
Hybrid quantum-classical Neural Networks with PyTorch and Qiskit
Machine learning (ML) has established itself as a successful interdisciplinary field which seeks to mathematically extract generalizable information from data.
Throwing in quantum computing gives rise to interesting areas of research which seek to leverage the principles of quantum mechanics to augment machine
learning or vice-versa. Whether you're aiming to enhance classical ML algorithms by outsourcing difficult calculations to a quantum computer or optimise
quantum algorithms using classical ML architectures - both fall under the diverse umbrella of quantum machine learning (QML).

In this chapter, we explore how a classical neural network can be partially quantized to create a hybrid quantum-classical neural network. We will code up a
simple example that integrates Qiskit with a state-of-the-art open-source software package - PyTorch. The purpose of this example is to demonstrate the
ease of integrating Qiskit with existing ML tools and to encourage ML practitioners to explore what is possible with quantum computing.

Contents

1. How Does it Work?

1.1. Preliminaries

2. So How Does Quantum Enter the Picture?

3. Let's code!

3.1 Imports

3.2 Create a "Quantum Class" with Qiskit

3.3 Create a "Quantum-Classical Class" with PyTorch

3.4 Data Loading and Preprocessing

3.5 Creating the Hybrid Neural Network

3.6 Training the Network

3.7 Testing the Network

4. What Now?

1. How does it work?

Fig.1 Illustrates the framework we will construct in this chapter. Ultimately, we will create a hybrid quantum-classical neural network that seeks to classify
hand drawn digits. Note that the edges shown in this image are all directed downward; however, the directionality is not visually indicated.

1.1 Preliminaries

The background presented here on classical neural networks is included to establish relevant ideas and shared terminology; however, it is still extremely high-
level. If you'd like to dive one step deeper into classical neural networks, see the well made video series by youtuber 3Blue1Brown. Alternatively, if you are
already familiar with classical networks, you can skip to the next section.

Neurons and Weights

A neural network is ultimately just an elaborate function that is built by composing smaller building blocks called neurons. A neuron is typically a simple, easy-
to-compute, and nonlinear function that maps one or more inputs to a single real number. The single output of a neuron is typically copied and fed as input
into other neurons. Graphically, we represent neurons as nodes in a graph and we draw directed edges between nodes to indicate how the output of one
neuron will be used as input to other neurons. It's also important to note that each edge in our graph is often associated with a scalar-value called a weight.
The idea here is that each of the inputs to a neuron will be multiplied by a different scalar before being collected and processed into a single value. The
objective when training a neural network consists primarily of choosing our weights such that the network behaves in a particular way.

Feed Forward Neural Networks

It is also worth noting that the particular type of neural network we will concern ourselves with is called a feed-forward neural network (FFNN). This means
that as data flows through our neural network, it will never return to a neuron it has already visited. Equivalently, you could say that the graph which describes
our neural network is a directed acyclic graph (DAG). Furthermore, we will stipulate that neurons within the same layer of our neural network will not have
edges between them.

IO Structure of Layers

The input to a neural network is a classical (real-valued) vector. Each component of the input vector is multiplied by a different weight and fed into a layer of
neurons according to the graph structure of the network. After each neuron in the layer has been evaluated, the results are collected into a new vector where
the i'th component records the output of the i'th neuron. This new vector can then be treated as an input for a new layer, and so on. We will use the standard
term hidden layer to describe all but the first and last layers of our network.

2. So How Does Quantum Enter the Picture?

To create a quantum-classical neural network, one can implement a hidden layer for our neural network using a parameterized quantum circuit. By
"parameterized quantum circuit", we mean a quantum circuit where the rotation angles for each gate are specified by the components of a classical input
vector. The outputs from our neural network's previous layer will be collected and used as the inputs for our parameterized circuit. The measurement
statistics of our quantum circuit can then be collected and used as inputs for the following layer. A simple example is depicted below:

 Here, is a nonlinear function and is the value
of neuron at each hidden layer. represents any rotation gate about an angle equal to and is the final prediction value generated from the hybrid

network.

What about backpropagation?

