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Extended-connectivity fingerprints (ECFPs) are a novel class of topological fingerprints for molecular
characterization. Historically, topological fingerprints were developed for substructure and similarity searching.
ECFPs were developed specifically for structure-activity modeling. ECFPs are circular fingerprints with a
number of useful qualities: they can be very rapidly calculated; they are not predefined and can represent
an essentially infinite number of different molecular features (including stereochemical information); their
features represent the presence of particular substructures, allowing easier interpretation of analysis results;
and the ECFP algorithm can be tailored to generate different types of circular fingerprints, optimized for
different uses. While the use of ECFPs has been widely adopted and validated, a description of their
implementation has not previously been presented in the literature.

INTRODUCTION

Molecular fingerprints1 are representations of chemical
structures originally designed to assist in chemical database
substructure searching2 but later used for analysis tasks, such
as similarity searching,3 clustering,4 and classification.5

Extended-connectiVity fingerprints (ECFPs) are a recently
developed fingerprint methodology explicitly designed to
capture molecular features relevant to molecular activity.
While not designed for substructure searching, they are well
suited to tasks related to predicting and gaining insight into
drug activity.6 Additionally, ECFPs can be used much like
other fingerprints in methods, such as similarity searching,
clustering, and virtual screening.

Since their introduction in the first release of Pipeline
Pilot7,8 in the year 2000, ECFPs have been applied to a broad
range of scientifically relevant problems, using a wide variety
of analysis methods.9 This paper describes how ECFPs are
generated; the contrasts of using ECFPs to other fingerprint
methodologies; and lists some of the many scientific ap-
plication areas in which they have been used and published.

METHODS

Relation to Morgan Algorithm. ECFPs are derived using
a variant of the Morgan algorithm,10 which was proposed
as a method for solving the molecular isomorphism problem
(that is, identify when two molecules, with different atom
numberings, are the same). In the Morgan algorithm, an
iterative process assigns numeric identifiers to each atom,
at first using a rule that encodes the numbering invariant
atom information into an initial atom identifier, and later
using the identifiers from the previous iteration. Thus,
identifiers generated are independent of the original number-
ing of the atoms. The iteration process is continued until

every atom identifier is unique (or as close to “unique” as
symmetry allows); the intermediate results are discarded, and
the final identifiers provide a canonical numbering scheme
for the atoms.

The ECFP algorithm makes several changes to the standard
Morgan algorithm. First, ECFP generation terminates after
a predetermined number of iterations rather than after
identifier uniqueness is achieved. The initial atom identifiers,
and all identifiers after each iteration, are collected into a
set; it is this set that defines the extended-connectivity
fingerprint. Rather than discarding the intermediate atom
identifiers, the ECFP algorithm retains them. Indeed, obtain-
ing these partially disambiguated atom identifiers is the goal
of the process. This means that the iteration process does
not have to proceed to completion (that is, maximum
disambiguation) but is performed for a predetermined number
of iterations. Second, since perfectly accurate disambiguation
is not required, algorithmic optimizations are possible.
Consider, for example, that in the standard Morgan process,
the identifiers must be carefully recoded after each iteration
to avoid mathematical overflow and possible “collision”
(where two different atom environments are accidentally
given the same identifier). This recoding has the side-effect
of creating identifiers that are not comparable between
different molecules (i.e., two identical atom environments
may be given different identifiers). In the ECFP algorithm,
this computationally expensive step is replaced by a fast-
hashing scheme. This results in a savings of computational
effort when the ECFP algorithm is used for fingerprint
generation, as compared to the rigorous Morgan algorithm
used for canonicalization. Importantly, the ECFP-hashing
scheme generates identifiers that are comparable across
molecules.

ECFP Generation Process. The ECFP generation process
has three sequential stages:
1. An initial assignment stage in which each atom has an

integer identifier assigned to it.
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2. An iteratiVe updating stage in which each atom identifier
is updated to reflect the identifiers of each atom’s
neighbors, including identification of whether it is a
structural duplicate of other features.

3. A duplicate identifier remoVal stage in which multiple
occurrences of the same feature are reduced to a single
representative in the final feature list. (The occurrence
count may be retained if one requires a set of counts rather
than a standard binary fingerprint.)

The above process is further described as follows. First,
atoms are assigned integer identifiers (for example, atoms
might use their atomic number). These initial atom identifiers
are collected into an initial fingerprint set. Next, each atom
collects its own identifier and the identifiers of its im-
mediately neighboring atoms, into an array (the neighbors
are ordered using their identifiers, and the order of the
attaching bonds, to avoid order-dependence). A hash function
is applied to reduce this array back into a new, single-integer
identifier. Once all atoms have generated their new identifiers,
they replace their old identifiers with their new identifiers.
The new atom identifiers are added into the fingerprint set.
This iteration is repeated a prespecified number of times.
When the specified number of iterations is completed,
duplicate identifiers in the set are removed, and the remaining
integer identifiers in the fingerprint set define the ECFP
fingerprint.

The iteration process is illustrated using benzoic acid
amide, with atom numbering as shown in Figure 1. The effect
of iteratively updating the information around atom 1 in this
compound is shown in Figure 2. At the beginning (iteration
0), the initial atom identifier only represents information
about the atom itself and its attached bonds; this is shown
as the substructure in the lower left corner of the figure (we
represent allowed attachment points in the substructure using
the “A” atom type). After one iteration, the identifier now
contains information about atom 1′s immediate neighbors,
as shown in the lower center substructure. After two
iterations, the represented substructure has grown further,
now fully incorporating the amide group as well as much of
the aromatic ring. It also captures the absence of substituents
either ortho- or meta- to the ring amide.

