10.4.35)

RQU†
encE ′

1|ψenc〉〈ψenc|E ′†
1UencRQ†

= cos2
(

θ
2

)
|ψ〉〈ψ| ⊗ |φ0〉〈φ0|

− sin2 (θ
2

)
|ψ〉〈ψ| ⊗ |φ1〉〈φ1|

+i sin
(

θ
2

)
cos

(
θ
2

)
|ψ〉〈ψ| ⊗ |φ0〉〈φ1|

−i sin
(

θ
2

)
cos

(
θ
2

)
|ψ〉〈ψ| ⊗ |φ1〉〈φ0|

= |ψ〉〈ψ| ⊗ |φ′〉〈φ′| (10.4.36)

where |φ′〉 = cos
(

θ
2

)
|φ0〉 − i sin

(
θ
2

)
|φ1〉.

Thus after tracing out the ancilla, we are left with |ψ〉〈ψ|.

Given an error model corresponding to a specified set of error operators ÊQ
i , de-

signing a quantum error-correcting code reduces to finding an encoding operator
Uenc and a recovery operation RQ so that Equation (10.4.26) is satisfied.

Exercise 10.4.8 Consider again the case of single qubits subject to independent bit
flip errors. Suppose we encode each qubit with a codeword of three qubits according to
Equation (10.4.18).

TEAM LinG

THREE- AND NINE-QUBIT QUANTUM CODES 223

(a) Simplify the error model obtained in Exercise 10.4.5 assuming that at most 1 bit

flip occurs on each codeword. Give the corresponding error operators ÊQ
0 , ÊQ

1 , ÊQ
2 and

ÊQ
3 .

(b) Show that the four error operators obtained above, together with the encoded states
|0enc〉 = |000〉 and |1enc〉 = |111〉, satisfy Equation (10.4.29). (This shows that there
exists a recovery operation RQ so that using the three-qubit code described in the next
section we can correct single bit flip errors within a codeword).

(c) Show that if we allow more than one bit flip within a codeword (so that we have

all 8 of the ÊQ
i obtained in Exercise 10.4.5), Equation (10.4.29) is no longer satisfied.

10.5 Three- and Nine-Qubit Quantum Codes

10.5.1 The Three-Qubit Code for Bit-Flip Errors

The no-cloning theorem prevents us from implementing a quantum three-qubit
repetition code that encodes a qubit by a codeword consisting of three copies of
that qubit. However, the idea can be modified slightly giving a three-qubit code
that can be used to correct bit flip errors.

The error model we are initially interested in is the bit-flip channel as described
in Section 10.4.1:

ρ = |ψ〉〈ψ| �→ ρf = (1− p)|ψ〉〈ψ|+ p X|ψ〉〈ψ|X. (10.5.1)

The three-qubit bit-flip code is obtained by introducing ancillary qubits and
encoding each logical qubit by a codeword of three physical qubits according to
Equation (10.5.2).

α0|0〉+ α1|1〉 �→ α0|000〉+ α1|100〉 �→ α0|000〉+ α1|111〉. (10.5.2)

In other words, the encoding works by mapping the basis state |0〉 to |000〉, and
mapping the basis state |1〉 to |111〉. We can think of this encoding operation
as embedding the state into a 2-dimensional subspace of a larger 8-dimensional
space. Note that this procedure is not a simple repetition rule. The encoding
of the basis states |0〉 and |1〉 is achieved by simple repetition, but consider for
example the encoding of a uniform superposition:

1√
2

(
|0〉+ |1〉

)
�→ 1√

2

(
|000〉+ |100〉

)
�→ 1√

2

(
|000〉+ |111〉

)
�= 1√

2

(
|0〉+ |1〉

)⊗3
. (10.5.3)

A circuit that performs the encoding procedure for the three-qubit code is shown
in Figure 10.12.

TEAM LinG

224 QUANTUM ERROR CORRECTION

Fig. 10.12 A circuit for performing the encoding given by Equation (10.4.18).

Fig. 10.13 The recovery operation RQ for the three-qubit bit flip code is the quantum

Toffolli gate. Providing at most one bit flip error occurred on the codeword, the Toffoli

gate will recover the original state |ψ〉, leaving some ‘noise’ in the ancillary qubits.

In Exercise 10.4.8 (b), the objective was to prove that if at most one bit flip error
occurs in a codeword, then there exists a recovery operation RQ that works for
the encoding given by Equation (10.5.2). This recovery operation RQ is the
quantum Toffoli (controlled-controlled-not) gate, as shown in Figure 10.13.

Providing at most one bit flip error occurred in the codeword |ψenc〉, the Toffoli
gate, after a decoding operation, which is the inverse of the encoding operation,
will recover the original state |ψ〉 in the first qubit, leaving some ‘noise’ in the
ancillary qubits.

Exercise 10.5.1 Show that if at most 1-qubit error occurs on a codeword for the
3-qubit bit flip code, then, after decoding using the inverse of the encoding operation,
the Toffoli gate will recover the original state |ψ〉, transferring the ‘noise’ to the ancillary
qubits.

When the error is independent, there is some chance of having more than one bit
flip operator acting on the encoded state. Exercise 10.4.8 (c) shows that when
this happens the error is not in general correctable. After the independent errors
act on the encoded state, the resulting state will be a linear combination of
the encoded state with correctable errors applied to it and of the encoded state
with uncorrectable errors applied to it. The component with correctable errors
operators will be corrected by the recovery procedure, but the component with
uncorrectable in general will not return to the original state. The worst-case error

TEAM LinG

THREE- AND NINE-QUBIT QUANTUM CODES 225

probability parameter (or ‘error probability’) as defined in Equation 10.4.25 after
error correction will be of order p2 in analogy to the classical discussion at the
end of Section 10.2.

Exercise 10.5.2 Prove that the error operation ρ �→ Uθ ⊗ Uθ ⊗ UθρU†
θ ⊗ U†

θ ⊗ U†
θ ,

with sin2(θ) = p has worst-case error probability parameter in O(p2).

10.5.2 The Three-Qubit Code for Phase-Flip Errors

Qubits can undergo errors other than bit flip (X) errors; they could also undergo
phase flip (Z) errors. In the case where only phase errors are induced, Equation
(10.4.8) reduces to

|ψ〉|E〉 �→ 1
2 |ψ〉

(
β1|E1〉+ β3|E3〉

)
+ 1

2Z|ψ〉
(
β1|E1〉 − β3|E3〉

)
. (10.5.4)

The above equation describes the evolution of the qubit when the amplitudes
evolve either through an identity operator or a phase flip operator (Z). This
behaviour can result from mis-calibration of single qubit gates (an under- or
over-rotation on the Bloch sphere) leading to a coherent phase error, (when
|E1〉 = eiφ|E3〉 for some φ) or more generally from an undesired interaction
with neighbouring qubits or the environment (when |E1〉 �= eiφ|E3〉). Both error
models contain the operators I and Z and thus if we find an error correcting
code for one set of operators, it will also be error correcting for the other one as
discussed in Section 10.4.3.

In the case where
(
〈E1|β∗

1 − 〈E3|β∗
3

)(
β1|E1〉 + β3|E3〉

)
= 0 this evolution can

be thought as a qubit that undergoes a Z error with probability p, and no error
with probability 1− p where

p = 1
4

∥∥β1|E1〉 − β3|E3〉
∥∥2 (10.5.5)

1− p = 1
4

∥∥β1|E1〉+ β3|E3〉
∥∥2

. (10.5.6)

We will call this error model the phase-flip channel in analogy to the bit flip
error model we have seen previously.

There are no phase errors in classical digital information, but fortunately it
is easy to transform a phase-flip error into a bit-flip error, which means we
can adapt the three-qubit bit-flip code to correct phase-flip errors. Specifically,
consider the Hadamard basis states

|+〉 ≡ 1√
2

(
|0〉+ |1〉

)
,

|−〉 ≡ 1√
2

(
|0〉 − |1〉

)
. (10.5.7)

The effect of a phase flip is to take the state |+〉 to the state |−〉, and vice versa.
So if we work in the Hadamard basis, phase flip errors are just like bit flip errors.

TEAM LinG

226 QUANTUM ERROR CORRECTION

So we encode |0〉 as |+〉|+〉|+〉 and |1〉 as |−〉|−〉|−〉. According to this rule, a
general 1-qubit state is encoded as:

α0|0〉+ α1|1〉 �→ α0|000〉+ α1|100〉 �→ α0|+++〉+ α1|−−−〉. (10.5.8)

The operations needed for encoding, error detection, and recovery are performed
exactly as they were for the three-qubit bit-flip code, only now with respect to
the {|+〉, |−〉}-basis.

Recall that the Hadamard gate performs a basis change from the computational
basis to the Hadamard basis, and vice versa (since H is its own inverse). There-
fore, we see that the encoding for the three-qubit phase-flip code is accomplished
by the circuit shown in Figure 10.14.

Just as phase flip error model is equivalent to the bit-flip error conjugated by
Hadamard gates model, we can see that the phase-flip recovery and the bit-
flip recovery operation are also the same up to a conjugation by Hadamard
gates.

It will be useful to introduce the notion of the ‘phase parity’ of a product of |+〉
and |−〉 states as the parity of the number of |−〉 factors in the product. Let
parity ‘−1’ correspond to states with an odd number of |−〉s, and let parity ‘+1’
correspond to an states with an even number of |−〉s.

Exercise 10.5.3 Give the unitary operator for error recovery for the three-qubit phase
flip code.

10.5.3 Quantum Error Correction Without Decoding

In Section 10.3 we briefly discussed the need for an error correction scheme that
corrects codewords directly, without decoding the state. We saw such a scheme
that made use of an ancilla of bits, into which the error syndrome was computed.
The recovery operation was controlled by this syndrome. In this section we recast
the three-qubit quantum code in this framework. In general, quantum error-
correcting codes that are used to implement fault-tolerant quantum computing
(see Section 10.6) are usually formulated in this way.

Fig. 10.14 Encoding circuit for the three-qubit phase flip code.

TEAM LinG

THREE- AND NINE-QUBIT QUANTUM CODES 227

C R

Fig. 10.15 The recovery operation for the three-qubit bit flip code by computing the

error syndrome into an ancilla, and then controlling the recovery operation by the

syndrome. The hollow circles in the controlled gates in the circuit correspond to a

0-control (i.e. conditioned on that control qubit being |0〉).

Fig. 10.16 The cnot gate is equivalent to a controlled-Z gate, interchanging the

roles of the control and target qubits, and conjugating the new control qubit by the

Hadamard.

The recovery operation for the three-qubit bit-flip code by computing the error
syndrome into an ancilla, and then controlling the recovery operation by the
syndrome, is shown in Figure 10.15.

As illustrated in Figure 10.16, the cnot gate is equivalent to a controlled-Z gate,
interchanging the roles of the control and target qubits, and conjugating the new
control qubit by the Hadamard gate. Note that if in Figure 10.16 we initialize
the second qubit to |0〉 and then measure the second qubit in the computational
basis, this realizes a measurement of the Z-observable on the first qubit (recall
Section 3.4, Example 3.4.1). The result of the measurement indicates whether
the first qubit is in the eigenstate |0〉 of Z corresponding to eigenvalue +1, or
the eigenstate |1〉 corresponding to eigenvalue −1.

Exercise 10.5.4 Show the identity between the circuits depicted in Figure 10.16. Note
that Z = HXH, and the controlled-Z operation is symmetric with respect to which
qubit is the target and which is the control qubit.

Instead of quantumly controlling the recovery operation on the syndrome as
shown in Figure 10.15, we could perform a measurement of the syndrome and
then classically control the recovery operation on the measurement result (recall
Exercise 4.2.8), as illustrated in Figure 10.17.

Since a cnot gate is equivalent to a controlled-Z gate, then the parity mea-
surements composed of cnots in Figure 10.15 can equivalently be realized by

TEAM LinG

228 QUANTUM ERROR CORRECTION

C R

Fig. 10.17 The recovery operation could also be performed by measuring the syn-

drome in the ancilla qubits and classically controlling which correction operator to

apply depending on the syndrome bits.

Fig. 10.18 An equivalent circuit for the computation of the syndrome for the three-

qubit bit flip code.

controlled-Z gates, as shown in Figure 10.18. This syndrome measurement is thus
equivalent (recall Exercise 7.2.2 which shows a similar equivalence) to measuring
the observables

Z⊗Z⊗ I ,
Z⊗ I ⊗Z

(10.5.9)

Since these operators are tensor products of Pauli matrices, their eigenvectors
have eigenvalues ±1. The code, which consists of all states of the form α|000〉+
β|111〉, is the subspace of eigenvectors with eigenvalue +1. When this set of states
undergoes any product of X-errors, the resulting states are still eigenvectors of
products of Z-operators, but the eigenvalues are modified as follows:

Z ⊗ Z ⊗ I Z ⊗ I ⊗ Z
I ⊗ I ⊗ I(α|000〉+ β|111〉) +1 +1
X ⊗ I ⊗ I(α|000〉+ β|111〉) −1 −1
I ⊗X ⊗ I(α|000〉+ β|111〉) −1 +1
I ⊗ I ⊗X(α|000〉+ β|111〉) +1 −1.

(10.5.10)

For example, the eigenvalue of Z ⊗Z ⊗ I on state I ⊗ I ⊗X(α|000〉+ β|111〉) is
−1.

There is a one-to-one correspondence between the eigenvalues and how the code
is mapped under the errors. When we learn the parities, we know which error has

TEAM LinG

THREE- AND NINE-QUBIT QUANTUM CODES 229

occurred and we can undo it using a recovery operation that, here, corresponds
to the error operator itself.

There is a short cut to evaluating the table of parities when the parity operators
are tensor products of Pauli operators and the error operators are also tensor
product of Pauli operators. In this case, the parity operators (i.e. Z ⊗ Z ⊗ I
and Z ⊗ I ⊗ Z) and the error operators either commute or anti-commute.2 The
commutation or anti-commutation relation corresponds to the parities +1 or −1
we get when we measure the parity operator A on the state B|ψ〉 where |ψ〉 was a
+1 eigenstate of A. For example, the bit flip error operator acting on the second
qubit, I ⊗X ⊗ I, anti-commutes with Z ⊗Z ⊗ I but commutes with Z ⊗ I ⊗Z,
and thus we obtain the parities in the third row of Equation (10.5.10). This is a
short cut in the sense that we can compute the parities (equivalently, measure
the parity operators) by simply computing whether the error operator and parity
operator commute or anti-commute.

Just as a bit parity measurement of 2 qubits corresponds to measuring the observ-
able Z ⊗ Z, we can see that evaluating the phase parity of 2 qubits corresponds
to measuring the observable X ⊗X.

In particular, the phase-flip error correcting code on three qubits can similarly be
defined by the set of phase parity measurements corresponding to the observables

X⊗X⊗ I ,
X⊗ I ⊗X

(10.5.11)

which will have corresponding commutation and anti-commutation relations with
the associated (product of Pauli operators) error operators.

When the error operators are described by tensor products of Pauli operators
(i.e. suffices that the Kraus operators of the error model are linear combinations
of such error operators), it is possible to define a large class of quantum error-
correcting codes as the subspace spanned by the eigenstates with eigenvalue +1
of a set of operators that are generalizations of classical parities that we have
encountered in the classical setting. The three-qubit code that we have seen
indeed defines a subspace spanned by states of eigenvalue +1 of the operators
Z⊗Z⊗ I and Z⊗ I⊗Z. These operators generate a group, called the stabilizer.
Measuring the generators3 of the stabilizer gives the syndromes.