If you're familiar with classical ML, you may immediately be wondering how do we calculate gradients when quantum circuits are involved? This would be
necessary to enlist powerful optimisation techniques such as gradient descent. It gets a bit technical, but in short, we can view a quantum circuit as a black
box and the gradient of this black box with respect to its parameters can be calculated as follows:

where represents the parameters of the quantum circuit and is a macroscopic shift. The gradient is then simply the difference between our quantum
circuit evaluated at and . Thus, we can systematically differentiate our quantum circuit as part of a larger backpropagation routine. This closed
form rule for calculating the gradient of quantum circuit parameters is known as the parameter shift rule.

3. Let's code!
3.1 Imports

First, we import some handy packages that we will need, including Qiskit and PyTorch.

Found existing installation: imgaug 0.2.9
Uninstalling imgaug-0.2.9:
 Would remove:
 /usr/local/lib/python3.7/dist-packages/imgaug-0.2.9.dist-info/*
 /usr/local/lib/python3.7/dist-packages/imgaug/*
Proceed (y/n)? y
 Successfully uninstalled imgaug-0.2.9
Found existing installation: albumentations 0.1.12
Uninstalling albumentations-0.1.12:
 Would remove:
 /usr/local/lib/python3.7/dist-packages/albumentations-0.1.12.dist-info/*
 /usr/local/lib/python3.7/dist-packages/albumentations/*
Proceed (y/n)? y
 Successfully uninstalled albumentations-0.1.12
Collecting git+https://github.com/aleju/imgaug.git
 Cloning https://github.com/aleju/imgaug.git to /tmp/pip-req-build-aatedtdv
 Running command git clone -q https://github.com/aleju/imgaug.git /tmp/pip-req-build-aatedtdv
Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from imgaug==0.4.0) (1.15.0)
Requirement already satisfied: numpy>=1.15 in /usr/local/lib/python3.7/dist-packages (from imgaug==0.4.0) (1.21.5)
Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from imgaug==0.4.0) (1.4.1)
Requirement already satisfied: Pillow in /usr/local/lib/python3.7/dist-packages (from imgaug==0.4.0) (7.1.2)
Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from imgaug==0.4.0) (3.2.2)
Requirement already satisfied: scikit-image>=0.14.2 in /usr/local/lib/python3.7/dist-packages (from imgaug==0.4.0) (0.18.3)
Requirement already satisfied: opencv-python in /usr/local/lib/python3.7/dist-packages (from imgaug==0.4.0) (4.1.2.30)
Requirement already satisfied: Shapely in /usr/local/lib/python3.7/dist-packages (from imgaug==0.4.0) (1.8.1.post1)
Requirement already satisfied: imageio in /usr/local/lib/python3.7/dist-packages (from imgaug==0.4.0) (2.4.1)
Requirement already satisfied: networkx>=2.0 in /usr/local/lib/python3.7/dist-packages (from scikit-image>=0.14.2->imgaug==0.4.0) (
2.6.3)
Requirement already satisfied: tifffile>=2019.7.26 in /usr/local/lib/python3.7/dist-packages (from scikit-image>=0.14.2->imgaug==0.
4.0) (2021.11.2)
Requirement already satisfied: PyWavelets>=1.1.1 in /usr/local/lib/python3.7/dist-packages (from scikit-image>=0.14.2->imgaug==0.4.
0) (1.2.0)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->imgaug==0.4.0) (0.11.0)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib-
>imgaug==0.4.0) (3.0.7)
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->imgaug==0.4.0) (2.8
.2)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->imgaug==0.4.0) (1.3.2)
Building wheels for collected packages: imgaug
 Building wheel for imgaug (setup.py) ... done
 Created wheel for imgaug: filename=imgaug-0.4.0-py3-none-any.whl size=971122 sha256=770b80e618c37ce5ae757e1e4a16a52afd260ca663140
e51fa64b7e2f4de73c6
 Stored in directory: /tmp/pip-ephem-wheel-cache-hxyv10kb/wheels/0c/78/b5/9303fae9d5e03df1f319adfe4e6534180b5c3232de11bc9a2f
Successfully built imgaug
Installing collected packages: imgaug
Successfully installed imgaug-0.4.0