This illustrates the power of the Morgan algorithm-based
updating process: a strictly local operation (that is, each atom
collecting identifiers only from its immediate neighbors)
results in identifiers that may represent quite large substruc-
tures. Given that the process is executed over all atoms in
the molecule (and not just a single atom, as shown in the
figure), the final set of identifiers will contain substructural
information from all parts of the molecule. Also, since the
set is generated by collecting all identifiers up to some
number of iterations, the final set contains a mixture of
substructures of differing size for each atom in the molecule,

some large and quite precise (such as the identifier represent-
ing an aromatic carboxylic acid amide with no ortho- or
meta-substitution obtained starting at atom 1 in the figure
after performing two iterations), and some small and
relatively common (such as the substituted aromatic carbon
atom represented by the initial atom identifier of atom 1).

The previous informal discussion avoids many of the
details of the ECFP generation process. The following
sections describe the process with enough precision to allow
reproduction of all key aspects of the algorithm.

Initial Assignment of Atom Identifiers. The generation of
ECFPs for a molecule begins with the assignment of initial
atom identifiers. Hydrogen atoms and bonds to hydrogen
atoms are ignored. In theory, any rule that generates integer
values for atoms, and is independent of atom numbering,
could be used. In this paper we describe in detail two rules
leading to two different fingerprints: a standard ECFP and a
variant termed FCFP. ECFPs are intended to capture precise
atom environment substructural features, while FCFPs are
intended to capture more abstract role-based substructural
features. The ECFP rule is derived from the properties used
in the Daylight atomic invariants rule.11 The FCFP rule is
derived from the functional class (i.e., pharmacophore role)
of the atoms in a molecule.

Other initial atom identifiers based on different abstraction
rules can be used to generate additional fingerprint variants,
for example, Sybyl atom types12(termed SCFPs), or aLog P
atom codes13(termed LCFPs). The number of possible
variants of the ECFP generation process requires a naming
convention to distinguish between related alternatives. We
have chosen a convention (used in Pipeline Pilot)6 that names
a fingerprint using a four-character string (e.g., “ECFP”),
followed by an underscore, followed by a number. The
appended number is the effective diameter of the largest
feature and is equal to twice the number of iterations
performed; for example, if three iterations are performed,
the largest possible fragment will have a width of 6 bonds,

Figure 1. Benzoic acid amide atom numbering (of non-hydrogen
atoms).

Figure 2. Illustration of the effect of iterative updating on the
information represented by an atom identifier. Here, we consider
atom 1 in benzoic acid amide. Each iteration has the effect of
creating an identifier that represents larger and larger circular
substructures around the central atom, as shown at the top of the
figure. At iteration 0 (that is, the initial atom identifier), the atom
only represents information about atom 1 and its attached bonds
and can be represented by the substructure on the bottom left (“A”
represents an atom of any type other than hydrogen). After one
iteration, the identifier now contains information about atom 1′s
immediate neighbors, as shown in the bottom center substructure.
After two iterations, the represented substructure has grown further,
now fully incorporating the amide group as well as much of the
aromatic ring, as shown in the bottom right.
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and the fingerprint name will end in “_6” (e.g., “ECFP_6”).
Regardless of the choice of initial atom identifier method,
the remainder of the algorithm can be executed without
change.

As previously stated, the initial atom identifier for the
standard “ECFP” fingerprint uses atom information from the
Daylight atomic invariants rule. The Daylight atomic invari-
ants are six properties of an atom in a molecule that do not
depend on initial atom numbering. These properties are: the
number of immediate neighbors who are “heavy” (non-
hydrogen) atoms; the valence minus the number of hydro-
gens; the atomic number; the atomic mass; the atomic charge;
and the number of attached hydrogens (both implicit and
explicit). We include one additional property: whether the
atom is contained in at least one ring. To create an integer
identifier from this information, these values are hashed into
a single 32-bit integer value. This value is the initial atom
identifier. For example, the initial atom identifiers for the
atoms in butyramide are shown in Figure 3.

The fingerprint set for the molecule is initialized with the
initial atom identifiers. For the above case, that would be
the set of identifiers [734603939, 1559650422, 1559650422,
-1100000244, 1572579716, and -1074141656]. This set
is used as a starting point for saving additional identifiers
collected after each iteration of the iterative updating process.

Each atom also keeps an associated set of bonds which
define the substructure covered by the current identifier. As
no iterations have yet been performed, the bond set for each
atom is initialized to the empty set. As the iterations proceed,
this bond set will be used to remove structural duplicates,
as described in the next section.

IteratiVe Updating of Identifiers. The iterative updating
process generates features that represent each atom within
larger and larger circular substructural neighborhoods. Each
iteration uses, as input, the atom identifiers from the previous
iteration (or, if no iterations have yet been performed, the
initial atom identifiers). Once each atom has calculated its
new identifier, all atoms simultaneously update their identifier
value, which completes the iteration. Any newly generated
identifiers are added to the fingerprint set. Once a specified
number of iterations is performed, the process proceeds to
duplicate identifier removal.