The stabilizer leads to a formalism based on the group-theoretic properties of
the set formed from tensor products of Pauli operators (e.g. their commutation
relations). When the error operators are also tensor products of Pauli operators,
such as in the case here, it is possible to find the syndrome by learning how
these generators commute or anticommute with each error operator. In other

2Two operators A and B anti-commute if AB = −BA.
3Recall that the generators of the stabilizer are products of Pauli operators, which are

Hermitean and thus can be regarded as observables.

TEAM LinG

230 QUANTUM ERROR CORRECTION

words, when a code corresponds to the +1 eigenspace of a stabilizer, it suffices
to study the effect of the error operators on the generators of the stabilizer and
not on the codewords themselves. This turns out to be simpler than looking at
the encoding, error, and decoding procedures that we have seen. The stabilizer
formalism is also useful for designing gates that have fault-tolerant properties.

10.5.4 The Nine-Qubit Shor Code

The three-qubit bit-flip and phase-flip codes can be combined to give a nine-
qubit code which corrects bit flip or phase flip errors on one of the nine qubits.
It also allows us to correct for a simultaneous bit and phase flip on the same
qubit, as we explain in more detail below. These errors, with the identity error
operator, provide a basis for a generic one-qubit operator. Thus, this code allows
to correct for a generic one-qubit error.

Encoding for the Shor code works in two stages. First each qubit is encoded as
in the three-qubit phase-flip code:

|0〉 �→ |+++〉,
|1〉 �→ |−−−〉. (10.5.12)

Second, each of the three qubits in the phase-flip codeword are encoded in a set
of triplets as in the three-qubit bit-flip code:

|+〉 �→ 1√
2

(
|000〉+ |111〉

)
,

|−〉 �→ 1√
2

(
|000〉 − |111〉

)
. (10.5.13)

This results in codewords of nine qubits:

|0〉 �→ 1
2
√

2

(
|000〉+ |111〉

)(
|000〉+ |111〉

)(
|000〉+ |111〉

)
,

|1〉 �→ 1
2
√

2

(
|000〉 − |111〉

)(
|000〉 − |111〉

)(
|000〉 − |111〉

)
. (10.5.14)

Suppose we subject these codewords to both the bit-flip and the phase-flip
channels, with the restriction that there is at most one bit flip and at most
one phase flip. We can view the combined effect as a single channel, whose effect
is a bit flip with some amplitude, and a phase flip with some other amplitude,
and a combination of both.

In a way analogous to the bit-flip channel seen previously, we can see that bit flip
(X operator) on any of the nine qubits will move the code described by 10.5.14
to an orthogonal subspace. A phase flip (Z operator) on any of the qubit will
also move the code to an orthogonal subspace through a sign change between
the triplets of qubits. A peculiarity of this code not encountered in the three-bit
codes is that applying the Z error on any member of the triplet will move the
code to the same subspace. This will not prevent error correction as we only need
to know where the code has moved to undo the error, as we show in Example
10.5.1.

TEAM LinG

THREE- AND NINE-QUBIT QUANTUM CODES 231

A product of X and Z will give rise to a Y error which also moves the code
to another orthogonal subspace. This shows that the error correction conditions
10.1.1 are satisfied and that an error-correcting recovery operation can be found
(as illustrated in Example 10.5.1).

Note that the syndrome for the bit-flip code measures parities of bits values of
a subset of the qubits, and the syndrome for the phase-flip code measures the
phase parities of a subset of the qubits.

We can use a generalization of the syndromes for the bit-flip and phase-flip codes
from the previous section to compare the bit or phase values of various qubits
and make a table relating them to the corresponding error. A way to do this is to
use the stabilizer formalism introduced in the previous subsection. We see that
the bit-flip errors will be identified by two parities for each triplet of the qubits.
The parity operators, which are also just sometimes referred to as ‘parities’ in
this context, are given by

Z⊗Z⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ,
Z⊗ I ⊗Z⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ,
I ⊗ I ⊗ I ⊗Z⊗Z⊗ I ⊗ I ⊗ I ⊗ I ,
I ⊗ I ⊗ I ⊗Z⊗ I ⊗Z⊗ I ⊗ I ⊗ I ,
I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗Z⊗Z⊗ I ,
I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗Z⊗ I ⊗Z .

(10.5.15)

Measuring these operators through a generalization of Figure 10.18 will reveal
which qubit, if any, has undergone a bit flip.

The phase-flip errors will be identified by the parities of the signs that appear
in each triplet. Note that the logical bit encoded in states |000〉 ± |111〉 can be
extracted by measuring the eigenvalue of the X⊗X⊗X operator on the encoded
state. Thus the parity of the first two logical bits encoded by |000〉 ± |111〉 can
be extracted by measuring the observable X ⊗X ⊗X ⊗X ⊗X ⊗X on the first
six qubits. Furthermore, note that applying any combination of X errors to the
states |000〉 ± |111〉 does not change the phase parity of those states. Thus the
relevant phase-flip errors on the nine-qubit state can be determined by measuring
the parities

X⊗X⊗X⊗X⊗X⊗X⊗ I ⊗ I ⊗ I ,
I ⊗ I ⊗ I ⊗X⊗X⊗X⊗X⊗X⊗X .

(10.5.16)

Exercise 10.5.5 Make a table analogous to the one in Equation 10.5.10 that calculates
the parities in Equation 10.5.15 for bit flip errors acting each qubit. Do the same for the
parities in Equation 10.5.16 for phase flip errors. The recovery operation becomes the
error operators themselves (as they are their own inverse). Which operator to apply is
conditioned on the values of the parities.

TEAM LinG

232 QUANTUM ERROR CORRECTION

These two parities will reveal which qubit, if any, has undergone a phase flip.
A ZX = iY error will be revealed by a obtaining ‘−1’ parities when measuring
operators in each of Equations 10.5.15 and 10.5.16

The Shor code can be defined as the 2-dimensional subspace spanned by eigen-
vectors with +1 eigenvalue of the eight operators in Equations (10.5.15) and
(10.5.16).

Example 10.5.1 The nine-qubit code will, for example, correct a Y error on the first
qubit of the encoded state

α
(
|000〉 + |111〉

)(
|000〉 + |111〉

)(
|000〉 + |111〉

)
,

+β
(
|000〉 − |111〉

)(
|000〉 − |111〉

)(
|000〉 − |111〉

)
.

Note if a Y error occurs to this state, it will transform to (we can factor out and ignore
the global phase of i) the state

α
(
|100〉 − |011〉

)(
|000〉 + |111〉

)(
|000〉 + |111〉

)
,

+β
(
|100〉 + |011〉

)(
|000〉 − |111〉

)(
|000〉 − |111〉

)
.

The parity measurement corresponding to the operator

Z ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I

will give us the outcome ‘−1’ indicating that the first two bits do not agree. The parity
measurement corresponding to the operator

Z ⊗ I ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I

will also give us the outcome ‘−1’ indicated that the first and third bits do not agree.
Therefore, we know (assuming there was at most one bit flip on the first three qubits)
that there was a bit flip on the first qubit.

The remaining four bit parity measurements will all give values of ‘+1’, giving no
indication of any other bit flips.

The phase parity measurement corresponding to the operator

X ⊗ X ⊗ X ⊗ X ⊗ X ⊗ X ⊗ I ⊗ I ⊗ I

would give an outcome of ‘−1’ indicating that (assuming there was at most one phase
flip on the nine qubits), there was a phase flip somewhere on one of the first six qubits.

The phase parity measurement corresponding to the operator

I ⊗ I ⊗ I ⊗ X ⊗ X ⊗ X ⊗ X ⊗ X ⊗ X

would give an outcome of +1 indicating that there was no phase flip on the last six
qubits. Thus the phase flip must have occurred on one of the first three qubits.

Thus the 8 parity measurements will tell us that there was an X error on the first qubit
and a Z error on one of the first three qubits. Note that the overall effect of a Z error

TEAM LinG

THREE- AND NINE-QUBIT QUANTUM CODES 233

is the same regardless of which of the first three qubits it acted on. Therefore, we can
correct the codeword by applying an X gate on the first qubit and a Z gate on any
one of the first three qubits.

This peculiar feature of not knowing or caring which qubit was affected by a Z error
and which qubit should be corrected by a Z gate is due to a property of this code called
degeneracy. A code is degenerate if more than one error operator have the same effect
on the codewords.

If we assume the Z error occurred on the first qubit, then we know that the first qubit
experience both an X and a Z error, and thus the effective error operator on the first
qubit was a Y gate (note that up to global phase, Y , XZ, and ZX are all equal).

Exercise 10.5.6 The error recovery operations for the bit flip and phase flip codes
can be adapted and combined to give a recovery operation for the nine-qubit Shor code.

Give the error recovery operation for the nine-qubit code.

The above Example 10.5.1 conveniently only had one error operator acting on
the codeword. In general, as we saw in previous examples, if the error operation is
described by a combination of correctable Pauli errors, then the syndrome mea-
surement will ‘collapse’ the system into the component of the state corresponding
to the encoded state affected by the Pauli error operators with that particular
syndrome. In other words, as we discussed at the end of Section 10.4.3, if we can
correct some discrete set of errors, we will also be able to correct a generic linear
combination of these errors due to the linearity of quantum mechanics. Since
the Shor code corrects all of the four Pauli errors (acting on one qubit, with the
identity acting on the rest), it will also correct any linear combination of those
four. Therefore, the Shor code will correct an arbitrary error on a single qubit.
This basic idea is a vital aspect of why quantum error correction works, despite
the apparently daunting task of having to correct for a continuum of possible
quantum errors.

There are some quantum error correcting codes that are more efficient than
Shor’s code which uses 9 qubits to encode 1 qubit of quantum information and
protects for one (but only one) generic single-qubit error within each codeword.
Steane has discovered a code which uses only 7 qubits as the subspace with
eigenvalue +1 of the operators:

Z ⊗ Z ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ I ,
Z ⊗ Z ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ I ,
Z ⊗ I ⊗ Z ⊗ I ⊗ Z ⊗ I ⊗ Z ,
X⊗X⊗X⊗X⊗ I ⊗ I ⊗ I ,
X⊗X⊗ I ⊗ I ⊗X⊗X⊗ I ,
X⊗ I ⊗X⊗ I ⊗X⊗ I ⊗X .

(10.5.17)

TEAM LinG

234 QUANTUM ERROR CORRECTION

There is an even more compact code which uses only 5 qubits and is defined
through the operators:

X⊗ Z ⊗ Z ⊗X⊗ I ,
I ⊗X⊗ Z ⊗ Z ⊗X ,
X⊗ I ⊗X⊗ Z ⊗ Z ,
Z ⊗X⊗ I ⊗X⊗ Z ,
Z ⊗ Z ⊗X⊗ I ⊗X .

(10.5.18)

It is possible to show that it is not possible to use fewer than 5 qubits to protect
against a generic single qubit error.

10.6 Fault-Tolerant Quantum Computation

Consider a circuit having S gates. If individual gates in the circuit introduce
incoherent errors independently with probability p, then the expected number of
errors at the output of the circuit is Sp. The probability of there being at least
one error in the output of the circuit is at most Sp (Exercise 10.6.1). If the errors
were all coherent, this probability would be S2p. In what follows, we will assume
for convenience that errors are incoherent, but a very similar analysis can be
done taking into account the possibility of coherent errors by keeping track of
the probability amplitude of errors, instead of the probabilities.

Exercise 10.6.1 For a circuit having S gates, if individual gates introduce incoherent
errors independently with some error probability p (recall Definition 10.4.25), show
that the probability of there being at least one error in the output of the circuit is at
most Sp. Also show that if the errors are fully coherent the probability is at most S2p.

Suppose we want to use a quantum error-correcting code to protect our quantum
information from errors as it propagates through the circuit (for some quantum
algorithm or protocol). A first approach would be to encode the information at
the beginning of the circuit, and then just before each gate, decode the state,
apply the gate, and then re-encode the state. Of course, between the decoding
and re-encoding, the gate still may produce an error with probability p. This
approach only protects the information from errors that occur between gates.
As we mentioned in Section 10.3, a better approach is to design gates that act
directly on encoded states. Furthermore, we want to be able to do this fault-
tolerantly. This means we want to implement the gates on encoded states in
such a way that if one (unencoded) gate in the implementation produces an
error, the quantum information is not lost. For a given error-correcting code,
a fault-tolerant implementation of a gate would restrict the evolution so that
correctable errors do not propagate leading to uncorrectable errors.

TEAM LinG

FAULT-TOLERANT QUANTUM COMPUTATION 235

Fig. 10.19 A non-fault-tolerant implementation of cnot for the three-qubit code.

Definition 10.6.1 Suppose individual quantum gates produce errors in their
output independently with probability p. For a given error-correcting code that
corrects one error, an implementation of a gate acting directly on encoded states
is considered to be fault-tolerant if the probability that the implementation in-
troduces an unrecoverable error is bounded above by cp2 for some constant c.

Note that the upper bound cp2 on the error probability for a fault-tolerant gate
is an improvement over the error probability p for the physical gates as long as
p < 1

c . This condition is called the threshold condition and the value 1
c is called

the threshold error probability.

Suppose we are given an error-correcting code capable of correcting an arbitrary
error on a single qubits within a codeword. Then an implementation of a gate
acting directly on codewords is considered to be fault-tolerant if the probability
that the implementation introduces two or more errors on the encoded output is
cp2 for some constant c. As an example, consider the 3-qubit code, and suppose
you want to implement an encoded version of the cnot gate:

cnotenc :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|000〉|000〉 �→ |000〉|000〉
|000〉|111〉 �→ |000〉|111〉
|111〉|000〉 �→ |111〉|111〉
|111〉|111〉 �→ |111〉|000〉.

One way of implementing the encoded cnot using 3 un-encoded-cnot gates is
shown in Figure 10.19. Note the gate acts on 2 encoded blocks of three qubits
each.

The implementation shown in Figure 10.19 is not fault-tolerant. Suppose an error
occurs in the first (un-encoded) cnot gate in the implementation, and that the
error occurs on the control bit for this gate. Then, it is easy to see that the
resulting error will propagate to the second and third qubits of the second block,
by the next two (un-encoded) cnot gates in the implementation. So a single
physical gate error, which occurs with probability p, results in multiple errors
in the output of the encoded cnot. The idea behind fault-tolerance is to design
gates that avoid such bad error propagation.

TEAM LinG

236 QUANTUM ERROR CORRECTION

Fig. 10.20 A fault-tolerant implementation of cnot for the three-qubit code.

Fig. 10.21 Each encoded gate introduces an unrecoverable error with probability cp2

for some constant c. The expected number of errors at the output of the circuit is Scp2,

and so the probability of an error at the output of the circuit is at most Scp2.

An example of a fault-tolerant implementation of cnot is shown in Figure 10.20.

To implement a circuit fault-tolerantly, we should choose a quantum code suit-
able for the error model (e.g. the 3-qubit code as shown in the example, or per-
haps the 7-qubit Steane code), and then design fault-tolerant implementations,
appropriate for that code, of a universal set of gates.

For a gate U , denote its fault-tolerant implementation by UFT. Suppose we im-
plement the circuit of Figure 10.19 using fault-tolerant gates for the 3-qubit code.
Also, suppose we do error correction between every pair of gates in the circuit.
Then, the resulting circuit would look like Figure 10.21. Suppose that we can
do encoding and error correction perfectly (i.e. assume there is no chance of
a gate producing an error during the encoding or error correction procedures).
The 3-qubit code corrects bit flip errors on 1 qubit, and we have implemented
our encoded gates in a fault-tolerant manner. So the only way that the error
correction could fail is, if at least two bit flip errors occurred in the fault-tolerant
implementation of the gate just before the error correction. This happens with
probability 3p2(1−p). So the probability of error (after error correction) for each
fault-tolerant gate is now less than cp2, for c = 2 (since p2 < p3). Note that the
threshold condition for c = 2 is p < 1

2 , which is a condition that we have already
seen to be necessary for the three-qubit code to be effective. Consider a circuit
containing S such fault-tolerant gates. The probability of an unrecoverable error
in the (encoded) output of the fault-tolerant circuit is at most cSp2.