Collecting qiskit
 Downloading qiskit-0.34.2.tar.gz (13 kB)
Collecting qiskit-terra==0.19.2
 Downloading qiskit_terra-0.19.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.5 MB)
 |████████████████████████████████| 6.5 MB 4.2 MB/s
Collecting qiskit-aer==0.10.3
 Downloading qiskit_aer-0.10.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (18.0 MB)
 |████████████████████████████████| 18.0 MB 104 kB/s
Collecting qiskit-ibmq-provider==0.18.3
 Downloading qiskit_ibmq_provider-0.18.3-py3-none-any.whl (238 kB)
 |████████████████████████████████| 238 kB 79.1 MB/s
Collecting qiskit-ignis==0.7.0
 Downloading qiskit_ignis-0.7.0-py3-none-any.whl (200 kB)
 |████████████████████████████████| 200 kB 78.5 MB/s
Requirement already satisfied: scipy>=1.0 in /usr/local/lib/python3.7/dist-packages (from qiskit-aer==0.10.3->qiskit) (1.4.1)
Requirement already satisfied: numpy>=1.16.3 in /usr/local/lib/python3.7/dist-packages (from qiskit-aer==0.10.3->qiskit) (1.21.5)
Collecting requests-ntlm>=1.1.0
 Downloading requests_ntlm-1.1.0-py2.py3-none-any.whl (5.7 kB)
Collecting websocket-client>=1.0.1
 Downloading websocket_client-1.3.1-py3-none-any.whl (54 kB)
 |████████████████████████████████| 54 kB 3.2 MB/s
Requirement already satisfied: python-dateutil>=2.8.0 in /usr/local/lib/python3.7/dist-packages (from qiskit-ibmq-provider==0.18.3-
>qiskit) (2.8.2)
Requirement already satisfied: requests>=2.19 in /usr/local/lib/python3.7/dist-packages (from qiskit-ibmq-provider==0.18.3->qiskit)
(2.23.0)
Requirement already satisfied: urllib3>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from qiskit-ibmq-provider==0.18.3->qiskit
) (1.24.3)
Collecting retworkx>=0.8.0
 Downloading retworkx-0.11.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6
MB)
 |████████████████████████████████| 1.6 MB 56.5 MB/s
Requirement already satisfied: setuptools>=40.1.0 in /usr/local/lib/python3.7/dist-packages (from qiskit-ignis==0.7.0->qiskit) (57.
4.0)
Collecting stevedore>=3.0.0
 Downloading stevedore-3.5.0-py3-none-any.whl (49 kB)
 |████████████████████████████████| 49 kB 6.4 MB/s
Requirement already satisfied: dill>=0.3 in /usr/local/lib/python3.7/dist-packages (from qiskit-terra==0.19.2->qiskit) (0.3.4)
Collecting symengine>=0.8
 Downloading symengine-0.9.0-cp37-cp37m-manylinux2010_x86_64.whl (37.5 MB)
 |████████████████████████████████| 37.5 MB 415 kB/s
Collecting scipy>=1.0
 Downloading scipy-1.7.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (38.1 MB)
 |████████████████████████████████| 38.1 MB 1.2 MB/s
Collecting tweedledum<2.0,>=1.1
 Downloading tweedledum-1.1.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (943 kB)
 |████████████████████████████████| 943 kB 67.7 MB/s
Requirement already satisfied: sympy>=1.3 in /usr/local/lib/python3.7/dist-packages (from qiskit-terra==0.19.2->qiskit) (1.7.1)
Requirement already satisfied: psutil>=5 in /usr/local/lib/python3.7/dist-packages (from qiskit-terra==0.19.2->qiskit) (5.4.8)
Collecting python-constraint>=1.4
 Downloading python-constraint-1.4.0.tar.bz2 (18 kB)
Collecting ply>=3.10
 Downloading ply-3.11-py2.py3-none-any.whl (49 kB)
 |████████████████████████████████| 49 kB 7.3 MB/s