A single iteration for a given atom is performed using the
following sequence:
1. An array of integers is initialized to contain the iteration

number and the identifier for the given (core) atom.
2. Attached atoms are sorted into a deterministic order using

the bond order (single, double, triple, and aromatic) and
the current identifier of each attached atom. A standard
Hückel 4n + 2 method is used for calculating aromaticity.

3. For each attachment, the attachment identifier and the
bond order are appended to the array.

4. If the atom is a possible stereoatom but is not yet
disambiguated, and all attachment atoms have different
identifiers, then the atom is marked as disambiguated,
and a stereochemical flag is appended to the array,
depending on the marked stereochemistry. (Step 4 is only
performed if stereochemical fingerprints are requested.)

5. The array is hashed into a single 32-bit integer. This is
the new identifier for the atom.

To illustrate this process, consider the carboxylic acid
carbon (atom 4, with the initial identifier of “-1100000244”)
in the molecule in Figure 3. In the first iteration, this atom
will update as follows. First, an array will be created, with
its first element initialized to “1” (the iteration level) and
the second to “-1100000244” (the core atom’s identifier).
Next, we add two numbers to the array for each non-
hydrogen attachment. The first of the two numbers will be
the bond order for the bond to that attachment: 1, 2, 3, and
4 for single, double, triple, and aromatic bonds, respectively.
The second of the two numbers is the current atom identifier
of the attachment atom. To avoid order dependency in the
attachment list, the attachments are sorted using their number
pairs; in this case, the final order for the pairs is (1,
1559650422), (1, 1572579716), and (2, -1074141656). The
final array for this atom contains eight elements and is: [1,
-1100000244,1,1559650422,1,1572579716,2,-1074141656].
Finally, the array of numbers is hashed to generate a single
number, which is the new identifier (in this case, the number
“-1708545601”). Repeating this process for each atom, each
atom gets a new identifier, as shown in Figure 4.

Once every atom has a new identifier, features representing
duplicate substructures are identified and are marked for
removal, as described in the next section. Any remaining
newly generated identifiers are then added to the current
fingerprint array. After one iteration, the array of identifiers
(thefingerprintset) forbutyramideis: [734603939,1559650422,
1559650422, -1100000244, 1572579716, -1074141656,
863188371, -1793471910, -1789102870, -1708545601,
-932108170, 2099970318].

Conceptually, as the process is repeated, the feature
denoted by an atom identifier represents an atom-centered
substructure of increasing size. Figure 5 shows the process
as applied to the oxygen atom in butyramide. Before the
iteration process begins, the feature represented by the initial
atom identifier is simply a double-bonded oxygen. After one
iteration, the identifier represents a carbonyl group. After
two iterations, the identifier represents an aliphatic carboxylic
acid amide, with no substituents on the nitrogen atom and
exactly one substituent on the R carbon. This shows how
even a small number of iterations quickly creates identifiers
that represent larger and larger substructures.

What is the appropriate number of iterations? The answer
depends on the desired use of the fingerprint. Typically, two
iterations is sufficient for fingerprints that will be used for
similarity or clustering, while activity learning methods often
benefit from the greater structure detail available after three
or even four or more iterations. Since there is no objective
termination condition, the number of iterations is under the
control of the user (though as the number of requested
iterations is increased, the number of newly discovered
identifiers will diminish, and eventually no new identifiers
will be discovered).

Figure 3. The initial atom identifiers for butyramide, calculated
using the Daylight atomic invariants-derived rule. (Note that the
hash function may return either positive or negative numbers for
the identifiers.)
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Duplicate Structure RemoVal. After several iterations, it
is possible for two different atoms to contain information
about identical structural regions of a molecule, as defined
by the set of bonds covered by the atom-centered environ-
ment. This is called structural duplication. For example,
consider the two substructures of the benzoic acid amide
molecule from Figure 1 that were generated starting with
the oxygen or nitrogen atoms, respectively, as shown in
Figure 6. Whether the feature region is centered on the
nitrogen or the oxygen, it represents the same structural unit
of the molecule (after two or more iterations). But since the
regions started at different atoms, the hashed identifier
generated for the two originating atoms will be different,
even though they represent the same underlying substructure.
Such duplicates need to be identified and then removed to
avoid adding useless redundancy to the fingerprint.

To identify such duplicates, each fingerprint feature keeps
track of the set of bonds that it represents in a particular
molecule. At each iteration step, the set of bonds is updated
to include the union of all bonds in the core atom’s bond set
from the previous iteration, the attachment atom’s bond sets
from the previous iteration, and all attachment bonds. These
bonds define the substructure within the molecule that is
covered by the newly generated feature.

Before the newly generated features from an iteration are
appended to the fingerprint set, they are checked to see if
any structural duplicates exist to either previously generated

features or newly discovered features. When two features
are discovered to be from equivalent bond sets, the following
rules are used to remove one:
1. If the features were generated from a different number

of iterations, the feature from the larger number of
iterations is rejected.

2. If the features were generated from the same number of
iterations, then the larger hashed identifier value (inter-
preted as an integer) is rejected.