TEAM LinG

FAULT-TOLERANT QUANTUM COMPUTATION 237

The bound cSp2 for the error probability of the fault-tolerant circuit is an im-
provement over the bound Sp for the error probability of the original circuit as
long as the threshold condition p < 1

c is satisified.

Of course, we cannot assume that the (un-encoded) gates used in the error cor-
rection and encoding procedures are themselves immune to the errors. These
gates may also introduce errors with probability p. So we would like to devise a
way to perform these procedures in such a way that the probability of error is at
most cp2 for some constant c. Fortunately, there are techniques for doing this.
Recall that for stabilizer codes, error correction can be achieved by performing
a measurement of the stabilizer generators. There are techniques for performing
such measurements fault-tolerantly (i.e. in such a way that the probability of
error is cp2 for some constant c).

In summary, the plan of fault-tolerant quantum computing is as follows. We
assume that our individual (un-encoded) gates introduce errors with probability
p. If we do not use error correction, the probability of an error at the output of
a circuit with S gates is at most Sp. To implement the circuit fault-tolerantly,
we first choose a suitable quantum code and then devise implementations for:

1. a fault-tolerant universal set of gates. This is a set of gates implemented to
act directly on encoded states, such that the probability of an unrecoverable
error in the encoded output is at most cp2 for some constant c.

2. a fault-tolerant measurement procedure. This is a procedure for performing
measurements such that that the probability the measurement introduces
an error is at most cp2 for some constant c. Notice that if we have chosen a
stabilizer code, then a fault-tolerant method for performing measurements
of stabilizer generators will give us a fault-tolerant technique for perform-
ing error correction. Fault-tolerant measurements also provide a means to
prepare the initial state for the computation fault-tolerantly.

Given a circuit with S gates, if we encode the qubits in the circuit with a suitable
quantum error-correcting code, and then replace the gates and measurements in
the given circuit with fault-tolerant implementations, the probability of an error
in the output of the circuit is at most Scp2 for some constant c. This is an
improvement over the bound Sp for the probability that the original circuit
produces an error, as long as p < pth = 1

c .

The error probability can be reduced even further (in fact, arbitrarily low) by
concatenating quantum error-correcting codes to obtain new, larger codes.

10.6.1 Concatenation of Codes and the Threshold Theorem

For a circuit with S gates, where individual gate errors occur independently with
probability p, the techniques described above can be used to produce an encoded
version of the circuit whose overall probability of error is at most cSp2, for some

TEAM LinG

238 QUANTUM ERROR CORRECTION

constant c. This is an improvement, as long as p is below the threshold value
pth = 1

c . In this section we show how codes can be combined, or concatenated,
to get even better improvement. Using this idea, we get a bound on the number
of gates required to implement a circuit if we require the error be reduced to at
most ε. We find that the size of the circuit grows polynomially with log ε. It is
an important result called the threshold theorem.

The idea of concatenating quantum codes is quite simple. In a first-level encoding,
we encode each qubit using an appropriate code. Then, for each of the codewords
we encode each of the qubits in the codeword again, using the same code. This
is called the second-level encoding. Note that after two levels of encoding using
an n-qubit code, each qubit is ultimately encoded by n2 qubits. Concatenation
is illustrated in Figure 10.22. This is a good strategy as long as the error model
at each encoding level has the same form, that is, the same Kraus operators with
possibly different amplitude.

Suppose we use a two-level encoding, and individual errors occur at the lowest
level (on a physical qubit) with probability p. Through one level of encoding,
the probability for unrecoverable errors on fault-tolerant versions of the gates at
the middle layer is reduced to cp2 for some constant c. Then the second level of
encoding reduces the probability of unrecoverable errors on fault-tolerant gates
at the top layer to c(cp2)2 = c3p4. So concatenation improves the error rate
exponentially as long as p < 1

c . If we use k levels of encoding, then the probability

of an error at the highest level is reduced to (cp)2
k

c . The number of physical gates

L

Fig. 10.22 Concatenation of error-correcting codes.

TEAM LinG

FAULT-TOLERANT QUANTUM COMPUTATION 239

required to implement each fault-tolerant gate (for k levels of concatenation) is
dk for some constant d. We seek to obtain a bound on this number dk, to show
that the error rate decreases faster than the size of the circuit grows.

Suppose that we wish to give a fault-tolerant implementation of a quantum
circuit having S gates and we wish to make the overall error probability for the
circuit less than ε. To do so, the fault-tolerant implementation of each gate must
be made to have an error probability less than ε

S . Using the observations about
concatenation, we must concatenate our codes a number of times k such that

(cp)2
k

c
≤ ε

S
. (10.6.1)

Provided that p is below the threshold 1
c , such a k can be found. To find a bound

on dk, begin with (10.6.1), and take the logarithm of both sides:

2k ≤ log
(

S
cε

)
log

(
1
cp

) . (10.6.2)

Now using the fact that 2 = d1/ log2 d we get:

dk ≤

⎛⎝ log
(

S
cε

)
log

(
1
cp

)
⎞⎠log2 d

∈ O

(
logm

(
S

ε

))
, (10.6.3)

for some positive constant m ≥ 1. Therefore, fault-tolerant circuit consisting of
S gates concatenated to k levels has its size (number of gates) bounded by

Sdk = O

(
S

(
logm

(
S

ε

)))
(10.6.4)

gates. Summarizing, we have the following threshold theorem for quantum com-
putation.

Theorem 10.6.2 A quantum circuit containing S gates may be simulated with
a probability of error at most ε using

O

(
S

(
logm

(
S

ε

)))
(10.6.5)

gates on hardware whose components introduce errors with probability p, pro-
vided p is below some constant threshold, p < pth, and given reasonable assump-
tions about the noise in the underlying hardware.

The threshold theorem tells us that, in principle, we will be able to construct
devices to perform arbitrarily long quantum computations using a polynomial

TEAM LinG

240 QUANTUM ERROR CORRECTION

amount of resources, so long as we can build components such that the per-gate
error is below a fixed threshold value. In other words, noise and imprecision of
physical devices should not pose a fundamental obstacle to realizing large-scale
quantum computers. This shows that the model of quantum information process-
ing is robust and corroborates the suggestion that quantum information is more
powerful than its classical counterpart. Although the threshold value calculated
today is demanding from the experimental point of view, by designing better
quantum error correcting codes, the numerical value of the threshold continues
to be improved. The techniques and methods for quantum error correction also
provide guides and requirements for the physical implementation of quantum
information-processing devices. The theorem has given confidence that they can
be built.

TEAM LinG

APPENDIX A

A.1 Tools for Analysing Probabilistic Algorithms

Markov’s inequality is a simple but powerful tool in probability theory. We will
state it here in the case of discrete random variables, but it has a straightforward
continuous analogue.

A discrete random variable X is a variable whose values come from a finite or
countable subset S of the real numbers and that correspond to the outcome of
some random event.

For example, if we consider a random coin flip, we can let X = 0 if the coin
comes up ‘heads’ and X = 1 if the coin comes up ‘tails’.

As another example, we could toss a coin n times and let X equal the number
of times the coin comes up ‘heads’.

The expected value of a random variable X is

E(X) =
∑
x∈S

xPr(X = x)

which we will also denote by µX .

Theorem A.1.1 (Markov’s Inequality) Let X be a discrete random variable
that takes on non-negative values. Then

Pr(X ≥ cµX)) ≤ 1
c
. (A.1.1)

The proof follows from the simple observation that if with probability at least
p, X will be greater than or equal to some threshold value t, then the expected
value of X must be at least pt.

Proof Let Y be the random variable satisfying Y = 0 if 0 ≤ X < cE(X) and
Y = cE(X) if X ≥ cE(X). Thus Pr(Y = 1) = Pr(X ≥ cE(X)). Since X ≥ Y ,

241
TEAM LinG

242 APPENDIX A

then

E(X) ≥ E(Y) = 0Pr(Y = 0) + cE(X)Pr(Y = 1)
= cE(X)Pr(Y = 1)
= cE(X)Pr(X ≥ cE(X))

and the result follows. �

Example A.1.2 We can use Markov’s Inequality to show how to turn a randomized
algorithm A that correctly solves a problem with some expected running time at most
T into a zero-error algorithm with bounded running time and bounded probability of
outputting the answer.

Let X be a random variable corresponding to the running time of A on a particular in-
put, and suppose we know the expected running time is at most T . Markov’s Inequality
implies that for any constant c, the probability that the running time of the algorithm
A exceeds cE(X) is at most 1

c
. Thus, if we know the expected running time of A, we

can derive an algorithm with bounded running time by simply running A, and if does
not find the answer within time 3T , then stop and output ‘FAIL’. With probability at
least 2

3
the modified algorithm will have successfully solved the problem.

Markov’s inequality can be used to derive more powerful inequalities including
Chebyshev’s Inequality and Chernoff’s Inequality.

Define a new random variable Y = (X − µX)2. Let σX =
√

E(Y). Applying
Markov’s inequality to the random variable Y gives Chebyshev’s Inequality:

Pr[|X − µX | ≥ cσX] ≤ 1
c2

.

We can get stronger bounds when the random variable X is the sum of several
independent random variables with outcomes 0 or 1.

Let X1, X2, . . . , Xn be random variables corresponding to the result of n inde-
pendent coin-tosses with outcomes 0 or 1, where Pr[Xi = 1] = pi. The random
variables Xi are also known as ‘Poisson’ trials. If the pi are all equal, they are
known as ‘Bernoulli’ trials.

Let X =
∑n

i=1 Xi, and µX = E(X) =
∑

i pi.

By applying the Markov Inequality to the random variable Y = ecX , for an
appropriately chosen positive real value c, we can derive what are known as
Chernoff bounds.

For example, one can bound the probability that X is much less than its expected
value:

Theorem A.1.3 For any real value δ, 0 < δ ≤ 1, we have

Pr[X < (1− δ)µX] < e−
µX δ2

2 .

TEAM LinG

SOLVING THE DISCRETE LOGARITHM PROBLEM 243

One can also bound the probability that X is much greater than its expected
value:

Theorem A.1.4 For any real value δ > 0, we have

Pr[X > (1 + δ)µX] <

(
eδ

(1 + δ)(1+δ)

)µX

.

Example A.1.5 One application of the Chernoff bound is to amplify the success
probability of a bounded-error algorithm. Suppose we have a bounded-error algorithm
for a decision problem that outputs the correct answer with probability 1

2
+ β, where

0 < β < 1.

If we repeat the algorithm n independent times (with the same input), and output the
majority answer, then the probability of error reduces to γn for some constant γ.

Let Xi = 1 if the ith run of the algorithm outputs the correct answer, and let
X =

∑
i Xi.

Then E(X) = n
2

+ nβ
2

.

Letting δ = β
1−β

we get

Pr[X <
n

2
] < e

− nβ2

4(1+β) = γn,

where γ = e
− β2

4(1+β) .

This means that if we would like the majority answer to be the correct value with
probability at least 1 − ε, it suffices to repeat n times where n ≥ 4 1+β

β2 log 1
ε
.

A.2 Solving the Discrete Logarithm Problem When the Order
of a Is Composite

There are several methods for reducing the problem of finding the discrete log-
arithm of b to the base a where a has composite order r = r1r2 . . . rn to finding
several discrete logarithms to some other bases aj with order rj .

One method requires that the rj be pairwise coprime. Thus if we want to reduce
the discrete logarithm problem to a series of discrete logarithm problems in
groups of prime order (and not just prime-power order), this method (which
uses the Chinese Remainder Theorem) will not suffice in general.

So we will sketch some other methods that do not require that the rj are pairwise
coprime. The first such method requires a factorization of r into its prime factors.
In light of the efficient quantum algorithm for factoring integers, this is not an
unreasonable assumption. The last two methods, which we sketch more briefly,
do not assume we have a prime factorization of r.

TEAM LinG

244 APPENDIX A

Assuming a Prime Factorization of r

For simplicity, we will give the proof for the case that r = r1r2, since the method
generalizes in a straightforward way.

Theorem A.2.1 Consider an element a with order r = r1r2, for integers
r1 > 1, r2 > 1.

The logarithm of any element b to the base a can be computed by evaluating
one discrete logarithm with respect to the base a1 = ar1 (which has order r2)
and one discrete logarithm with respect to the base a2 = ar2 (which has order
r1), and O(log2 r) other group operations.

Proof Suppose b = ak and a has order r = r1r2. Note that for each k satisfying
0 ≤ k < r there are unique integers c1, c2 satisfying 0 ≤ c1 < r2, 0 ≤ c2 < r1 such
that k = c2r2 + c1. Let b1 = br1 and a1 = ar1 . Note that this means b1 = ac1

1 ,
where the order of a1 is r2. Thus by computing the discrete logarithm of b1 to
the base a1, we obtain c1. Once we know c1, we can compute b2 = ba−c1 = ar2c2 .
Let a2 = ar2 . Note that a2 has order r1 and that b2 = ac2

2 . Thus we can find c2

by computing a logarithm to the base a2. From c1 and c2 we can easily compute
k. �

Corollary A.2.2 Consider an element a with order r. Let r = p1p2 . . . pk be
the factorization of r into primes (the pi are not necessarily distinct). For

i = 1, 2, . . . , k, define ai = a
r
pi . Note that ai has order pi.

The logarithm of any element b to the base a can be computed by evaluating k
discrete logarithms with respect to the bases a1, a2, . . . , ak, and O(log2 r) other
group operations.

No Assumption of a Prime Factorization of r. Method 1.

The basic idea behind this method to simply run the discrete logarithm algo-
rithm and not worry about r not being prime, and just proceed as usual. Recall
that with high probability1 the algorithm will sample a pair of integers k and
kt mod r, where t is the logarithm of b to the base a. One of three things will
happen:

1. we will get lucky and the sampled k will be coprime with r, and we can
directly find t = (k−1 mod r)(kt mod r) mod r.

2. we will be somewhat unlucky, and k will have a non-trivial common factor
d = GCD(k, r) with r. In this case, we will be able to split r = r1d. We will
also be able to determine t mod r1, and reduce the problem to a discrete
logarithm problem in a group of order d. We elaborate on this possibility
below.

1If QFTr and QFT−1
r are used, the probability is 1.

TEAM LinG

HOW MANY RANDOM SAMPLES ARE NEEDED TO GENERATE A GROUP? 245

3. we will be very unlucky and sample k = 0. This only happens with proba-
bility 1− 1

r , so we can simply keep trying until we get a non-zero k.2

In the case that d = GCD(k, r) > 1, we know that r = r1d, k = k1d, and
kt = k1dt mod r for some integers r1, k1. We can compute the value of t1 =
t mod r1 by computing (k−1

1 mod r1)(k1t mod r1) mod r1. Then we know that
t = t2r1 + t1 for some non-negative integer t2 < d. If we define b1 = br1 and
a1 = ar1 then we can see that b1 = at2

1 , and a1 has order d. We can then apply
the discrete logarithm algorithm to find t2 mod d or t2 modulo some non-trivial
factor of d. The expected number of recursive applications of the generalized
discrete logarithm algorithm is at most O(log r).

No Assumption of a Prime Factorization of r. Method 2.