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.8.0->qiskit-ibmq-provide
r==0.18.3->qiskit) (1.15.0)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19->qiskit-ibmq-provi
der==0.18.3->qiskit) (2021.10.8)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19->qiskit-ibmq-provider==0
.18.3->qiskit) (2.10)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19->qiskit-ibmq-provid
er==0.18.3->qiskit) (3.0.4)
Collecting ntlm-auth>=1.0.2
 Downloading ntlm_auth-1.5.0-py2.py3-none-any.whl (29 kB)
Collecting cryptography>=1.3
 Downloading cryptography-36.0.1-cp36-abi3-manylinux_2_24_x86_64.whl (3.6 MB)
 |████████████████████████████████| 3.6 MB 51.7 MB/s
Requirement already satisfied: cffi>=1.12 in /usr/local/lib/python3.7/dist-packages (from cryptography>=1.3->requests-ntlm>=1.1.0->
qiskit-ibmq-provider==0.18.3->qiskit) (1.15.0)
Requirement already satisfied: pycparser in /usr/local/lib/python3.7/dist-packages (from cffi>=1.12->cryptography>=1.3->requests-nt
lm>=1.1.0->qiskit-ibmq-provider==0.18.3->qiskit) (2.21)
Requirement already satisfied: importlib-metadata>=1.7.0 in /usr/local/lib/python3.7/dist-packages (from stevedore>=3.0.0->qiskit-t
erra==0.19.2->qiskit) (4.11.1)
Collecting pbr!=2.1.0,>=2.0.0
 Downloading pbr-5.8.1-py2.py3-none-any.whl (113 kB)
 |████████████████████████████████| 113 kB 70.5 MB/s
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata>=1.7.0->stevedore>=3.0.
0->qiskit-terra==0.19.2->qiskit) (3.7.0)
Requirement already satisfied: typing-extensions>=3.6.4 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata>=1.7.0->
stevedore>=3.0.0->qiskit-terra==0.19.2->qiskit) (3.10.0.2)
Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.7/dist-packages (from sympy>=1.3->qiskit-terra==0.19.2->qiski
t) (1.2.1)
Building wheels for collected packages: qiskit, python-constraint
 Building wheel for qiskit (setup.py) ... done
 Created wheel for qiskit: filename=qiskit-0.34.2-py3-none-any.whl size=11805 sha256=c4366adef9933e1a6870486763a3f6da21fe40f987633
20f4d7fb4747b96e92a
 Stored in directory: /root/.cache/pip/wheels/62/77/65/cda6eedfdd2a525bd3f479a4386930ae3088a1eb01f8c944ed
 Building wheel for python-constraint (setup.py) ... done
 Created wheel for python-constraint: filename=python_constraint-1.4.0-py2.py3-none-any.whl size=24081 sha256=4dd8a531157e2d82f3a2
9b3f1fb08dccee17b08c0e71d6b2b0abe22064acf10b
 Stored in directory: /root/.cache/pip/wheels/07/27/db/1222c80eb1e431f3d2199c12569cb1cac60f562a451fe30479
Successfully built qiskit python-constraint
Installing collected packages: pbr, tweedledum, symengine, stevedore, scipy, retworkx, python-constraint, ply, ntlm-auth, cryptogra
phy, websocket-client, requests-ntlm, qiskit-terra, qiskit-ignis, qiskit-ibmq-provider, qiskit-aer, qiskit
 Attempting uninstall: scipy
 Found existing installation: scipy 1.4.1
 Uninstalling scipy-1.4.1:
 Successfully uninstalled scipy-1.4.1
Successfully installed cryptography-36.0.1 ntlm-auth-1.5.0 pbr-5.8.1 ply-3.11 python-constraint-1.4.0 qiskit-0.34.2 qiskit-aer-0.10
.3 qiskit-ibmq-provider-0.18.3 qiskit-ignis-0.7.0 qiskit-terra-0.19.2 requests-ntlm-1.1.0 retworkx-0.11.0 scipy-1.7.3 stevedore-3.5
.0 symengine-0.9.0 tweedledum-1.1.1 websocket-client-1.3.1