The removal of duplicates has the additional effect that,
at some number of iterations, fewer features will be generated
than at the previous iteration level, and at some larger number
of iterations, no more new features will be generated. Figure
7 shows the total features generated from butyramide. (The
central generating atom for each feature is denoted by having
its atom number shown.) Butyramide generates five different
features (unique initial atom identifiers) in the initial assign-
ment stage, even though there are six atoms. This is because
there is identifier duplication with atoms 2 and 3, because
at this level of abstraction, they represent the same feature.
After the first iteration, there are six new features found.
After the second iteration, however, structural duplication
begins to occur, which results in the removal of three of the
possible six features. No additional features are discovered
in subsequent iterations. This can also be seen in Figure 8,
where ECFP is calculated to diameters of 0, 2, 4, and 6. At
each diameter, the fingerprint is the combination of all
features from the previous diameter, plus any new features
discovered at that step. Because butyramide is only 4 bonds
wide, all possible structures are discovered by diameter 4,
so ECFP_4 and ECFP_6 are identical.

Figure 4. Generation of new identifiers by performing one iteration using butyramide. The initial atom identifiers are shown on the molecule
on the left; after the updating process, each atom is given a new identifier, shown on the molecule on the right.

Figure 5. Effect of the iteration process on information stored in
the identifier of the oxygen atom in butyramide. (The “A” atom
type can map onto any atom type and is the only atom that may
have connections that are not specified.) The sphere shows the
feature region represented in the identifier after the given number
of iterations. After zero iterations, only information about the atom
itself and its connectivity are available. After one iteration, the
identifier contains information from the core atom’s immediate
neighbors; in this case a carbonyl. After two iterations, atoms within
two bonds of the core atom are included. At this point, it represents
an aliphatic carboxylic acid amide, with no substituents on the
nitrogen atom and exactly one substituent on the R carbon.

Figure 6. The feature regions after two iterations centered on the
oxygen (left) and the nitrogen (right). Since both of these regions
contain exactly the same atoms and bonds, they represent duplicate
information, even though their hashed identifier values are different.

Figure 7. The structures represented by the features of butyramide
after duplicate removal. The molecule generates five features (that
is, unique atom identifiers) in the initial assignment stage, six
additional features after one iteration, and three features after two
iterations. Further iterations generate no new features. (The central
atom for the figure is denoted by having its atom number shown.)
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Duplicate Identifier RemoVal. Sometimes, the final list of
features contains duplicate identifiers. This results from
equivalent substructures appearing in the molecule in more
than one place. For example, a feature may represent a
methyl group, and there may be more than one methyl group
in the molecule. These different methyl groups will produce
the same initial hashed identifier (and may even produce the
same identifiers for some number of successive iterations,
until a unique substructure is discovered). This kind of
duplication can be eliminated by the optional removal of the
redundant identifiers. Alternatively, duplicate identifiers can
be kept and represented in the fingerprint. In our terminology,
a fingerprint contains no duplicate identifiers, while a
fingerprint with counts retains information about multiple
occurrences by leaving the duplicates in the set.

The presence or absence of a particular ECFP ‘bit’ in an
ECFP indicates presence or absence, respectively, of that
feature. Because multiple features may ‘collide’, that is, be
represented by the same bit code, the absence of a code is
determinative (i.e., the feature is not present), but the
presence of a code is only suggestive (i.e., the feature is likely
present).

The iteration process, combined with duplicate identifier
removal, provides a rich set of structural primitives to
describe a molecule and can represent a very large number
of different molecular features (over 4 billion). (The section
Number of ECFP Features in Typical Libraries will discuss
how many different features are generated from a typical
compound library.)

Choice of Hash Function. We do not describe the
particular hash function used in our calculation because any
“reasonable” hash function can be used, and the scientific
validity of the results is equivalent. What is most important
is to have the hash function map arrays of integers randomly
and uniformly into the 232-size space of all possible integers;
without uniform coverage, the collision rate may increase,
leading to a loss of information. One could also choose a
hash function that mapped into a larger address space; for
example, 64-bit integers would provide a 264-size space,
further reducing the collision rate. From a practical perspec-
tive, we find that using 64-bit integers leads to no measurable
improvement in analysis, and the manipulation of 64-bit
integers is slower than 32-bit integers on current 32-bit
computing hardware.

Functional-Class Fingerprints. The highly specific atom
information contained in the initial atom identifiers for ECFPs
allows the generation process to rapidly discover identifiers
that represent a broad set of precisely defined structural
features. However, for some purposes, this specificity may
be undesirable, and some level of abstraction useful. For
example, a chlorine or a bromine substituent on a ring may
be functionally equivalent but would be distinguished by the
ECFP process. We might prefer to have all halogens appear
as equivalent atom types in the fingerprinting process.
Similarly, we may want to represent all hydrogen-bond
acceptors as equivalent types. This kind of abstraction is
achieved with functional-class fingerprints (FCFPs).

FCFPs are generated using a more abstract, pharmacoph-
oric set of initial atom identifiers similar to the catalyst
pharmacophore identifiers.14 Each atom is identified by a
six-bit code, where a given bit is “on” if the atom plays the
associated role. The atom roles are: hydrogen-bond acceptor
and donor; negatively and positively ionizable; aromatic; and
halogen. (Note that an atom may have more than one role
or no role at all.) The six-bit code for each atom is the initial
atom identifier. Once the initial identifiers are calculated, the
process proceeds identically to the ECFP process.