If r is not prime, we can proceed with the general analysis given in Section 7.5
for the Hidden Subgroup Problem. This method consists of repeating the dis-
crete logarithm algorithm O(log r) times to generate pairs (k1t, k1), (k2t, k2) . . .
(kmt, km). We then solve the linear system⎡⎢⎢⎢⎣

k1t k1

k2t k2

...
kmt km

⎤⎥⎥⎥⎦
(

x1

x2

)
=
(

0
0

)
.

With high probability the solution space will be the 1-dimensional vector space
spanned by (

1
−t

)
.

A.3 How Many Random Samples Are Needed to Generate
a Group?

Consider any group G of order N = pn1
1 pn2

2 . . . pnl

l , where the pj are prime and
nj > 0.

Let n =
∑

j nj .

Suppose we have a means for sampling elements from G independently and
uniformly at random. How many samples do we need so that with probability
at least 2

3 the sampled elements generate G?

A similar argument as in Exercise 6.5.3 shows that the expected number of
uniformly random samples from G that are needed in order to generate G is less
than n + 1.

2Note that Exercise 8.2.2 shows how to eliminate this third possibility using Amplitude
Amplification.

TEAM LinG

246 APPENDIX A

Thus, 3n + 3 samples from G suffice in order to generate G with probability at
least 2

3 .

However, much fewer samples are actually necessary in order to generate G with
high probability. Upper bounds of n + O(1) could be shown using Chernoff
bound methods (Appendix A.1).

However, we will give an alternative proof in the case that G is the additive
Abelian group G = Zn

2 (in which case, we can treat it as vector space over Z2,
and avoid group theory language), as is needed for analysing Simon’s algorithm.
In general, it can be shown that the number of samples needed for a group G of
order N = pn1

1 pn2
2 . . . pnl

l with n =
∑

j nj is no more than is needed in the case
of G = Zn

2 .

Theorem A.3.1 Let t1, t2, . . . be a sequence of elements selected independently
and uniformly at random from a subspace H ≤ Zn

2 , where |H| = 2m.

Then the probability that 〈t1, t2, . . . , tm+4〉 generates H is at least 2
3 .

Proof Let Sj = 〈t1, t2, . . . , tj〉 for j ≥ 1, and S0 = {0}.

With probability 1− |S0|
|H| = 1− 1

2m , we have t1 �∈ S0 and thus |S1| = 2. Assuming

this is the case, then with probability at least 1− |S1|
|H| = 1− 1

2m−1 we have t2 �∈ S1,
and thus |S2| = 4. And so on, so that with probability at least 1 − 1

22 we have
tm−1 �∈ Sm−2 and |Sm−1| = 2m−1, and finally with probability at least 1 − 1

2
we have tm �∈ Sm, and so |Sm| = 2m; since Sm is subspace of H (which has size
2m), then Sm = H.

Note that3(
1− 1

2m

)(
1− 1

2m−1

)
· · ·

(
1− 1

2k

)
> 1−

m∑
j=k

1
2j

> 1− 1
2k−1

.

This means that (
1− 1

2m

)(
1− 1

2m−1

)
· · ·

(
1− 1

4

)
>

1
2

and thus (
1− 1

2m

)(
1− 1

2m−1

)
· · ·

(
1− 1

4

)(
1− 1

2

)
>

1
4
.

Note that this means that the probability that we get ‘lucky’ and the first m
samples t1, t2, . . . , tm from H are independent (and thus generate all of H) is
at least 1

4 . However, we would like to boost this probability to be greater than
2
3 .

3This follows by inductively applying the fact that for non-negative real values x1, x2, the
following always holds (1 − x1)(1 − x2) ≥ 1 − x1 − x2.

TEAM LinG

FINDING r GIVEN k
r FOR RANDOM k 247

Note that (
1− 1

2m

)(
1− 1

2m−1

)
· · ·

(
1− 1

16

)
>

7
8

so that with probability at least 7
8 , the first m− 3 samples will be independent,

and thus generate a subgroup Sm−3 of H of size 2m−3.

The probability that the next two samples tm−2 and tm−1 are both in Sm−3 is(
1
23

)2 = 1
26 , thus the probability that Sm−1 is strictly greater than Sm−3 is at

least 1− 1
64 . In this case, for convenience 4 let S′

m−1 be a subgroup of size 2m−2

satisfying Sm−3 ⊂ S′
m−1 ⊆ Sm−1. In this case, the probability that tm, tm+1 are

both in S′
m−1 is

(
1
4

)2 = 1
16 , and thus the probability that Sm+1 is strictly greater

than S′
m−1 is at least 1− 1

16 .

In this case, again for convenience, let S′
m+1 be a subgroup of size 2m−1 satisfying

S′
m−1 ⊂ S′

m+1 ⊆ Sm+1.

Lastly, the probability that tm+2, tm+3, tm+4 are all in S′
m+1 is (1

2)3 = 1
8 , and

thus the probability that Sm+3 is strictly greater than S′
m+1 is at least 1− 1

8 . In
this case, Sm+4 must have at least 2m elements, and since it is a subspace of H
(which only has 2m elements), then Sm+4 = H.

The probability of this occurring is at least

7
8
× 63

64
× 15

16
× 7

8
>

2
3
.

�

A.4 Finding r Given k
r for Random k

Theorem A.4.1 Suppose the integers k1, k2 are selected independently and
uniformly at random from {0, 1, . . . , r − 1}. Let r1, r2, c1, c2 be integers sat-
isfying GCD(r1, c1) = GCD(r2, c2) = 1 and k1

r = c1
r1

and k2
r = c2

r2
. Then

Pr(LCM(r1, r2) = r) > 6
π2 .

Proof Since r is a common multiple of r1 and r2, we must have the least
common multiple LCM(r1, r2) divides r. Thus to prove r = LCM(r1, r2), it
suffices to show that r|LCM(r1, r2).

For convenience, note that we can equivalently assume k1, k2 were selected in-
dependently and uniformly at random from {1, 2, . . . , r} (since whether k1 = 0
or r, we always get r1 = 1). Note that r1 = r

GCD(r,k1)
and r2 = r

GCD(r,k2)
.

If GCD(r, k1) and GCD(r, k2) are coprime, then whichever factors were ‘re-
moved’ from r to produce r1 will remain in r2 and vice versa. In this case, r will
divide LCM(r1, r2), which implies that r = LCM(r1, r2). The probability that
GCD(r, k1) and GCD(r, k2) are coprime is

∏
p|r(1 − 1

p2), where the product is

4This might seem awkward, but it makes the analysis easier.

TEAM LinG

248 APPENDIX A

over the prime factors of r (without repeating multiple factors). This probability
is strictly larger than

∏
p(1 − 1

p2), where the product is over all primes p. It
can be shown that this series equals the reciprocal of the Riemann zeta function
evaluated at the integer 2, ζ(2) =

∑∞
n=1

1
n2 , which is known to equal π2

6 . �

A.5 Adversary Method Lemma

Here we prove the following lemma, based on definitions given in Section 9.7.
Recall that for j ∈ {0, 1, . . . , T}, we define

W j =
∑

(X,Y)∈R

1√∣∣X ∣∣∣∣Y∣∣
∣∣〈ψj

X|ψ
j
Y〉

∣∣. (A.5.1)

The state |ψj
Z〉 denotes the state of the quantum computer just after the jth

query to the black box OZ, and Uj denotes the unitary operation performed
after the jth query to OZ and before any other queries.

Lemma A.5.1 Let b and b′ satisfy the following.

• for every X ∈ X and i ∈ {1, 2, . . . , N}, there are at most b different Y ∈ Y
such that (X,Y) ∈ R and Xi �= Yi.

• for every Y ∈ Y and i ∈ {1, 2, . . . , N}, there are at most b′ different X ∈ X
such that (X,Y) ∈ R and Xi �= Yi.

Then, for any each integer k ∈ {0, 1, . . . , T − 1}, we have W k+1 −W k ≤ 2
√

bb′.

Before we give the proof, let us note that for convenience we will assume that
we are given the phase-shift version of the black-box for f , in particular, one
that maps |x〉 �→ (−1)f(x)|x〉. This might appear to be a weaker black-box. For
example, up to a global phase, the phase shift oracle for f(x) is the same as
the phase shift oracle for the complement of f , f(x) = f(x). However by adding
one additional input, z, to the domain of f and fixing f(z) = 0, we can easily
show (see Exercise 8.1.1) that the two types of oracles are equivalent. (It also
suffices to know the value of f on any of the existing inputs, or to be given a
controlled-Uf .)

Proof From the definition of W j , we know that

W k+1 −W k =
1√
|X ||Y|

∑
(X,Y)∈R

∣∣〈ψk+1
X |ψk+1

Y 〉
∣∣− ∣∣〈ψk

X|ψk
Y〉

∣∣ (A.5.2)

and by the triangle inequality we have

W k+1 −W k ≤ 1√
|X ||Y|

∑
(X,Y)∈R

∣∣〈ψk+1
X |ψk+1

Y 〉 − 〈ψk
X|ψk

Y〉
∣∣. (A.5.3)

TEAM LinG

ADVERSARY METHOD LEMMA 249

Define αi,j,X so that

Uj |ψj
X〉 =

N∑
i=1

αi,j,X|i〉|φi,j,X〉

for some normalized state |φi,j,X〉. Similarly, define αi,j,Y so that

Uj |ψj
Y〉 =

N∑
i=1

αi,j,Y|i〉|φi,j,Y〉

for some normalized state |φi,j,Y〉.
It follows that

|ψk+1
X 〉 = OXUk|ψk

X〉 = Uk|ψk
X〉 − 2

∑
i:Xi=1

αi,k,X|i〉|φi,k,X〉 (A.5.4)

and

|ψk+1
Y 〉 = OYUk|ψk

Y〉 = Uk|ψk
Y〉 − 2

∑
i:Yi=1

αi,k,Y|i〉|φi,k,Y〉 (A.5.5)

and therefore5

〈ψk+1
X |ψk+1

Y 〉 − 〈ψk
X|ψk

Y〉 = −2
∑

i:Xi=1

αi,k,Xα∗
i,k,Y〈φk

i,X|φk
i,Y〉 (A.5.6)

−2
∑

i:Yi=1

αi,k,Xα∗
i,k,Y〈φk

i,X|φk
i,Y〉 (A.5.7)

+4
∑

i:Xi=Yi=1

αi,k,Xα∗
i,k,Y〈φk

i,X|φk
i,Y〉 (A.5.8)

= −2
∑

i:Xi �=Yi

αi,k,Xα∗
i,k,Y〈φk

i,X|φk
i,Y〉. (A.5.9)

It follows that

W k −W k−1 ≤ 1√
|X ||Y|

∑
(X,Y)∈R

∑
i:Xi �=Yi

|2αi,k,Xα∗
i,k,Y〈φi,k,X|φi,k,Y〉|

≤
∑

(X,Y)∈R

∑
i:Xi �=Yi

2
|αi,k,X|√
|X |

|αi,k,Y|√
|Y|

.

5Note that 〈ψk
X|ψk

Y〉 = 〈ψk
X|U†

kUk|ψk
Y〉.

TEAM LinG

250 APPENDIX A

Note that for any non-negative real number r and real numbers a, b, it follows

that6 2ab ≤ 1
r a2 + rb2. Letting r =

√
b′

b we get

W k+1 −W k ≤
∑

(X,Y)∈R

∑
i:Xi �=Yi

√
b′

b

|αi,k,X|2
|X | +

√
b

b′
|αi,k,Y|2
|Y|

=
∑

(X,Y)∈R

∑
i:Xi �=Yi

√
b′

b

|αi,k,X|2
|X | +

∑
(X,Y)∈R

∑
i:Xi �=Yi

√
b

b′
|αi,k,Y|2
|Y| .

We can reorder the summations to get

W k+1 −W k ≤
∑

i

∑
X∈X

∑
Y∈Y:(X,Y)∈R,Xi �=Yi

√
b′

b

|αi,k,X|2
|X |

+
∑

i

∑
X∈X

∑
Y∈Y:(X,Y)∈R,Xi �=Yi

√
b

b′
|αi,k,Y|2
|Y| .

Using the hypotheses of the lemma we get

W k −W k−1 ≤
∑

i

∑
X∈X

b

√
b′

b

|αi,k,X|2
|X | +

∑
i

∑
Y∈Y

b′
√

b

b′
|αi,k,Y|2
|Y|

=

√
b′b

|X |
∑
X∈X

∑
i

|αi,k,X|2 +

√
b′b

|Y|
∑
Y∈Y

∑
i

|αi,k,Y|2

=

√
b′b

|X |
∑
X∈X

1 +

√
b′b

|Y|
∑
Y∈Y

1

≤ 2
√

bb′.

�

A.6 Black-Boxes for Group Computations

We mentioned in Sections 7.3 and 7.4 that the order-finding and discrete loga-
rithm algorithms would also work with ‘black-box groups’ (with unique encod-
ings).

One natural quantum version of the black-box group model is to assume we have
a black-box that implements the unitary map UM that implements the group
multiplication |a〉|c〉 �→ |a〉|ca〉, where for any group element g, we let |g〉 denote
the unique quantum encoding of the group element g. We assume we can also
implement U−1

M , which maps |a〉|c〉 �→ |a〉|ca−1〉. Thus U−1
M |a〉|a〉 = |a〉|1〉, which

6Note that (a
r
− rb)2 ≥ 0.

TEAM LinG

BLACK-BOXES FOR GROUP COMPUTATIONS 251

means we have a means for computing the identity element, given two copies of a
given group element. Further, U−1

M |a〉|1〉 = |a〉|a−1〉, so we can compute inverses
if we have the identity element.

If the unique encodings are unique strings of some fixed length n (which we will
assume here), then the black-box UM is all we need to perform the standard
black-box group operations (multiplication, inverse, and recognizing the iden-
tity). Otherwise, we would need an explicit black-box for computing inverses
and recognizing the identity.

Another natural quantum version of the black-box group model is to assume
we have a black-box that implements the unitary map U ′

M that implements
the group multiplication |a〉|c〉|y〉 �→ |a〉|c〉|y ⊕ ca〉 by XOR-ing the string rep-
resenting the product ac into the 3rd register. Such a black-box can be derived
by standard methods (see Section 1.5 on reversible computing) from a clas-
sical circuit that maps inputs a and c to the output ac, without any under-
standing of the inner workings of the circuit. The previous black-box cannot in
general be efficiently derived from a classical circuit for computing ac by such
generic methods. So in some sense U ′

M is a weaker black-box than UM . For
example, given U ′

M one cannot in general efficiently derive a circuit that mul-
tiplies by a−1. This also means that it will in general be no harder (and some-
times easier) to find situations where we can construct a black-box for U ′

M , than
for UM .

In Sections 7.3 and 7.4, we discuss two such types of black-boxes that perform
the group operations. Note that in the following black-boxes we ‘hard-wire’ the
group element a into the definition of the black-boxes:

• The first type of black-box for exponentiation was derived from a multiplica-
tion black-box that maps |c〉 �→ |ca〉, for any group element c, and assuming
we are given the identity element. The analogous exponentiation circuit im-
plements the map c-Ux

a : |x〉|c〉 �→ |x〉|cax〉. The algorithm in Section 7.3.3
uses this exponentiation circuit as a black-box.
• The second type of black-box for exponentiation can be derived from a

multiplication black-box that maps |c〉|y〉 �→ |c〉|y ⊕ ca〉, where c is any
group element, and y is any bit-string of length n. The analogous expo-
nentiation circuits implement the maps Va : |x〉|y〉 �→ |x〉|y ⊕ ax〉 and
Va,b : |x〉|y〉|z〉 �→ |x〉|y〉|z⊕axby〉. We noted in Sections 7.3.4 and 7.4 that the
states in Equation 7.3.15 (equivalently Equation 7.3.14) and Equation 7.4.4
could alternatively have been created using Va and Va,b, respectively.