3.2 Create a "Quantum Class" with Qiskit

We can conveniently put our Qiskit quantum functions into a class. First, we specify how many trainable quantum parameters and how many shots we wish to
use in our quantum circuit. In this example, we will keep it simple and use a 1-qubit circuit with one trainable quantum parameter . We hard code the circuit
for simplicity and use a rotation by the angle to train the output of our circuit. The circuit looks like this:

In order to measure the output in the basis, we calculate the expectation.

We will see later how this all ties into the hybrid neural network.

Let's test the implementation

Expected value for rotation pi 0.48
 ┌───┐ ░ ┌───────────┐ ░ ┌─┐
 q: ┤ H ├─░─┤ Ry(theta) ├─░─┤M├
 └───┘ ░ └───────────┘ ░ └╥┘
meas: 1/═════════════════════════╩═
 0

3.3 Create a "Quantum-Classical Class" with PyTorch

Now that our quantum circuit is defined, we can create the functions needed for backpropagation using PyTorch. The forward and backward passes contain
elements from our Qiskit class. The backward pass directly computes the analytical gradients using the finite difference formula we introduced above.

3.4 Data Loading and Preprocessing

Putting this all together:

We will create a simple hybrid neural network to classify images of two types of digits (0 or 1) from the MNIST dataset. We first load MNIST and filter for
pictures containing 0's and 1's. These will serve as inputs for our neural network to classify.

Training data

Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ./data/MNIST/raw/train-images-idx3-ubyte.gz

Extracting ./data/MNIST/raw/train-images-idx3-ubyte.gz to ./data/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ./data/MNIST/raw/train-labels-idx1-ubyte.gz

Extracting ./data/MNIST/raw/train-labels-idx1-ubyte.gz to ./data/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw/t10k-images-idx3-ubyte.gz

Extracting ./data/MNIST/raw/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw

Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz

Extracting ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw

Testing data

So far, we have loaded the data and coded a class that creates our quantum circuit which contains 1 trainable parameter. This quantum parameter will be
inserted into a classical neural network along with the other classical parameters to form the hybrid neural network. We also created backward and forward
pass functions that allow us to do backpropagation and optimise our neural network. Lastly, we need to specify our neural network architecture such that we
can begin to train our parameters using optimisation techniques provided by PyTorch.

3.5 Creating the Hybrid Neural Network

We can use a neat PyTorch pipeline to create a neural network architecture. The network will need to be compatible in terms of its dimensionality when we
insert the quantum layer (i.e. our quantum circuit). Since our quantum in this example contains 1 parameter, we must ensure the network condenses neurons
down to size 1. We create a typical Convolutional Neural Network with two fully-connected layers at the end. The value of the last neuron of the fully-
connected layer is fed as the parameter into our quantum circuit. The circuit measurement then serves as the final prediction for 0 or 1 as provided by a
measurement.

3.6 Training the Network

We now have all the ingredients to train our hybrid network! We can specify any PyTorch optimiser, learning rate and cost/loss function in order to train over
multiple epochs. In this instance, we use the Adam optimiser, a learning rate of 0.001 and the negative log-likelihood loss function.

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:11: UserWarning: Creating a tensor from a list of numpy.ndarrays is ex
tremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Trig
gered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
 # This is added back by InteractiveShellApp.init_path()
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:32: FutureWarning: The input object of type 'Tensor' is an array-like
implementing one of the corresponding protocols (`__array__`, `__array_interface__` or `__array_struct__`); but not a sequence (or
0-D). In the future, this object will be coerced as if it was first converted using `np.array(obj)`. To retain the old behaviour, y
ou have to either modify the type 'Tensor', or assign to an empty array created with `np.empty(correct_shape, dtype=object)`.
Training [5%] Loss: -0.7978
Training [10%] Loss: -0.9329
Training [15%] Loss: -0.9456
Training [20%] Loss: -0.9521
Training [25%] Loss: -0.9550
Training [30%] Loss: -0.9606
Training [35%] Loss: -0.9623
Training [40%] Loss: -0.9705
Training [45%] Loss: -0.9727
Training [50%] Loss: -0.9706
Training [55%] Loss: -0.9819
Training [60%] Loss: -0.9809
Training [65%] Loss: -0.9822
Training [70%] Loss: -0.9843
Training [75%] Loss: -0.9849
Training [80%] Loss: -0.9869
Training [85%] Loss: -0.9908
Training [90%] Loss: -0.9893
Training [95%] Loss: -0.9923
Training [100%] Loss: -0.9920

Plot the training graph

Text(0, 0.5, 'Neg Log Likelihood Loss')

3.7 Testing the Network

Performance on test data:
 Loss: -0.9851
 Accuracy: 100.0%

4. What Now?

While it is totally possible to create hybrid neural networks, does this actually have any benefit?

In fact, the classical layers of this network train perfectly fine (in fact, better) without the quantum layer. Furthermore, you may have noticed that the quantum
layer we trained here generates no entanglement, and will, therefore, continue to be classically simulatable as we scale up this particular architecture. This
means that if you hope to achieve a quantum advantage using hybrid neural networks, you'll need to start by extending this code to include a more
sophisticated quantum layer.