Interpretation of Identifiers. One way to conceptualize the
identifiers generated by the ECFP is as indices of bits in a
large (232) bitset. For example, a molecule containing an atom
with identifier “1559650422” could be considered to have
bit 1 559 650 422 “on” in the bitset. (Negative identifiers are
treated as “unsigned integers”.) However, this is only an
analogy, not a requirement; the identifiers themselves can
be of any type, and the hash space any size. A more precise
analogy would be of a hash table with the identifiers as keys.
In either case, since the number of possible identifiers is
much larger than the number present in any particular
molecule (typically up to a few hundred features), the
fingerprint is stored as a variable-length list of “on” bits,
rather than as actual “on” bits in a large, fixed-length,
nonvirtual, bitset. In any case, the size of the space of
identifiers is an artifact of the hash function; a more
traditionally sized fingerprint (e.g., 1024 bits) could be
created by hashing into that smaller, fixed-length, space.
There is some evidence that only a small amount of
information is lost by this ‘folding’ operation,18 but as the
collision rate (two different substructures being represented

Figure 8. Fingerprints for butyramide with different diameters. Note that higher diameters contain all the fingerprint bits of lower diameters,
possibly with new identifiers appended at the end. Also, note that ECFP_4 and ECFP_6 contain the same list. This is because the final
iteration did not discover any new identifiers, where “new” is determined by the set of bonds that underlay a particular feature. By the time
we have gone to a maximum diameter of four bonds, the entire molecule has been covered, and there is nothing new to discover.
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by the same identifier) is higher, both the quality and
interpretability of the results will suffer.

While there is no way to directly decode the integer
identifiers of ECFPs, it is still possible to ascertain the
substructure a particular feature represents. While the identi-
fier itself does not contain any structural information, at the
time an ECFP is generated, each feature has access to the
set of atoms and bonds that defines its substructure within
the parent molecule. The identifier and substructure pairs can
be stored so that one can look up the substructure corre-
sponding to a particular feature of interest. The substructure
information can be regenerated from the original data on
demand, or saved up-front as a table mapping features to
SMARTS20 strings. This is illustrated for butyramide in
Figure 9. The identifiers of the ECFP_6 fingerprint are shown
in the first column. The second column contains the set of
atoms that are represented by the corresponding ECFP_6
feature. The final column shows the SMARTS representation
of the extracted substructure, with the attachment points
denoted using the “A” atoms.

Note that the relationship between fingerprint features and
the substructures may not always be one-to-one, that is,
different substructural representations may share the same
identifier (and, more rarely, different identifiers may represent
the same underlying substructural representation). This is
especially true when using FCFPs, since the initial atom
identifiers are already abstracted and do not contain any
connectivity or hydrogen information as do ECFPs. For
example, Figure 10 shows a sampling of the underlying
substructures that contained FCFP feature “1499521844” in
a set of 7500 random drug molecules from the National
Cancer Institute (NCI) AIDS data set.

There are additional effects that may lead to multiple
structural representations of a particular bit that are seen with
both ECFPs and FCFPs. One is that bond types to attachment
“A” atoms may be of any type (as that information is not
considered until the following iteration step). Also, rings that
contain an attachment “A” atom may be opened at the
attachment atom with no change in the identifier. This
combination of effects leads to a multiplicity of substructures;
that said, the similarity among the structures is striking, and

an abstraction process that treats them the same is chemically
reasonable. Using ECFPs rather than FCFPs reduces, but
does not eliminate, the one-to-many representational effect.
The best solution, if one discovers a feature of interest, is to
simply search for that feature in the calculated fingerprint,
rather than generating a substructural query and using it to
identify candidates. While the structural representation can
assist the chemist in interpretation, it is not definitive.

RESULTS AND DISCUSSION

Comparison to Other Fingerprint Methods. There are
numerous fingerprinting methods described in the literature.
One of the nearest relatives to ECFPs is also one of the
oldest. This is the concept of a fragment reduced to an
environment that is limited (FREL) of the DARC substruc-
ture search system,15,16 one of the earliest molecular

Figure 9. At the time of fingerprint calculation, additional information about the substructure represented by each identifier is available.
This example uses butyramide, shown on the left. The bits of the ECFP_6 fingerprint are shown in the first column. The second column
contains a set of atoms that were represented by the corresponding ECFP_6 bit. (Sets of atoms leading to duplicate features are not included
in the list.) The final column shows a SMARTS representation of the extracted substructure, with the attachment points denoted using the
“A” atoms. These are the legal attachment points. (Note: While Pipeline Pilot was used to generate these results and uses the “*” atom
rather than the “A” atom for attachment points; we use “A” here for consistency with the text.) One can create a table of features and
corresponding SMARTS for a particular training set, then use that information to see a substructural example of any feature of interest.