The black-boxes c-Ux
a and c-Ux

b together with the identity element are at least
as strong as Va and Va,b, since we can implement Va using two queries of c-Ux

a ,
and we can implement Va,b using two queries of c-Ux

a and two queries of c-Ux
b .

However, c-Ux
a and c-Ux

b cannot in general be simulated by the black-boxes Va

and Va,b.

TEAM LinG

252 APPENDIX A

Exercise A.6.1

(a) Show how to simulate Va using two applications of c-Ux
a and one copy of the identity

element.

(b) Show how to simulate Va,b using two applications of c-Ux
a and two applications of

c-Ux
b and one copy of the identity element.

In Exercise 7.3.7, we see that order finding is a special case of the more general
problem of finding the period of a periodic function. In the exercise, we intro-
duced a black-box Uf that maps |x〉|0〉 �→ |x〉|f(x)〉. Note that any black-box
that allows us to create the state

∑ |x〉|f(x)〉 will work.

In analogy with the two exponentiation black-boxes above, we could define two
types of black-boxes for computing f .

• The black-box for f that is analogous with c-Ux
a is one that maps

|x〉|f(y)〉 �→ |x〉|f(y + x)〉. Such a black-box for f is natural to implement
when f(x) = ax mod N . However, for other periodic functions it might not
be so straightforward. In such cases, it might still be useful to talk about
such a black-box for the purposes of analysing the algorithm.
• The black-box for f that is analogous with Va is one that maps |x〉|y〉 �→
|x〉|y ⊕ f(x)〉. Such a black-box is easy to implement given a classical cir-
cuit for computing f(x) (using standard techniques for making a circuit
reversible; see Section 1.5).

Just as the order-finding problem is a special case of the period-finding problem,
we can treat the discrete logarithm algorithm as a special case of the following
problem.

Generalization of Discrete Logarithm Problem

Input: A black-box Uf that computes a function f : Zr × Zr → X with the
following property:

f(x1, y1) = f(x2, y2)⇔ y1 − y2 = t(x1 − x2) mod r (A.6.1)

for some fixed integer t.
Problem: Find t.

Note that Equation A.6.1 is equivalent to

f(x1, y1) = f(x2, y2)↔ (x1, y1)− (x2, y2) ∈ 〈(1,−t)〉.

We can assume the black-box Uf maps |x〉|y〉|z〉 �→ |x〉|y〉|z ⊕ f(x, y)〉, which
would be easy to implement if f(x, y) = axby for elements a and b in some group

TEAM LinG

COMPUTING SCHMIDT DECOMPOSITIONS 253

G with unique encodings and in which we can multiply efficiently. We would
apply this black-box to the state

∑ |x〉|y〉|0〉 to create the state
∑ |x〉|y〉|f(x, y)〉,

and then apply QFT−1
r ⊗ QFT−1

r (or approximations of them) to the control
registers, followed by measurements of the control registers. The measured values
will be of the form k and kt mod r for a random integer k.

However, a black-box U ′
f that maps |x1, y1〉|f(x2, y2)〉 �→|x1, y1〉|f(x2+x1, y2+y1)〉

would also work (if we are given |f(0, 0)〉, and we apply the black box to the state∑ |x〉|y〉|f(0, 0)〉). The black-box U ′
f can be implemented efficiently in the case

that f(x, y) = axby for elements a and b in some group G with unique encodings
in which we can multiply efficiently.

The generalized discrete logarithm algorithm described above will output a pair
of integers (kt mod r, k mod r) for k ∈ {0, 1, . . . , r − 1} distributed uniformly
at random. In order to find r, we can proceed with an analysis analogous to
any of those detailed in Appendix A.2, which deals with the special case that
f(x, y) = axby for elements a, b from some group. In order to see how to apply
those techniques to the generalized discrete logarithm problem, note that running
the discrete logarithm algorithm with new values a1 = ac and b1 = bc for some
integer c corresponds to running the generalized discrete logarithm algorithm for
the function f1(x, y) = f(cx, cy). Also note that running the discrete logarithm
algorithm with new values b2 = ba−c and a2 = ar corresponds to running the
generalized discrete logarithm algorithm for the function f2(x, y) = f(rx−cy, y).

A.7 Computing Schmidt Decompositions

We present a simple method for computing Schmidt decompositions, based on
the observation at the end of Section 3.5.2 that the reduced density operators are
diagonal in the Schmidt bases. The approach is to compute the partial trace for
either one of the subsystems, and diagonalize it in order to find a Schmidt basis
for that subsystem. We illustrate this process through an example. Consider the
two-qubit state

|ψ〉 =
(√

3−
√

2
2
√

6

)
|00〉+

(√
6+1

2
√

6

)
|01〉+

(√
3+

√
2

2
√

6

)
|10〉+

(√
6−1

2
√

6

)
|11〉. (A.7.1)

Tracing the second qubit out of the density operator, we get the reduced density
operator for the first qubit

Tr2|ψ〉〈ψ| = 1
2 |0〉〈0|+ 1

4 |0〉〈1|+ 1
4 |1〉〈0|+ 1

2 |1〉〈1|. (A.7.2)

In terms of the matrix representation, this looks like[
1
2

1
4

1
4

1
2

]
. (A.7.3)

TEAM LinG

254 APPENDIX A

To diagonalize this matrix, we find the characteristic polynomial(
1
2 − λ

)2 − 1
16 = λ2 − λ + 3

16 (A.7.4)

and see that its roots are 1
4 and 3

4 . These are the eigenvalues of the reduced den-
sity matrix. The eigenvectors are computed as follows. The eigenvalue equation
corresponding to the eigenvalue 1

4 is[
1
2

1
4

1
4

1
2

](
x1

y1

)
= 1

4

(
x1

y1

)
. (A.7.5)

Solving gives x = −y. We want the normalized eigenvector (since it is to represent
a quantum state vector), so we solve x = −y together with x2+y2 = 1, obtaining
the eigenvector (

x1

y1

)
=

(
1√
2

− 1√
2

)
. (A.7.6)

Similarly, the normalized eigenvector corresponding to eigenvalue 3
4 is(

x2

y2

)
=

(
1√
2

1√
2

)
. (A.7.7)

In terms of the Dirac notation, these are

|−〉 = 1√
2

(
|0〉 − |1〉

)
(A.7.8)

and
|+〉 = 1√

2

(
|0〉+ |1〉

)
. (A.7.9)

Recall our earlier observation that density operators are normal operators. There-
fore, the spectral theorem of Section 2.4 applies, and the eigenvectors form an
orthonormal basis. We take the eigenvectors computed above to be the Schmidt
basis vectors for the first subsystem.

The state |ψ〉 was originally given to us in the 2-qubit computational basis. To
write |ψ〉 in Schmidt form, we simply perform a change of basis on the first system
from the computational basis to the Schmidt basis we just found. The Schmidt
basis for the second system will become apparent once we have a Schmidt basis
for the first system. The state written in Schmidt form is

|ψ〉 =
√

3
2 |+〉

(
1√
3
|0〉+

√
2
3 |1〉

)
+ 1

2 |−〉
(
−
√

2
3 |0〉+ 1√

3
|1〉

)
. (A.7.10)

Exercise A.7.1 Verify Equation (A.7.10).

TEAM LinG

GENERAL MEASUREMENTS 255

Fig. A.8.1 A very general kind of quantum map that involves adding an ancilla sys-

tem, unitarily evolving the joint system, extracting some classical information, keeping

part of the joint system as a quantum output of the map, and discarding the rest of

the system. Such a general quantum map can be derived by combining the operations

described in Chapter 3.

A.8 General Measurements

In this section we describe more general notions of measurement that can be
derived from the Measurement Postulate. We will explain the notions using cir-
cuit diagrams, which are introduced in Chapter 4. We will also use the notions
of mixed states, density matrices, and partial trace that are introduced in Sec-
tion 3.5.

In Section 3.5.3 we characterize the most general kind of quantum operation pos-
sible that do not involve extracting information via a measurement.7 Of course,
one could describe an even more general type of quantum map (depicted in
Figure A.8.1) that does include measurements, which output non-trivial ‘classi-
cal’ information and therefore involves some renormalization8 of the remaining
quantum state that depends on the classical measurement outcome. There is a
variety of literature on these kinds of general quantum operations, which are
often referred to as ‘quantum channels’ or ‘quantum instruments’, depending on
the precise details of the operations. For this introductory textbook, we do not
need to delve into the many possible ways of characterizing and categorizing such
very general quantum operations. Instead we will focus on creating familiarity
with more simple but universal9 quantum operations.

We give an example of a more general measurement operation. This kind of
measurement can be referred to as a ‘pure’ measurement, since if a pure state is

7It is worth noting that sometimes we might refer to a measurement where one discards or
ignores or is not told the (classical) measurement outcome. In such a case one usually describes
the state of the quantum system as a weighted mixture of the possible post-measurement out-
comes. This type of measurement does fall under this category of general quantum operations
since we are not actually extracting information about the state of the system.

8Alternatively, some mathematical treatments of general quantum operations will leave the
state unnormalized.

9These simple operations are ‘universal’ in the sense that the more general quantum oper-
ations can be constructed by composing the simple operations in a natural way.

TEAM LinG

256 APPENDIX A

measured, the resulting state, after renormalization depending on the classical
measurement outcome, is again a pure state.

Suppose we want to measure some property of a quantum system of dimension
N (e.g. a register of n-qubits with N = 2n). We can add an ancilla of arbitrary
dimension, say L = 2l, initialized to

|0〉l ≡ |0〉|0〉 . . . |0〉︸ ︷︷ ︸
l

, (A.8.1)

and apply any unitary U to the joint (NL-dimensional) state |0〉l|ψ〉 and then
perform a Von Neumann measurement on the ancilla system obtain a label ‘i’.

In order to derive the standard mathematical formulation of this kind of mea-
surement, notice that the matrix U can be decomposed in block form as⎡⎢⎢⎢⎣

M0,0 M0,1 . . . M0,L−1

M1,0 M1,1 . . . M1,L−1

...
...

. . .
...

ML−1,0 ML−1,1 . . . ML−1,L−1

⎤⎥⎥⎥⎦ (A.8.2)

where each submatrix Mi,j has dimension N ×N . Recalling how to take tensor
products for matrices from Section 2.6, we can write |0〉l|ψ〉 as a column matrix
in block form as ⎡⎢⎢⎢⎣

[
|ψ〉

]
[0N]

...
[0N]

⎤⎥⎥⎥⎦ (A.8.3)

where [|ψ〉] denotes the N -dimensional column vector representation of the state
|ψ〉 and [0N] is an N -dimensional column vector of all 0’s.

Considering the action of U on the state |0〉l|ψ〉 as a matrix multiplication of the
matrix in Equation (A.8.2) by the vector in Equation (A.8.3), it can be seen that
only the first column of matrix (A.8.2) is significant. The matrix multiplication
gives

U |0〉l|ψ〉 =
L−1∑
j=0

|j〉Mj,0|ψ〉. (A.8.4)

When we write |j〉 as above, the label j refers to the l-bit binary representation
of the index j (so |j〉 is an l-qubit state). Renormalizing10 the Mj,0|ψ〉 terms11

U |0〉l|ψ〉 =
L−1∑
j=0

√
p(j)|j〉Mj,0|ψ〉√

p(j)
(A.8.5)

10By renormalizing a non-zero vector |φ〉 which might not have norm 1, we mean multiplying

|φ〉 by 1√
〈φ|φ〉

so that it is a state vector with norm 1.

11If any of the terms Mj,0|ψ〉 have norm 0, then p(j) = 0, which means we never measure
j. We can thus just exclude those j from the summation.

TEAM LinG

GENERAL MEASUREMENTS 257

where
p(j) = 〈ψ|M†

j,0Mj,0|ψ〉. (A.8.6)

Notice that the unitarity of U guarantees that

L−1∑
j=0

M†
j,0Mj,0 = I. (A.8.7)

Now if we measure the first register, we get the result ‘j’ with probability p(j),
and are left with the state

|j〉 ⊗ Mj,0|ψ〉√
p(j)

. (A.8.8)

We can discard the quantum state |j〉 of the system we measured, and be left
with Mj,0|ψ〉√

p(j)
.

We could in general measure any subsystem of the joint system, and remove the
restriction that the Mj,0 are square. If we measure a subsystem of dimension NL

D
(we assume NL is divisible by D), then the Mj,0 have dimension D × N , and
the resulting quantum state will have dimension D (after we discard the register
we measured). We can summarize this more general measurement procedure in
the following way.

General (Pure) Measurements

Consider a set of operators {Mi}, mapping a state space H of dimension N to
a state space H′ of dimension D, that satisfy the completeness equation,∑

i

M†
i Mi = I. (A.8.9)

The indices ‘i’ label the possible measurement outcomes. For any such set of
measurement operators {Mi} it is possible to perform a quantum measurement
that takes input state |ψ〉 and with probability

p(i) = 〈ψ|M†
i Mi|ψ〉, (A.8.10)

outputs outcome ‘i’ and leaves the system in state

Mi|ψ〉√
p(i)

. (A.8.11)

Note that the completeness equation (A.8.9) guarantees that the probabilities
p(i) always sum to one. If p(i) = 0, we never get the outcome ‘i’ and we do not
need to worry about renormalizing the state Mi|ψ〉.
A projective measurement with respect to the decomposition I =

∑
i Pi is a

special case of a projective measurement where Mi = Pi, and thus M†
i Mi = Pi.TEAM LinG

258 APPENDIX A

As we mentioned at the beginning of this appendix, one could discard some or
all of the remaining quantum state after a measurement. When we discard the
entire remaining quantum state, this corresponds to a ‘POVM measurement’.
Note that such a measurement would be characterized solely by the positive op-
erators12 Ei = M†

i Mi. Conversely, for any positive operators Ei (not necessarily
orthogonal projections) that sum to the identity, there exists operators Mi sat-
isfying Ei = M†

i Mi. Thus a POVM measurement with respect to the operators
{Ei} is realizable by a general pure measurement described above.

A.9 Optimal Distinguishing of Two States

In this Appendix, we detail an optimal procedure for solving the following state
distinguishability problem.

Distinguishing Two Pure Quantum States with Minimum Error

Input: One of two known states |ψX〉 or |ψY〉, with the property that
|〈ψX|ψY〉| = δ.
Output: A guess ‘X’ or ‘Y’.
Problem: Maximize the probability 1− ε that the guess is correct.

A.9.1 A Simple Procedure

We can first implement a unitary operation that maps |ψX〉 �→ |φx〉 = cos(θ)|0〉+
sin(θ)|1〉 and |ψY〉 �→ |φy〉 = sin(θ)|0〉 + cos(θ)|1〉, where θ is chosen so that
0 ≤ θ ≤ π

4 and sin(2θ) = δ = 〈φx|φy〉.
Since cos(θ) ≥ 1

2 , a natural procedure (illustrated in Figure A.9.1) is to measure
the state in the computational basis, and output ‘X’ if the measured value is
0 and output ‘Y’ if the measured value is 1. Such a procedure will output the
correct answer, regardless of the input, with probability cos2(θ). Setting 1− ε =
cos2(θ) gives us ε = sin2(θ). This relationship between ε and δ can be rewritten
as ε = 1

2 − 1
2

√
1− δ2, which implies that δ = 2

√
ε(1− ε).

A.9.2 Optimality of This Simple Procedure

We now show that we cannot do any better than the above simple procedure. In
other words, the best estimation procedure can guess correctly in the worst case
with probability no higher than the 1

2 + 1
2

√
1− δ2.