The point of this exercise was to get you thinking about integrating techniques from ML and quantum computing in order to investigate if there is indeed
some element of interest - and thanks to PyTorch and Qiskit, this becomes a little bit easier.

Version Information

Qiskit Software Version

qiskit-terra 0.19.2

qiskit-aer 0.10.3

qiskit-ignis 0.7.0

qiskit-ibmq-provider 0.18.3

System information

Python version 3.7.12

Python compiler GCC 7.5.0

Python build default, Jan 15 2022 18:48:18

OS Linux

CPUs 1

Memory (Gb) 12.686653137207031

Mon Feb 28 21:02:36 2022 UTC

σ hi

i R(hi) hi y

θ s

θ + s θ − s

In []:
import numpy as np
from IPython.display import Image
import matplotlib.pyplot as plt

In []:
!pip uninstall imgaug && pip uninstall albumentations && pip install git+https://github.com/aleju/imgaug.git

In []:
!pip install qiskit

In []:
import torch
from torch.autograd import Function
from torchvision import datasets, transforms
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F

import qiskit
from qiskit import transpile, assemble
from qiskit.visualization import *

θ

RY − θ

z− σz

σz =. ∑
i

zip(zi)

In []:
class QuantumCircuit:
 """
 This class provides a simple interface for interaction
 with the quantum circuit
 """

 def __init__(self, n_qubits, backend, shots):
 # --- Circuit definition ---
 self._circuit = qiskit.QuantumCircuit(n_qubits)

 all_qubits = [i for i in range(n_qubits)]
 self.theta = qiskit.circuit.Parameter('theta')

 self._circuit.h(all_qubits)
 self._circuit.barrier()
 self._circuit.ry(self.theta, all_qubits)

 self._circuit.measure_all()
 # ---------------------------

 self.backend = backend
 self.shots = shots

 def run(self, thetas):
 t_qc = transpile(self._circuit,
 self.backend)
 qobj = assemble(t_qc,
 shots=self.shots,
 parameter_binds = [{self.theta: theta} for theta in thetas])
 job = self.backend.run(qobj)
 result = job.result().get_counts()

 counts = np.array(list(result.values()))
 states = np.array(list(result.keys())).astype(float)

 # Compute probabilities for each state
 probabilities = counts / self.shots
 # Get state expectation
 expectation = np.sum(states * probabilities)

 return np.array([expectation])

In []:
simulator = qiskit.Aer.get_backend('aer_simulator')

circuit = QuantumCircuit(1, simulator, 100)
print('Expected value for rotation pi {}'.format(circuit.run([np.pi])[0]))
circuit._circuit.draw()

Out[]:

In []:
class HybridFunction(Function):
 """ Hybrid quantum - classical function definition """

 @staticmethod
 def forward(ctx, input, quantum_circuit, shift):
 """ Forward pass computation """
 ctx.shift = shift
 ctx.quantum_circuit = quantum_circuit

 expectation_z = ctx.quantum_circuit.run(input[0].tolist())
 result = torch.tensor([expectation_z])
 ctx.save_for_backward(input, result)

 return result

 @staticmethod
 def backward(ctx, grad_output):
 """ Backward pass computation """
 input, expectation_z = ctx.saved_tensors
 input_list = np.array(input.tolist())

 shift_right = input_list + np.ones(input_list.shape) * ctx.shift
 shift_left = input_list - np.ones(input_list.shape) * ctx.shift

 gradients = []
 for i in range(len(input_list)):
 expectation_right = ctx.quantum_circuit.run(shift_right[i])
 expectation_left = ctx.quantum_circuit.run(shift_left[i])

 gradient = torch.tensor([expectation_right]) - torch.tensor([expectation_left])
 gradients.append(gradient)
 gradients = np.array([gradients]).T
 return torch.tensor([gradients]).float() * grad_output.float(), None, None

class Hybrid(nn.Module):
 """ Hybrid quantum - classical layer definition """

 def __init__(self, backend, shots, shift):
 super(Hybrid, self).__init__()
 self.quantum_circuit = QuantumCircuit(1, backend, shots)
 self.shift = shift

 def forward(self, input):
 return HybridFunction.apply(input, self.quantum_circuit, self.shift)