Figure 10. A set of underlying substructures that all generate the
FCFP_6 feature “1499521844”. (Legal attachment atoms are
denoted using the “A” atom.) There are a number of reasons for
the multiplicity of substructures. First, in FCFPs, the initial atom
identifiers are abstracted and do not contain any connectivity
information, hydrogen information, or explicit atom types, as do
ECFPs. Second, information about the bond types to attachment
atoms is not included in the feature. Third, rings that contain an
attachment “A” atom may be opened at the attachment atom with
no change of feature value. This combination of effects leads to a
multiplicity of substructures; that said, the similarity among the
structures is striking, and an abstraction that treats them the same
is not without interest.
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databases. The FREL describes two concentric layers of
atoms around a central focus (typically, an atom or bond),
creating a tree structure with the central atom at the root.
This information is approximately the same as the informa-
tion in the atom identifiers during the calculation of an ECFP
after two iterations. These FRELs can be calculated for all
molecules in a database and matched against abstracted query
FRELs (termed “fuzzy-FRELs”) to speed-up molecular
database substructure search. ECFPs are different in that they
do not explicitly retain the connectivity but hash the
information into a single numeric identifier. The DARC
system needed the structures themselves to perform matching
operations, a requirement not applicable to ECFPs. Also,
FRELs are defined to have a four-bond diameter, while the
size of the circular substructures represented by ECFPs may
include a mixture of many different diameters.

A later development in molecular database optimization
led to the first explicitly binary fingerprint for substructure
search. This was the set of 960 predefined substructure-based
keys used by the MACCS system from Molecular Design
Limited (MDL).17 ECFPs have several advantages when
contrasted to predefined substructural keys. First, since the
set of keys is fixed, the system may not contain keys
appropriate to the novel structural variation in a given
compound library. Next, the keys are designed for substruc-
ture search, which limits their utility for activity modeling
and categorization (see the Hydrogen-Filled Substructural
Features Section for this discussion). Finally, even the most
intelligently selected set of keys18 is limited in coverage,
making it unlikely that more detailed and specific substruc-
tures particular to some unusual activity class would be
represented. The hundreds of thousands of different features
generated by the ECFP process for a typical HTS data set
of 50 000 molecules are more likely to expose larger and
more detailed structural information critical to activity.

The concept of predefined substructural keys has been
expanded by companies such as LeadScope,19 which use a
fingerprint based upon a large (>50 000) fragment dictionary,
but in this case, use the fingerprint for the analysis of
biological activity rather than database searching. While the
much larger set of features is better suited to activity analysis,
the predefined features still may not reflect structural variants
in novel activity classes. Even the larger set of features is
much smaller than the typical number of features that would
be generated by computing ECFPs against all the molecules
in a vendor library.

Another commonly used class of fingerprints is available
through Daylight Chemical Information Systems.20 It uses
features based upon the presence of paths of varying lengths
containing specific atom types. This generates a sparse binary
vector, which is commonly “folded” to a bitset of specified
size (e.g., 1024 bits) to reduce its size for ease of manipula-
tion. ECFPs have several advantages when contrasted to path-
based fingerprints. Like the MDL keys, Daylight keys were
also designed for substructure and similarity search, which
limits their effectiveness for activity modeling. If some path
feature is found to be useful during an analysis, then
interpretation can still be difficult, as a given path may not
correspond to an easily identifiable function group or
substructural entity. Further complicated but often relevant
chemical attachment patterns, such as quaternary centers or
cyclic patterns, cannot be directly represented by a path-

based description. Path-based schemes also cannot capture
atom-based stereochemistry.

Another recently developed fingerprint type is termed atom
enVironment fingerprints, first described by Xing and Glen.21

In this fingerprint, called MOLPRINT_2D fingerprints, the
initial atom identifiers are strings, and are lists of Sybyl atom
types.12 For any particular atom, all atoms within a given
distance are given a “level”, which is the shortest distance,
in bonds, to the originating atom. For each level, a string is
generated by concatenating all the initial atom identifiers of
the atoms at that level. Finally, a string is generated by
concatenating all levels into a single string. Bond types are
not used explicitly but are implicit in the Sybyl atom types.
Unlike ECFPs, there is no explicit use of connectivity beyond
the assignment of levels to the atoms in the substructures.
However, the string representation, while less efficient in
memory use than the hashed integer identifier of ECFPs, has
an advantage of being interpretable without further work.
(If one desires the efficiency of numeric identifiers, one could
hash the strings into an integer, yielding a representation
computationally equivalent of ECFPs.) Similar to ECFPs,
the final representation is a circular substructure around each
central atom; studies have shown them to be an effective
descriptor for activity prediction in concert with Naı̈ve
Bayesian methods.22,23 This may be due to the quality of
the Sybyl atom types in encoding useful atom neighborhood
information and led to the development of SCFP fingerprints
using Sybyl atom types for the initial atom identifiers. Studies
comparing these to other variants of ECFP are ongoing;
however, recent work by Li et al.24 tasked with building
“drug-like” models using support-vector machines concluded
that, in this case, “ECFP_4 fingerprints gave a consistently
superior performance compared to MOLPRINT_2D on all
four performance measures (accuracy, sensitivity, specificity,
and Matthews correlation coefficient)”.

Another closely related fingerprint to atom environment
fingerprints is the signature molecular descriptor developed
by Faulon and co-workers for molecular enumeration.25-28

In this work, a canonical spanning tree is constructed to cover
all atoms in the subgraph of atoms contained with a given
radii of a central atom, similar to the FRELs of the DARC
system15,16 but without the four-bond diameter limitation.
This procedure has the benefit of preserving more of the
connectivity information of the subgraph, but for our
purposes, the speed and efficiency of the generation process
outweigh the benefit of the canonicalization procedure, since
our goal is to use features in analysis rather than enumeration.