Any measurement can be realized by adding an ancilla to the input state, per-
forming a unitary operation U on the whole system, and measuring the first
qubit of the whole system. If the output is 0 guess ‘X’ and if the output is 1
guess ‘Y’.

12Since the operators sum to the identity, they correspond to a measure (called a ‘Positive
Operator Valued Measure’) on the space of density matrices. A measurement corresponding to
this measure is thus traditionally called a POVM measurement.

TEAM LinG

OPTIMAL DISTINGUISHING OF TWO STATES 259

Fig. A.9.1 This diagram illustrates a simple Von Neumann measurement for dis-

tinguishing |φx〉 and |φy〉. The probability of guessing correctly is cos2(θ) where

〈φx|φy〉 = sin(2θ). No other procedure can achieve a higher correctness probability.

Suppose

U |ψX〉|00 . . . 0〉 =
√

1− εx|0〉|junk(x, 0)〉+√εx|1〉|junk(x, 1)〉

and
U |ψY〉|00 . . . 0〉 = √εy|0〉|junk(y, 0)〉+

√
1− εy|1〉|junk(y, 1)〉.

In other words, the algorithm correctly recognizes |ψX〉 with probability 1− εx

and correctly recognizes |ψY〉 with probability 1 − εy. The worst-case success
probability is 1− ε where ε = max(εx, εy).

We also have the property that

δ = |〈ψX|ψY〉| =
∣∣〈ψX|〈00 . . . 0|U†U |ψY〉|00 . . . 0〉

∣∣ (A.9.1)

=
∣∣∣∣√(1− εx)εy〈junk(x, 0)|junk(y, 0)〉+

√
(1− εy)εx〈junk(x, 1)|junk(y, 1)〉

∣∣∣∣ .
(A.9.2)

This implies that

δ ≤
√

(1− εx)εy +
√

(1− εy)εx.

We wish to find the smallest value of ε = max(εx, εy) allowed by the above
inequality. It is easy to show that the optimum is achieved when ε = εx = εy =
1
2 − 1

2

√
1− δ2.

Theorem A.9.1 Any procedure that on input |ψZ〉 guesses whether Z = X or
Z = Y will guess correctly with probability at most 1− ε = 1

2 + 1
2

√
1− δ2, where

δ = |〈ψX|ψY〉|. This probability is achievable by an optimal measurement.

TEAM LinG

Bibliography

[] Note: ‘arXiv e-print’ refers to the electronic archive of papers, available at
http://www.arxiv.org/.

[Aar] S. Aaronson. ‘Complexity Zoo’. http://qwiki.caltech.edu/wiki/
Complexity Zoo

[Aar05] S. Aaronson. ‘Quantum Computing, Postselection, and Probabilistic
Polynomial-Time’. Proceedings of the Royal Society of London A, 461:3473–
3482, 2005.

[AAKV01] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani. ‘Quantum
Walks On Graphs’. Proceedings of ACM Symposium on Theory of Compu-
tation (STOC’01), 50–59, 2001.

[ABNVW01] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous.
‘One-Dimensional Quantum Walks’. Proceedings of the 33rd ACM Sympo-
sium on Theory of Computing, 37-49, 2001.

[ABO97] D. Aharonov, and M. Ben-Or. ‘Fault Tolerant Quantum Computation
with Constant Error’. Proceedings of the 29th Annual ACM Symposium
on the Theory of Computing (STOC’97), 1997. Also arXiv e-print quant-
ph/9611025.

[ADH97] L. Adleman, J, Demarrais, and M.D. Huang. ‘Quantum Computa-
bility’. SIAM Journal on Computing, 26(5):1524–1540, 1997.

[ADKLLR04] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and
O. Regev. ‘Adiabatic Quantum Computation Is Equivalent to Standard
Quantum Computation.’ Proceedings of the 45th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’04), 42–51, 2004.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. ‘The Design
and Analysis of Computer Algorithms’. (Addison-Wesley, Reading, MA,
1974).

[AKN98] D. Aharonov, A. Kitaev, and N. Nisan. ‘Quantum Circuits with Mixed
States’. Proceedings of the 31st Annual ACM Symposium on the Theory of
Computation (STOC’98), 20–30, 1998.

[Amb02] A. Ambainis. ‘Quantum Lower Bounds by Quantum Arguments’.
J. Comput. Syst. Sci. 64:750–767, 2002.

[Amb04] A. Ambainis. ‘Quantum Walk Algorithm for Element Distinctness’.
Proceedings of the 45th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’04), 22–31, 2004.

260
TEAM LinG

http://www.arxiv.org/
http://qwiki.caltech.edu/wiki/Complexity_Zoo
http://qwiki.caltech.edu/wiki/Complexity_Zoo

BIBLIOGRAPHY 261

[AR05] D. Aharonov and O. Regev. ‘Lattice Problems in NP Intersect coNP’.
Journal of the ACM 52:749–765, 2005.

[AVZ05] Dorit Aharonov, Vaughan Jones, and Zeph Landau. ‘A Polynomial
Quantum Algorithm for Approximating the Jones Polynomial’. Proceed-
ings of the thirty-eighth annual ACM symposium on Theory of computing
(STOC’06), 427–436, 2006.

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh
Vazirani. ‘Strengths and Weaknesses of Quantum Computing’. SIAM Jour-
nal on Computing, 26:1510–1523, 1997.

[BBC+95] Adriano Barenco, Charles H. Bennett, Richard Cleve, David
P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John Smolin,
and Harald Weinfurter. ‘Elementary Gates for Quantum Computation’.
Physical Review A, 52(5):3457–3467, 1995.

[BBC+98] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and
Ronald de Wolf. ‘Quantum Lower Bounds by Polynomials’. Journal of the
ACM (2001), 48(4): 778–797.

[BBCJPW93] Charles Bennett, Gilles Brassard, Claude Crepeau, Richard Josza,
Asher Peres, and William Wootters. ‘Teleporting an Unknown Quantum
State via Dual Classical and Einstein-Podolsky-Rosen Channels’. Physical
Review Letters, 70:1895–1898, 1993.

[BBD+97] A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa, and
C. Macchiavello. ‘Stabilization of Quantum Computations by Symmetriza-
tion’. SIAM Journal on Computing, 26(5):1541–1557, 1997.

[BBHT98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp, ‘Tight
Bounds on Quantum Searching’. Fortschritte der Physik 56(5–5):493–505,
1988.

[BBPS95] Charles Bennett, Herbert Bernstein, Sandu Popescu, and Benjamin
Schumacher. ‘Concentrating Partial Entanglement by Local Operations’.
Phys. Rev. A, 53:2046, 1996.

[BCD05] D. Bacon, A. Childs, and W. van Dam. ‘From Optimal Measurement
to Efficient Quantum Algorithms for the Hidden Subgroup Problem over
Semidirect Product Groups’. Proc. 46th IEEE Symposium on Foundations
of Computer Science (FOCS 2005), 469–478, 2005.

[BCW98] Harry Buhrman, Richard Cleve, and Avi Wigderson. ‘Quantum vs.
Classical Communication and Computation’. Proceedings of the 30th An-
nual ACM Symposium on Theory of Computing (STOC 1998), 63–68, 1998.

[BDEJ95] Adriano Barenco, David Deutsch, Artur Ekert, and Richard Jozsa.
‘Conditional Quantum Dynamics and Quantum Gates’. Physical Review
Letters, 74:4083–4086, 1995.

[BDHHMSW05] H. Buhrman, C. Durr, M. Heiligman, P. Høyer, F. Magniez,
M. Santha, and R. de Wolf. ‘Quantum Algorithms for Element Distinctness’.
SIAM J. Comput., 34:1324–1330, 2005.

[Bea97] Robert Beals. ‘Quantum Computation of Fourier Transforms over Sym-
metric Groups’. Proceedings of the 29th Annual ACM Symposium on The-
ory of Computing (STOC’97), 48–53, 1997.

TEAM LinG

262 BIBLIOGRAPHY

[Ben73] Charles H. Bennett. ‘Logical Reversibility of Computation’. IBM Jour-
nal of Research and Development, 17:525–532, November 1973.

[Ben89] Charles H. Bennett. ‘Time/Space Trade-offs for Reversible Computing’.
SIAM Journal on Computing, 18(4):766–776, 1989.

[Beth87a] Thomas Beth., ‘On the Computational Complexity of the General Dis-
crete Fourier Transform’. Theoretical Computer Science, 51:331–339, 1987.

[Beth87b] Thomas Beth. ‘Generalized Fourier Transforms’. Trends in Computer
Algebra, 92–118, 1987.

[BH97] Gilles Brassard and Peter Høyer. ‘An Exact Quantum Polynomial-Time
Algorithm for Simon’s Problem’. Proceedings of Fifth Israeli Symposium on
Theory of Computing and Systems, IEEE Computer Society Press, 12–23,
1997.

[BHMT00] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. ‘Quan-
tum Amplitude Amplification and Estimation’. In S.J. Lomonaco, Jr., H.E.
Randt, editors, Quantum Computation and Information, Contemporary
Mathematics 305 (Providence, RI: AMS 2002), pp. 53–74.

[BHT97] G. Brassard, P. Høyer, and Alain Tapp. ‘Cryptology Column—
Quantum Algorithm for the Collision Problem’. ACM SIGACT News, 28:
14–19, 1997.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. ‘Quantum Counting’.
Proceedings of the ICALP’98 Lecture Notes in Computer Science, 1820–
1831, 1988.

[BL95] D. Boneh and R.J. Lipton. ‘Quantum Cryptanalysis of Hidden Lin-
ear Functions’ (Extended Abstract). Lecture Notes in Computer Science,
1443:820–831, Springer-Verlag, 1998.

[BMP+99] P. Boykin, T. Mor, M. Pulver, V. Roychowdhury, and F. Vatan.
‘On Universal and fault-tolerant quantum computing: a novel basis and a
new constructive proof of universality for Shor’s basis’. Proceedings of the
40th Annual Symposium on Foundations of the Computer Science, 486–494,
1999.

[Br03] Michael Brown. ‘Classical Cryptosystems in a Quantum Setting’. MMath
Thesis. University of Waterloo, 2003.

[Buh96] H. Buhrman. ‘A Short Note on Shor’s Factoring Algorithm’. SIGACT
News, 27(1):89–90, 1996.

[BV97] Ethan Bernstein and Umesh Vazirani. ‘Quantum Complexity Theory’.
SIAM Journal on Computing, 26(5):1411–1473, October 1997.

[CDV96] Richard Cleve and David P. DiVincenzo. ‘Schumacher’s Quantum Data
Compression As a Quantum Computation’. Physical Review A, 54(4):2636–
2650, 1996.

[CEG95] Ran Canetti, Guy Even, and Oded Goldreich. ‘Lower Bounds for Sam-
pling Algorithms for Estimating the Average’. Information Processing Let-
ters, 53:17–25,1995.

[CEH+99] Richard Cleve, Artur Ekert, Leah Henderson, Chiara Macchiavello,
and Michele Mosca. ‘On Quantum Algorithms’. Complexity, 4:33–42,
1999.

TEAM LinG

BIBLIOGRAPHY 263

[CEMM98] Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele
Mosca. ‘Quantum Algorithms Revisited’. Proceedings of the Royal Society
of London A, 454:339–354, 1998.

[Che02] Donny Cheung. ‘Using Generalized Quantum Fourier Transforms in
Quantum Phase Estimation Algorithms’. MMath Thesis. University of
Waterloo, 2002.

[Chu36] A. Church. ‘An unsolvable Problem of Elementary Number Theory’.
Am. J. Math., 58:345, 1936.

[Cla] http://www.claymath.org/millennium/P vs NP/
[Cle00] Richard Cleve, “The Query Complexity of Order-Finding”. IEEE Con-

ference of Computational Complexity, 54–, 2000.
[Cle99] Richard Cleve. ‘An Introduction to Quantum Complexity Theory’. In

C. Macchiavello, G.M. Palma, and A. Zeilinger, editors, Collected Papers
on Quantum Computation and Quantum Information Theory (World Sci-
entific, 1999).

[CM01] K.K.H. Cheung and M. Mosca. ‘Decomposing Finite Abelian Groups’.
Quantum Information and Computation, 1(3):2632, 2001.

[Coc73] C. Cocks. ‘A Note on Non-Secret Encryption’.
Technical report, Communications-Electronics Security Group, U.K., 1973.
Available at http://www.cesg.gov.uk/downlds/nsecret/notense.pdf

[Coh93] Henry Cohen. ‘A Course in Computational Algebraic Number Theory’
(Springer-Verlag, 1993).

[Coo71] S.A. Cook. ‘The Complexity of Theorem Proving Procedures’. Proceed-
ings of the 3rd Annual ACM Symposium on the Theory of Computing
(STOC’71), 151–158, 1971.

[Cop94] Don Coppersmith. ‘An Approximate Fourier Transform Useful in Quan-
tum Factoring’. Research report, IBM, 1994.

[CRR054] Sourav Chakraborty, Jaikumar Radhakrishnan, and Nandakumar
Raghunathan. ‘Bounds for Error Reduction with Few Quantum Queries’.
APPROX-RANDOM 2005, 245–256, 2005.

[CS96] A.R.Calderbank and P.W. Shor. ‘Good Quantum Error-Correcting Codes
Exist’. Physical Review A, 54:1098–1105, 1996.

[CTDL77] Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloe. Quantum
Mechanics, Volume 1 (John Wiley and Sons, 1977).

[Dav82] Martin Davis. Computability and Unsolvability (Dover Publications
Inc., New York, 1982).

[Deu85] David Deutsch. ‘Quantum Theory, the Church-Turing Principle and the
Universal Quantum Computer’. Proceedings of the Royal Society of London
A, 400:97–117, 1985.

[Deu89] David Deutsch. ‘Quantum Computational Networks’. Proceedings of the
Royal Society of London A, 425:73–90,1989.

[DH76a] W. Diffie and M.E. Hellman. ‘Multiuser Cryptographic Techniques’.
Proceedings of AFIPS National Computer Conference, 109–112, 1976.

[DH76b] W. Diffie and M.E. Hellman. ‘New Directions in Cryptography’. IEEE
Transactions on Information Theory, 22:644–654, 1976.

TEAM LinG

http://www.claymath.org/millennium/P_vs_NP/
http://www.cesg.gov.uk/downlds/nsecret/notense.pdf

264 BIBLIOGRAPHY

[DH00] W. van Dam and S. Hallgren. ‘Efficient Quantum Algorithms for Shifted
Quadratic Character Problems’. Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, 489–498, 2003.

[DHHM04] C. Durr, M. Heiligman, P. Høyer, and M. Mhalla. ‘Quantum Query
Complexity of Some Graph Problems’. Proc. of 31st International Collo-
quium on Automata, Languages, and Programming (ICALP’04), 481–493,
2004.

[DHI03] W. van Dam, S. Hallgren, and L. Ip. ‘Quantum Algorithms for Some
Hidden Shift Problems’. Proceedings of the ACM-SIAM Symposium on Dis-
crete Algorithms (SODA’03), 489–498, 2003.

[Dir58] Paul A.M. Dirac. ‘The Principles of Quantum Mechanics (Clarendon
Press, Oxford, 4th edition, 1958).

[DiV95] David DiVincenzo. ‘Two-Bit Gates Are Universal for Quantum Com-
putation’. Physical Review A, 51(2):1015–1022,1995.

[DJ92] David Deutsch and Richard Josza. ‘Rapid Solution of Problems by Quan-
tum Computation’. Proceedings of the Royal Society of London A, 439:553–
558, 1992.

[DMV01] W. van Dam, M. Mosca, and U. Vazirani. ‘How Powerful Is Adiabatic
Quantum Computation?’. Proc. 46th IEEE Symposium on Foundations of
Computer Science (FOCS’01), 279–287, 2001.