In []:
Concentrating on the first 100 samples
n_samples = 100

X_train = datasets.MNIST(root='./data', train=True, download=True,
 transform=transforms.Compose([transforms.ToTensor()]))

Leaving only labels 0 and 1
idx = np.append(np.where(X_train.targets == 0)[0][:n_samples],
 np.where(X_train.targets == 1)[0][:n_samples])

X_train.data = X_train.data[idx]
X_train.targets = X_train.targets[idx]

train_loader = torch.utils.data.DataLoader(X_train, batch_size=1, shuffle=True)

In []:
n_samples_show = 6

data_iter = iter(train_loader)
fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3))

while n_samples_show > 0:
 images, targets = data_iter.__next__()

 axes[n_samples_show - 1].imshow(images[0].numpy().squeeze(), cmap='gray')
 axes[n_samples_show - 1].set_xticks([])
 axes[n_samples_show - 1].set_yticks([])
 axes[n_samples_show - 1].set_title("Labeled: {}".format(targets.item()))

 n_samples_show -= 1

In []:
n_samples = 50

X_test = datasets.MNIST(root='./data', train=False, download=True,
 transform=transforms.Compose([transforms.ToTensor()]))

idx = np.append(np.where(X_test.targets == 0)[0][:n_samples],
 np.where(X_test.targets == 1)[0][:n_samples])

X_test.data = X_test.data[idx]
X_test.targets = X_test.targets[idx]

test_loader = torch.utils.data.DataLoader(X_test, batch_size=1, shuffle=True)

θ σz

In []:
class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 6, kernel_size=5)
 self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
 self.dropout = nn.Dropout2d()
 self.fc1 = nn.Linear(256, 64)
 self.fc2 = nn.Linear(64, 1)
 self.hybrid = Hybrid(qiskit.Aer.get_backend('aer_simulator'), 100, np.pi / 2)

 def forward(self, x):
 x = F.relu(self.conv1(x))
 x = F.max_pool2d(x, 2)
 x = F.relu(self.conv2(x))
 x = F.max_pool2d(x, 2)
 x = self.dropout(x)
 x = x.view(1, -1)
 x = F.relu(self.fc1(x))
 x = self.fc2(x)
 x = self.hybrid(x)
 return torch.cat((x, 1 - x), -1)

In []:
model = Net()
optimizer = optim.Adam(model.parameters(), lr=0.001)
loss_func = nn.NLLLoss()

epochs = 20
loss_list = []

model.train()
for epoch in range(epochs):
 total_loss = []
 for batch_idx, (data, target) in enumerate(train_loader):
 optimizer.zero_grad()
 # Forward pass
 output = model(data)
 # Calculating loss
 loss = loss_func(output, target)
 # Backward pass
 loss.backward()
 # Optimize the weights
 optimizer.step()

 total_loss.append(loss.item())
 loss_list.append(sum(total_loss)/len(total_loss))
 print('Training [{:.0f}%]\tLoss: {:.4f}'.format(
 100. * (epoch + 1) / epochs, loss_list[-1]))

In []:
plt.plot(loss_list)
plt.title('Hybrid NN Training Convergence')
plt.xlabel('Training Iterations')
plt.ylabel('Neg Log Likelihood Loss')

Out[]:

In []:
model.eval()
with torch.no_grad():

 correct = 0
 for batch_idx, (data, target) in enumerate(test_loader):
 output = model(data)

 pred = output.argmax(dim=1, keepdim=True)
 correct += pred.eq(target.view_as(pred)).sum().item()

 loss = loss_func(output, target)
 total_loss.append(loss.item())

 print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format(
 sum(total_loss) / len(total_loss),
 correct / len(test_loader) * 100)
)

In []:
n_samples_show = 6
count = 0
fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3))

model.eval()
with torch.no_grad():
 for batch_idx, (data, target) in enumerate(test_loader):
 if count == n_samples_show:
 break
 output = model(data)

 pred = output.argmax(dim=1, keepdim=True)

 axes[count].imshow(data[0].numpy().squeeze(), cmap='gray')

 axes[count].set_xticks([])
 axes[count].set_yticks([])
 axes[count].set_title('Predicted {}'.format(pred.item()))

 count += 1

In []:
import qiskit.tools.jupyter
%qiskit_version_table