Molecular holograms29 are an extension of topological
fingerprints that explicitly track the counts of multiply
occurring features. The molecular hologram for a molecule
is defined by generating all possible fragments of a molecule
containing between n and m atoms. A canonicalization
procedure is used to uniquely represent each fragment as a
string, and the strings are assigned an integer value through
a deterministic process (either hashing or using a lookup
table). A separate count is kept of the number of occurrences
of each value. Typically, fragments with 2-7 atoms are
considered, leading to holograms containing 900-2400
counts. These holograms have been used in a process known
as HQSAR,30 in which a table is created, containing one
column for each integer value, and whose cell contains the
count. Partial-least-squares (PLS) regression is used to find
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a relationship between these columns and a user-supplied
dependent variable.

The fingerprints used for molecular holograms have some
key differences compared with ECFPs. In ECFPs, canoni-
calization is avoided, sparing significant computational cost.
Also, the fragments underlying an ECFP feature are always
circular around the central atom, while molecular hologram
fragments may be of any shape. This may appear, at first, to
be an advantage for the molecular hologram fingerprint, but
because of the combinatoric explosion that occurs as the
number of atoms in the fragment grows (typically, seven
atoms is the limit), ECFP fingerprints can contain much
larger features than is possible using molecular hologram
fingerprints.

Other types of fingerprints can be derived from the 3D
conformation (or conformations) of a molecule, rather than
just the topology of a molecule. In 3D fingerprints, the
presence of a feature in the fingerprint represents a particular
3D atom arrangement or pharmacophoric pattern. Akin to
the initial implementation of topological fingerprints for
substructure searching in molecular databases, early work
on 3D fingerprints was inspired by the need to perform 3D
database searching. An early example is the 3DSEARCH
program developed by Sheridan and cohorts.31 Later, 3D
pharmacophoric fingerprints were developed for use in
structure-activity studies in programs, such as Catalyst.32,33

Rather than representing the 3D arrangements of atoms
or pharmacophores in small molecules, affinity fingerprints34

are 3D fingerprints where each element is the binding affinity
to a reference protein. The assumption is that two molecules
with similar binding to a panel of uncorrelated proteins will
likely be correlated in their binding to other proteins. A
variant that depends on computational binding rather than
experimental results is called Virtual affinity fingerprints.35,36

Virtual affinity methods consider the 3D structure of the
ligand and also take the structure of the receptor into account.

ECFPs, being a topological method, do not directly
represent 3D information. However, for many purposes,
topological methods like ECFPs have advantages over 3D
methods. High-throughput data analysis requires processing
a large number of compounds; 3D fingerprints are expensive
to generate because of the need to generate 3D conforma-
tions, restricting their use to smaller data sets. The generation
of representative conformations is an area of ongoing
research, and different conformational generation methods
may result in vastly different 3D fingerprints. 3D fingerprints,
such as affinity fingerprints, that reply on experimental data
are also expensive to generate and are unavailable for virtual
compounds. Often, the phenomena under study may not
depend on the 3D conformation but only on general structural
features, making the extra effort of generating 3D information
unnecessary.

Since the 3D conformation of molecules depends on the
topological structure, topological information contains much
of the same useful information as the 3D information. Indeed,
in most published analyses of topological vs 3D descriptors,
the authors came to the conclusion that topological descrip-
tors are as good or superior to 3D descriptors for molecular
tasks like similarity searching36,37 and activity prediction.
There is, however, ongoing debate as to whether 3D
fingerprints are better than topological fingerprints for
“scaffold-hopping” between structural classes.38-40

Hydrogen-Filled Substructural Features. In ECFPs,
each feature represents the presence of a hydrogen-filled
substructure and not a standard query substructure. The
difference is that a hydrogen-filled substructural repre-
sentation contains hydrogens at all positions except where
explicit attachment points are marked, and at those points,
attachments are required. In a standard query substructure
(without hydrogen counts explicitly specified on all
atoms), heavy atom attachments may occur at any position
in the fragment with unfilled valence. The usefulness of
this distinction is our claim that the structural features of
ECFPs are better at representing “negative” structure
information (that is, the absence of substitution) when
compared against standard substructurally based finger-
prints (such as MDL substructure search keys,17 Lead-
Scope features,19 or Daylight path-based fingerprints20)
and that such information is important for molecular
activity analysis.

The subtle distinction is best explained with an example.
Assume there are features representing a para-substituted
benzene ring in both a standard substructural fingerprint and
in an ECFP. Such a query is shown in Figure 11.

If this para-substituted feature is from a standard sub-
structural fingerprint, then it can map as a substructure
somewhere in the target molecule. For example, the estro-
genic structure shown in Figure 12 would have that feature.

If this feature is from an ECFP, the estrogen would not
contain the feature, as there is an additional ortho-
substitution on the ring in addition to the para-specified
attachment atoms marked “A”. Thus, an ECFP feature
represents an exact substructure with limited, specified
attachment points. However, the related molecule in Figure
13 would have the ECFP feature, as there is only a para-
substitution present.

The rationale for this difference between ECFPs and
standard substructure-based fingerprints is two-fold. First,
the latter fingerprints were developed specifically for
substructure searching. Substructural fingerprints have the
property that all the features contained within a query must
also be contained within a target, if the query can map

Figure 11. A para-substituted benzene query. If this feature were
contained in a standard substructural fingerprint, then it could map
onto para-substituted structures also containing substituents at other
positions on the ring. If this feature is from an ECFP, then no
substituents other than the para substituents are allowed. This is
the difference between a hydrogen-filled substructural feature and
a standard substructural query feature.