[EH98] Mark Ettinger and Peter Høyer. ‘On Quantum Algorithms for Noncom-
mutative Hidden Subgroups’. arXiv e-print quant-ph/9807029, 1998.

[EHK04] M. Ettinger, P. Høyer, and E. Knill. ‘The Quantum Query Complexity
of the Hidden Subgroup Problem Is Polynomial’. Inf. Process. Lett., 91:43–
48, 2004.

[Ell70] J.H. Ellis. ‘The Possibility of Non-Secret Encryption’. Technical Report,
Communications-Electronics Security Group, U.K., 1970.
Available at http://www.cesg.gov.uk/downloads/nsecret/possnse.pdf

[Ell87] J.H. Ellis. ‘The Story of Non-Secret Encryption’.
Technical report, Communications-Electronics Security Group, U.K., 1987.
Avialable at http://www.cesg.gov.uk/downloads/nsecret/ellis.pdf

[EPR35] A. Einstein, B. Podolsky, and N. Rosen. ‘Can Quantum-Mechanical
Description of Reality Be Considered Complete?’ Physical Review 47:777–
780, 1935.

[Fey65] Richard P. Feynman. The Feynman Lectures on Physics, Volume III:
Quantum Mechanics (Addison-Wesley, 1965).

[Fey82] Richard Feynman. ‘Simulating Physics with Computers’. International
Journal of Theortical Physics, 21(6,7):467–488, 1982.

[FGGS98] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. ‘A Limit on the
Speed of Quantum Computation in Determining Parity’. Technical Report
9802045, Los Alamos Archive, 1998.

[FGGS00] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. ‘Quantum Com-
putation by Adiabatic Evolution’. e-print arXiv: quant-ph/0001106, 2000.

[FIMSS03] K. Friedl, G. Ivanyos, F. Magniez, M. Santha, and P. Sen. ‘Hidden
Translation and Orbit Coset in Quantum Computing’. Proceedings of the

TEAM LinG

http://www.cesg.gov.uk/downloads/nsecret/possnse.pdf
http://www.cesg.gov.uk/downloads/nsecret/ellis.pdf

BIBLIOGRAPHY 265

Thirty-Fifth Annual ACM Symposium on Theory of Computing (STOC’03),
1–9, 2003.

[GGJ76] Garey, Graham and Johnson. ‘Some NP-Complete Geometric Prob-
lems’. Proceedings of the 8th Annual ACM Symposium on the Theory of
Computing (STOC’76), 10–22, 1976.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractibility
A Guide to the Theory of NP-Completeness (W.H. Freeman and Company,
New York, 1979).

[GJS76] M.R. Garey, D.S. Johnson, and L. Stockmeyer. ‘Some Simplified NP-
Complete Graph Problems’. Theoretical Computer Science, 1:237–267, 1976.

[GN96] R.B. Griffiths and C.S. Niu. ‘Semi-Classical Fourier Transform for Quan-
tum Computation’. Physical Review Letters, 3228–3231, 1996.

[Got98] Daniel Gottesman. ‘A Theory of Fault-Tolerant Quantum Computa-
tion’. Physical Review A, 57:127–137, 1998.

[Gri97] D.Y. Grigoriev. ‘Testing the Shift-Equivalence of Polynomials by
Deterministic, Probablistic and Quantum Machines’. Theoretical Computer
Science, 180:217–228, 1997.

[Gro96] Lov Grover. ‘A Fast Quantum Mechanical Algorithm for Database
Search’. Proceedings of the 28th Annual ACM Symposium on the Theory
of Computing (STOC 1996), 212–219.

[Gro98] Lov K. Grover. ‘Quantum Computers Can Search Rapidly by Using
Almost Any Transformation’. Physical Review Letters, 80:4329–4332, 1998.

[Gro05] L. Grover. ‘Quantum Searching Amidst Uncertainty’. Unconventional
Computation, 4th International Conference, Sevilla, Spain, 11–18, 2005.

[GSVV01] M. Grigni, L. Schulman, M. Vazirani, and U. Vazirani. ‘Quantum
Mechanical Algorithms for the Nonabelian Hidden Subgroup Problem’. Pro-
ceedings of the Thirty-Third Annual ACM Symposium on Theory of Com-
puting (SODA’03), 68–74, 2001.

[Hal05] S. Hallgren. ‘Fast Quantum Algorithms for Computing the Unit Group
and Class Group of a Number Field’. Proceedings of the 37th ACM Sym-
posium on Theory of Computing (STOC 2005), 468–474, 2005.

[HMW03] P. Høyer, M. Mosca, and R. de Wolf. ‘Quantum Search on Bounded-
Error Inputs’. Proceedings of the Thirtieth International Colloquium on
Automata, Languages and Programming (ICALP03), Eindhoven,
The Netherlands, 291–299, 2003.

[Hoy97] Peter Høyer. ‘Conjugated Operators in Quantum Algorithms’. Physical
Review A, 59(5):3280–3289, 1999.

[HR90] Torben Hagerup and Christine Rub. ‘Guided Tour of Chernoff Bounds’.
Information Processing Letters, 33(6):305–308, 1990.

[HRS05] S. Hallgren, M. Roetteler, and P. Sen. ‘Limitations of Quantum Coset
States for Graph Isomorphism’. arXiv e-print quant-ph/0511148, 2005.

[HW79] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Num-
bers (Oxford University Press, Oxford, 5th edition, 1979).

[IW97] R. Impagliazzo and A. Wigderson. ‘P=BPP if E Requires Exponential
Circuits: Derandomizing the XOR Lemma’. Proceedings of the Twenty-

TEAM LinG

266 BIBLIOGRAPHY

Ninth Annual ACM Symposium on Theory of Computing, 220-229,
1997.

[JL02] R. Jozsa and N. Linden. ‘On the Role of Entanglement in Quantum
Computational Speed-ups’. arXiv e-print quant-ph/0201143, 2002.

[Jos99] Richard Jozsa. ‘Searching in Grover’s Algorithm’. arXiv e-print quant-
ph/9901021.

[Kar72] R. Karp. ‘Reducibility Among Combinatorial Problems’. Complexity of
Computer Computations, 85–103, 1972.

[Kit96] A. Kitaev. ‘Quantum Measurements and the Abelian Stabilizer Prob-
lem’. Electronic Colloquium on Computational Complexity (ECCC), 3,
1996.

[Kit97] A.Y. Kitaev. ‘Quantum Computations: Algorithms and Error Correc-
tion’. Russ. Math. Surv., 52(6):1191–1249, 1998.

[KLZ97] Emanuel Knill, Raymond Laflamme, and Wojciech, Zurek. ‘Resilient
Quantum Computation: Error Models and Thresholds’. Technical Report,
1997. Also arXiv e-print quant-ph/9702058.

[KM01] P. Kaye and M. Mosca. ‘Quantum Networks for Concentrating Entangle-
ment’. Journal of Physics A: Mathematical and General, 34(35):6939–6948,
2001.

[KM02] P. Kaye and M. Mosca. ‘Quantum Networks for Generating Arbitrary
Quantum States’. Proceedings of the International Conference on Quan-
tum Information, OSA CD-ROM (Optical Society of America, Washington,
D.C., 2002), PB28.

[Knu98] Donald E. Knuth. Seminumerical Algorithms, Volume 2 (Addison-
Wesley, 3rd edition, 1998).

[Kob94] Neil Koblitz. A Course in Number Theory and Cryptography (Springer-
Verlag, New York, 2nd edition, 1994).

[KS05] J. Kempe and A. Shalev. ‘The Hidden Subgroup Problem and Permu-
tation Group Theory’. Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’05), 1118–1125, 2005.

[Kup05] G. Kuperberg. ‘A Subexponential-Time Quantum Algorithm for the
Dihedral Hidden Subgroup Problem’. SIAM Journal on Computing, 35: 170–
188, 2005.

[KW03] I. Kerenidis and R. de Wolf. ‘Exponential Lower Bound for 2-Query
Locally Decodable Codes via a Quantum Argument’. STOC ’03: Proceed-
ings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing
(STOC 2003), 106–115, 2003.

[Lev73] L.A. Levin. ‘Universal Sorting Problems’. Problems of Information
Transmission, 9:265–266, 1973.

[Llo95] Seth Lloyd. ‘Almost Any Quantum Logic Gate Is Universal’. Physical
Review Letters, 75:346–349, 1995.

[Llo96] S. Lloyd. ‘Universal Quantum Simulators’. Science, 273:1073–1078,
1996.

[LTV98] M. Li, J. Tromp, and P. Vitanyi. ‘Reversible Simulation of Irreversible
Computation’. Physica D, 120:168–176, 1998.

TEAM LinG

BIBLIOGRAPHY 267

[ME99] Michele Mosca and Artur Ekert. ‘The Hidden Subgroup Problem and
Eigenvalue Estimation on a Quantum Computer’. Lecture Notes in Com-
puter Science, Volume 1509, 1999.

[Mil75] J.C.P. Miller. ‘On factorisation, with a suggested new approach’. Math-
ematics of Computation, 29(129):155–172, 1975.

[Mos98] Michele Mosca. ‘Quantum Searching and Counting by Eigenvector
Analysis’. Proceedings of Randomized Algorithms, Workshop of MFCS98,
Brno, Czech Republic, 1998.

[Mos99] Michele Mosca. Quantum Computer Algorithms. D.Phil. Dissertation,
Wolfson College, University of Oxford, 1999.

[Mos01] M. Mosca. ‘Counting by Quantum Eigenvalue Estimation’. Theoretical
Computer Science, 264:139–153, 2001.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms
(Cambridge University Press, 1995).

[MRRS04] C. Moore, D. Rockmore, A. Russell and L. Schulman. ‘The Power of
Basis Selection in Fourier Sampling: Hidden Subgroup Problems in Affine
Groups’. Proceedings of the Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’04), 1113–1122, 2004.

[MSS05] F. Magniez, M. Santha, and M. Szegedy. ‘Quantum Algorithms for
the Triangle Problem’. Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’05), 1109–1117, 2005.

[MvOV97] Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography (CRC Press, London, 1997).

[MZ04] M. Mosca and C. Zalka. ‘Exact Quantum Fourier Transforms and Dis-
crete Logarithm Algorithms’. International Journal of Quantum Informa-
tion, 2(1):91–100, 2004.

[NC00] Michael Nielson and Isaac Chuang. Quantum Computation and Quan-
tum Information (Cambridge University Press, 2000).

[Neu56] John von Neumann. ‘Probabilistic Logics and Synthesis of Reliable Or-
ganisms From Unreliable Components’. In C.E. Shannon and J. McCarthy,
editors, Automata Studies (Princeton University Press, 1956).

[NS94] N. Nisan and M. Szegedy. ‘On the Degree of Boolean Functions As Real
Polynomials’. Computational Complexity, 4(4):301–313, 1994.

[NW99] Ashwin Nayak and Felix Wu. ‘On the Quantum Black-Box Complexity
of Approximating the Mean and Related Statistics’. Proceedings of the 21st
Annual ACM Symposium on Theory of Computing (STOC’99), 1999.

[Pap94] C. Papadimitriou. Computational Complexity (Addison-Wesley, 1994).
[Pat92] R. Paturi. ‘On the Degree of Polynomials that Approximate Symmetric

Boolean Functions’. Proceedings of the 24th Annual Symposium on Theory
of Computing, 468–474, 1992.

[Pra75] Vaughan R. Pratt. ‘Every Prime Has a Succinct Certificate’. SIAM Jour-
nal on Computing, 4(3):214–220, 1975.

[PRB99] Markus Püschel, Martin Rötteler, and Thomas Beth. ‘Fast Quantum
Fourier Transforms for a Class of Non-Abelian Groups’. AAECC 1999, 148–
159.

TEAM LinG

268 BIBLIOGRAPHY

[Pre] John Preskill. Lecture notes. Available at
http://www.theory.caltech.edu/% 7Epreskill/ph219/index.html# lecture

[Raz99] Ran Raz. ‘Exponential Separation of Quantum and Classical Commu-
nication Complexity’. Proceedings of the 31st Annual ACM Symposium on
the Theory of Computing (STOC 1999), 358–367.

[RB98] Martin Rötteler and Thomas Beth. ‘Polynomial-Time Solution to the
Hidden Subgroup Problem for a Class of Non-Abelian Groups’. arXiv
e-print quant-ph/9812070, 1998.

[Reg04] O. Regev. ‘Quantum Computation and Lattice Problems’. SIAM Jour-
nal on Computing, 33:738–760, 2004.

[Rog87] Hartley Rogers. ‘Theory of Recursive Functions and Effective Com-
putability’ (MIT Press, 1987).

[RRS05] J. Radhakrishnan, M. Rötteler, and P. Sen. ‘On the Power of Random
Bases in Fourier Sampling: Hidden Subgroup Problem in the Heisenberg
Group’. In Proceedings of the 32nd International Colloquium on Automata,
Languages and Programming (ICALP), 1399–1411, 2005.

[RSA78] R.L. Rivest, A. Shamir, and L.M. Adleman. ‘A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems’. Communications of the
ACM, 21:120–126, 1978.

[Sch95] Benjamin Schumacher. ‘Quantum Coding’. Phys. Rev. A 51, 2738–2747,
1995.

[Sch98] R. Schack. ‘Using a Quantum Computer to Investigate Quantum Chaos’.
Physical Review A, 57:1634–1635, 1998.

[Sho94] Peter Shor. ‘Algorithms for Quantum Computation: Discrete Logarithms
and Factoring’. Proceedings of the 35th Annual Symposium on Foundations
of Computer Science, 124–134, 1994.

[Sho95a] Peter Shor. ‘Scheme for Reducing Decoherence in Quantum Computer
Memory’. Phys. Rev. A, 52:2493, 1995.

[Sho96] Peter Shor. ‘Fault-Tolerant Quantum Computation’. Proceedings of the
37th Annual Symposium on Fundamentals of Computer Science, 56–65,
(IEEE Press, Los Alimitos, CA, 1996).

[Sho97] P. Shor. ‘Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer’. SIAM J. Computing, 26:1484–
1509, 1997.

[Sim94] Daniel R. Simon. ‘On the Power of Quantum Computation’. In Shafi
Goldwasser, editor, Proceedings of the 35th Annual Symposium on Foun-
dations of Computer Science, pp. 116–123 (IEEE Computer Society Press,
November 1994).

[Sim97] D. Simon. ‘On the Power of Quantum Computation’. SIAM J. Comput-
ing, 26:1474–1483, 1997.

[Sip83] M. Sipser. ‘A Complexity Theoretic Approach to Randomness’. Proc.
15th ACM Symp. on the Theory of Computing, 330–335, 1983.

[Sip96] M. Sipser. ‘Introduction to the Theory of Computation’ (Brooks-Cole,
1996).

TEAM LinG

http://www.theory.caltech.edu/%7Epreskill/ph219/index.html#

BIBLIOGRAPHY 269

[SS71] A. Schönhage and V. Strassen. ‘Schnelle Multiplikation grosser Zahlen’.
Computing, 7:281–292, 1971.

[Ste96] A.M. Steane. ‘Error Correcting Codes in Quantum Theory’. Physical
Review Letters, 77:793–797, 1996.

[Ste97] A.M. Steane. ‘Active Stabilization, Quantum Computation, and Quan-
tum State Synthesis’. Physical Review Letters, 78:2252–2255, 1997.

[TDV04] Barbara Terhal and David DiVincenzo. ‘Classical Simulation of
Noninteracting-Fermion Quantum Circuits’. Physical Review A, 65:32325–
32334, 2004.

[Ter99] Barbara Terhal. Quantum Algorithms and Quantum Entanglement.
Ph.D. thesis, University of Amsterdam, 1999.

[Tur36] A.M. Turing. ‘On Computable Numbers, with an Application to
Entscheid-ungsproblem’. Proc. London Math Society, 42:230–265, 1936.
Also, 43:544–546, 1937.

[Val02] L.G. Valiant. ‘Quantum Circuits That Can Be Simulated Classically in
Polynomial Time’. SIAM Journal on Computing, 31(4):1229–1254, 2002.

[Vaz98] U. Vazirani. ‘On the Power of Quantum Computation’. Philosophical
Transactions of the Royal Society of London, Series A, 356:1759–1768, 1998.

[Vid03] G. Vidal. ‘On the Role of Entanglement in Quantum Computational
Speedup.’ Physical Review Letters, 91:147902, 2003.

[Wel88] Dominic Welsh. Codes and Cryptography (Oxford University Press,
Oxford, 1998).

[Yao93] Andrew Chi-Chih Yao. ‘Quantum Circuit Complexity’. Proceedings of
the 34th IEEE Symposium on Foundations of Computer Science, pp. 352–
361. (Institute of Electrical and Electronic Engineers Computer Society
Press, Los Alamitos, CA, 1993).

[Zal98a] Christof Zalka. ‘Fast Versions of Shor’s Quantum Factoring Algorithm’.
Technical report 9806084, Los Alamos Archive, 1998.

[Zal98b] Ch. Zalka. ‘Efficient Simulation of Quantum Systems by Quantum Com-
puters’. Proc. Roy. Soc. Lond. A, 454:313–322, 1998.

TEAM LinG

Index

Note: The italic page numbers indicate where terms are defined.

2-sided error quantum query complexity
192

3-COLOURABLE, see ‘problem—
3-COLOURABLE’

3-CNF (3-conjunctive normal form) 184
3-SAT (3-satisfiability), see ‘problem—

3-SAT’
Aaronson 185
Abelian stabilizer problem, see

‘problem—Abelian stabilizer’
adiabatic algorithm, see

‘algorithm—adiabatic’
adjoint 28
adversary methods 180, 198, 248
Alan Turing 3
algorithm 1, 4

adiabatic 178
amplitude estimation 172
continued fractions 123
counting with accuracy ε 173
counting with error in O(

√
t) 173

Deutsch 94–8
Deutsch–Jozsa 99–103
discrete logarithm 144
eigenvalue estimation 129
estimating a random integer multiple of

1
r

139
exact counting 173
extended Euclidean 124
finding the period of a periodic state

122
finite Abelian hidden subgroup problem

149
searching 152–6, 157, 158–63
order-finding 137
order-finding, Shor’s approach 139
probabilistic 86, 241
quantum 88
searching without knowing success

probabilities I 177
searching without knowing success

probabilities II 177
Simon’s 103, 104, 105, 109
zero-error 107

amplitude 39, 50, 87, 88

amplitude amplification 163–9
amplitude estimation 170–2
amplitude estimation algorithm, see

‘algorithm—amplitude estimation’
amplitude estimation problem, see

‘problem—amplitude estimation’
ancilla 50, 75
AND-OR tree 201
anti-commute 229
approximating unitary transformations

71–3

balanced function 95, 99
basis

Bell 75
change of 30, 74–6
computational 22, 39
dual 27
orthonormal 25
vectors 22

beam splitter 15, 18
Bell basis, see ‘basis—Bell’
Bell measurement, see

‘measurement—Bell’
Bell state 75, 78
Bernoulli trials 242
bit

deterministic classical 39, 41, 43
probabilistic classical 41, 42, 43
quantum, see ‘qubit’
flip 205, 214

black box 94, 138, 180, 185
black-box model 185
black-box group 250
Bloch sphere 42, 43, 63, 65, 70
block sensitivity 180, 197
Bohr 19
Boolean formula 184
bounded-error probabilistic polynomial

time, see ‘BPP’
bounded-error quantum polynomial time,

see ‘BQP’
BPP 182, 183
BQP 182, 183
bra 21

270
TEAM LinG

INDEX 271

Cauchy–Schwartz inequality 191
change of basis 30
channel 205

communication 78, 79
quantum 213

character (of a group) 148
Chebyshev’s inequality 242
Chernoff bound (inequality) 103, 242, 246
Church–Turing thesis 3
circuit

acyclic 6
diagram 61
model of computation 6, 61
probabilistic 7
quantum 20, 61
reversible 6
satisfiability 184
uniform families of 6, 7, 77, 180

Clay Mathematics Institute 185
Clifford group 91
coherent error 215
coin-flipper 4, 5
communication channel, see

‘channel—communication’
communication protocol 78
commute 229
complete measurement, see

‘measurement—complete’
completely positive map 60
complex conjugate 23
complexity 2, 7

computational complexity theory 179
of discrete logarithm problem 145
of order finding 139

composite system 45, 46, 47, 57
Composition of Systems Postulate 46
computational basis, see

‘basis—computational’
computational complexity theory, see

‘complexity—computational
complexity theory’

computer 1
condition for error correction 207, 208
conditions for quantum error correction

220
conjugate commutativity 23
constant function 94, 99
continued fractions algorithm, see

‘algorithm—continued fractions’
control bit 10
controlled-not gate (cnot), see

‘gate—controlled-not
controlled-Ugate (cnot), see

‘gate—controlled-U
convergents 123
correctable errors 206
counting 170, 173, 174

de Broglie 19

decision problem 180
density operator (density matrix) 27, 53,

54–7
depth 7
discretization of errors 221
deterministic 8
deterministic query complexity 192
Deutsch algorithm, see

‘algorithm—Deutsch’
Deutsch problem, see ‘problem—Deutsch’
Deutsch–Jozsa algorithm, see

‘algorithm—Deutsch–Jozsa’
Deutsch–Jozsa problem, see

‘problem—Deutsch–Jozsa’
Dirac delta function δi,j 32
Dirac notation 21, 22, 24, 37
discrete Fourier transform 116
discrete logarithm algorithm, see

‘algorithm—discrete logarithm’
discrete logarithm problem, see

‘problem—discrete logarithm’
discrete random variable 241
dot product 23
dual vector space 24, 27

efficiency 2, 4, 183
eigenspace 51
eigenstate, see ‘eigenvector’
eigenvalue 29, 30, 31, 51, 94
eigenvalue estimation 125–30
eigenvector 29, 30, 31, 92, 94, 98
electromagnetism 19
electron 40
element distinctness problem, see

‘problem—element distinctness’
elliptic curve 142, 145
encoding 206, 216
ensemble of pure states 53
entanglement 46, 56, 82
environment 213
EPR-pair, see ‘Bell state’
error-correcting code 5
error correction 5, 212–23
error model 205, 213
error probability parameter 219
error syndrome 209
estimating a random integer multiple of

1
r
, see ‘algorithm—estimating a

random integer multiple of 1
r
’

Euclidean norm 25
Evolution Postulate 44, 45
exact quantum query complexity 192
excited state 40
exclusive-or operation 10
exponential 2
exponential function 32
extended Euclidean algorithm, see

‘algorithm—extended Euclidean’

TEAM LinG

272 INDEX

factoring 110, 130, 132, see also
‘problem—integer factorization’

fault tolerance 5, 212, 226, 234–8
fidelity 218
finite Abelian hidden subgroup problem,

see ‘algorithm—finite Abelian
hidden subgroup problem’

Feynman 20

gate 6, 9
1-qubit 44, 47, 63, 66
3-bit 7
and 11
controlled-not (cnot) 10, 47, 66–7, 82,

91–2, 212
controlled-U 66, 67
entangling 69
Hadamard, see ‘Hadamard’
not 9, 44
Pauli 44, 64
phase 71
rotation 63, 64, 70, 114
square root of not 91
Toffoli 7, 68, 210
unitary 44, 61
universal set 69, 70, 71
X 44
Y 44
Z 44

general measurement, see
‘measurement—general’

general quantum operations 59–60
general search iterate 164
generalized Simon’s algorithm, see

‘algorithm—generalized Simon’s’
generalized Simon’s problem, see

‘problem—generalized Simon’s’
Gottesman–Knill theorem 91
graph automorphism problem, see

‘problem—graph automorphism’
greatest common divisor (GCD) 124
ground state 40
group representation theory 148
Grover’s algorithm, see

‘algorithm—search’
Grover iterate 156

Hadamard 70, 71, 100, 111
Hamiltonian 29, 45
Heisenberg 19
Hermitean 29, 45
Hermitean conjugate 24, 28
hidden linear functions, see

‘problem—hidden linear functions’
hidden string 103, 107
hidden subgroup 109
hidden subgroup problem, see

‘problem—hidden subgroup’
Hilbert space 21, 39, 50

hybrid method 180, 188

incoherent error 215
information 19
information processing 1
inner product 21, 23, 24, 25, 27, 37
integer factorization problem, see

‘problem—integer factorization’
integers mod N 131
interactive proofs 184
interference 16, 19, 88, 89, 94, 96
interval of convergence 32
intractable 183
inversion about the mean 158
irreversible 12

ket 21
Kraus operators 59, 60, 215, 221, 222,

229, 238
Kronecker delta function, δi,j 25
Kronecker product (left) 34

language 180
language recognition problem 180
linear operator 27
log-RAM model 4, 180
logarithmic 2
lower bounds 179
lower bounds for searching 188
lowest common multiple (LCM) 124

MA 184
MAJORITY function 196, 200
Markov’s inequality 107, 241
matrix representation 8, 9, 24, 28, 34, 44,

47, 71
Maxwell 19
measurement 19, 48, 49, 54

Bell 75–6, 79, 82
circuit diagram symbol 61
complete 51, 77
general 255
implementing 73–7
parity 51, 76, 130
POVM 258
projective 50, 76, 257
pure 255
von Neumann 50–2, 77

Measurement Postulate 40, 41, 48, 49, 50
Merlin–Arthur games, see ‘MA’
Millennium Problems 185
mixed state 53, 56
mixture 53
modular arithmetic 131

network 6
Newton 19
nine-qubit code, see ‘Shor code’
no-cloning theorem 82, 216

TEAM LinG

INDEX 273

non-deterministic polynomial time, see
‘NP’

normalization constraint 40
NP 183
NP-complete 184

O-notation 2, 179
observable 51, 52, 130
Ω-notation 179
operator 9, 21

1-qubit unitary 45
function of 32, 33
Krauss 60
normal 30
Pauli, see ‘gate—Pauli’

OR function 186, 195, 196, 197
oracle, see ‘black box’
order finding algorithm, see

‘algorithm—order finding’
order finding problem, see

‘problem—order finding’
orthogonal 25
orthogonal complement 104
orthonormal 25
outer product 27

P 180
P = NP question 185
parallel(ism) 8, 94
parity 76, 77, 209, 212
PARITY function 196, 200
parity measurement, see

‘measurement—parity’
partial function 192
partial trace 56
period-finding algorithm, see

‘algorithm—finding the period of a
periodic state’

period-finding problem, see
‘problem—period-finding’

periodic states 120, 122
phase 40

estimation 112–20
estimation problem, see

‘problem—phase estimation’
flip 225
gate, see ‘gate—phase’
global 41
kick-back 91–4
parity 229
relative 40

photon 15, 38, 39
Planck 19
Poisson trials 242
polynomial 2, 4, 72, 182
polynomial method 180
polynomial time, see ‘P’
positive operator valued measure 258
POVM, see ‘measurement—POVM’

probabilistic algorithm, see
‘algorithm—probabilistic’

probabilistic Turing machine 4, 7, 20
probability amplitude, see ‘amplitude’
problem

3-COLOURABLE 181, 183
3-SAT 184, 190
Abelian stabilizer 147
amplitude estimation 170
Deutsch 95, 146
Deutsch–Jozsa 99, 192
discrete logarithm 142, 243
discrete logarithms in any group 146
eigenvalue estimation 126
element distinctness 178
generalized Simon’s 108, 146
graph automorphism 147
graph isomorphism 184
hidden linear functions 146
hidden subgroup 146
integer factorization 132, 184
order-finding 130, 133, 146
period-finding 146, 192
phase estimation 112
sampling estimates to an almost

uniformly random integer multiple
of 1

r
134

search 153
self-shift-equivalent polynomials 147
Simon’s 104
splitting an odd non-prime-power

integer 132
subset sum 184
traveling salesman 184

projective measurement, see
‘measurement—projective’

projector 27, 29, 50, 51
promise problem 192
PSPACE 180, 184
pure measurement, see

‘measurement—pure’
pure state 53

quantize 40
quantum

bit, see ‘qubit’
channel, see ‘channel—quantum’
computer 1, 20
electrodynamics 38
error correction, see ‘error correction’
field theory 38
Fourier transform (QFT) 94, 110, 116,

117
information processing 1, 38
instrument 255
mechanics 19, 38
physics 15, 19, 38
strong Church–Turing thesis 6
Turing machine 7

TEAM LinG

274 INDEX

qubit 38, 39
query complexity 186

randomness 4
random access machine (RAM) 4
realistic model of computation 5
recovery operation 206, 217–9

reduced density operator 56
repetition code 211
resolution of the identity 28
reversible 12, 13, 14
rounding off 163
RSA cryptosystem 130

sampling estimates to an almost
uniformly random integer multiple
of 1

r
, see ‘problem—sampling

estimates to an almost uniformly
random integer multiple of 1

r
’

Schmidt
basis 36, 59
coefficients 35
decomposition 35, 37, 58, 253

Schrödinger 19
Schrödinger equation 45
search algorithm, see ‘algorithm—search’
search problem, see ‘problem—search’
searching without knowing the success

probability 175–7
self-shift-equivalent polynomials, see

‘problem—self-shift-equivalent
polynomials’

Shor, Peter 130
Shor code 230
Shor’s algorithm, see

‘algorithm—order-finding, Shor’s
approach’

Simon’s algorithm, see
‘algorithm—Simon’s’

Simon’s problem, see ‘problem—Simon’s’
simulation 3, 4, 20, 91
Solovay–Kitaev theorem 72, 73
space 2, 7, 8
spectral theorem 30, 31, 32
spin 40
splitting an odd non-prime-power integer,

see ‘problem—splitting an odd
non-prime-power integer’

stabilizer 229
state 8, 39
state distinguishability 187, 258
State Space Postulate 39
stochastic matrix 89
strong Church–Turing thesis 2, 5, 20
subset sum problem, see

‘problem—subset sum’
subsystem 10, 46, 56

superdense coding 78–80
superoperator 57, 59, 61, 215
superpolynomial 2
superposition 16, 18
symmetric function 192

target bit 10
Taylor series 32, 33
teleportation 80–5
tensor product 10, 33, 34, 46
Θ-notation 179
threshold

condition 235, 236
error probability 235
theorem 237, 239

THRESHOLDM function 196
time 2, 7
time evolution 43
total function 192
trace 29, 54
tracing-out 57
tractable 183
traveling salesman problem, see

‘problem—traveling salesman’
Turing machine 3
two-level system 39, 40

unary encoding 181
uncompute 14
uniform 7
unitary operator 29, 44, 45, 48, see also

‘gate—unitary’
universal 7, 69

for 1-qubit gates 70
for classical computation 7
set of quantum gates, see

‘gate—universal set’

vector 8, 18, 21
column 22, 23
dual 21, 23, 24
norm of 25
sparse 23
state 39, 42, 53
unit 25, 39, 40

verifier 184
von Neumann measurement, see

‘measurement—von Neumann’

white box 186
width 8
wire 6

xor 102

zero-error algorithm, see ‘algorithm—zero
error’

TEAM LinG