Figure 12. An estrogenic target molecule. If the feature in Figure
11 were represented as a standard substructural fingerprint, then it
would be marked present. If the feature were from an ECFP, then
it would not be present, as the aromatic ring has three substituents,
not just the two para substituents.
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onto that target. This allows the fingerprint to be used to
rapidly eliminate molecules from consideration when
performing a substructure search against a database. For
ECFPs, there was no requirement that they be useful for
database search optimization.

Second, a primary goal in ECFP development was to
represent the absence of functionality as well as the
presence of functionality, as both were deemed equally
important to characterizing activity. The para-substituted
benzene ring in Figure 11 is a good example of this; by
restricting any bonds to parts of the structure that are not
represented by explicit attachment points “A”, it is more
restrictive than a substructural feature, and able to
represent more subtle variations in a structure. (Of course,
in most database search systems, one could add explicit
hydrogens or hydrogen counts to substructural queries to
force a similar effect, at the cost of losing most of their
utility as substructural keys.)

Number of ECFP Features in Typical Libraries. ECFPs
can represent a much larger set of features than is common
for other fingerprints. The virtual size of the fingerprint
is 232 features, which is greater than four billion (4 ×
109) different features. For a given molecule, only a small
subset of those features will be present.

A typical molecule generates fingerprints containing tens
or hundreds of features; a typical molecular catalog or library
may, in aggregate, contain hundreds of thousands to millions
of different features. Figure 14 shows the number of different
ECFP features generated at increasing iteration levels from
four different molecular libraries: the Derwent World Drug
Index41 (WDI), the Asinex catalog,42 the Maybridge cata-
log,43 and a combinatorial library defined as an indole core

and attachments in an RG-format file. To make library to
library comparisons consistent, 50 000 molecules were
randomly chosen from each library.

The graphs show that the drug library contained the
most structural diversity, followed by the vendor catalogs,
then the combinatorial library. The combinatorial library
showed little structural diversity until many iterations were
performed, and even then the diversity was still much less
than the other libraries. This reflects a typical combina-
torial library, which is constructed from one or a small

Figure 15. Percentage of features found in both the 50 000
compound subset of Asinex and (from top to bottom) Maybridge,
the WDI, and the combinatorial library. As the number of iterations
increases, the size of the overlap rapidly shrinks. This shows that
ECFPs provide a rich supply of features that can aid in discriminat-
ing molecules.

Figure 16. The number of FCFP features generated at a given
iteration level for four different molecular libraries. Compared with
the ECFP features shown in Figure 9, the shapes of the curves are
quite similar, but FCFPs appear to give a smaller number of
features, especially after few iterations. This is expected, as FCFPs
are more abstract than ECFPs.

Figure 17. Percentage of FCFP features found in both the 50 000
compound subset of Asinex and (from top to bottom) Maybridge,
the WDI, and the combinatorial library. Compared with the overlaps
shown in Figure 15, FCFP overlaps are consistently larger,
especially after several iterations.

Figure 13. Another estrogenic molecule. In this case, the feature
from Figure 11, if represented in an ECFP, would be present. Thus,
that feature in an ECFP can distinguish subtle changes in con-
nectivity that is more difficult to represent using substructural
features.

Figure 14. The number of ECFP features generated at a given
iteration level for four different molecular libraries. The four
libraries are the Derwent World Drug Index, the Asinex vendor
catalog, the Maybridge vendor catalog, and a combinatorial library
based upon an indole core. From each library, 50,000 compounds
were randomly selected.
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number of scaffold cores. There is little structural variation
until the neighborhoods get large enough to encompass
multiple substituents surrounding the core scaffold.

Figure 14 also illustrates the large number of ECFP
features in typical vendor libraries or drug compendia.
For a particular fingerprint (say, ECFP_6) the total number
of features is the sum of the features discovered at all
iteration steps (for ECFP_6, IT0 + IT1 + IT2 + IT3 +
IT4 + IT5). Thus, considering all features up to iteration
5, the 50 000 compound subset of the WDI generates over
750 000 different ECFP features.

The ECFP feature count for a library can be used as a
rapid estimate of the structural diversity of a library. It
can also be used to compare the structural diversity found
in different libraries. For example, Figure 14 shows that
WDI has about twice as many substructural features four
bonds in diameter (that is, after two iterations) than either
Maybridge or Asinex. Four bonds is slightly larger than
the size of a typical functional group and, thus, may
indicate that important structural classes are contained in
WDI that are missing from Maybridge or Asinex. Differ-
ences at larger diameters may be less interesting as a
measure of diversity, as the ECFP iteration process
increasingly discovers features that are effectively unique
for any particular molecule.

Overlap between Libraries. The ECFP feature count can
also be used to understand the amount of feature overlap
between two different libraries. This is illustrated in Figure
15, which shows the percentage of features found in both
the 50 000 compound subset of Asinex and (from top to
bottom) the subsets of Maybridge, the Derwent WDI, and
the combinatorial library.

It is surprising how small the overlap region is, even after
a small number of iterations. This reflects the ability of the
ECFP process to rapidly capture unique structural variations
that may be used to distinguish molecular libraries. Thus,
ECFPs can provide downstream analysis methods with a rich
supply of information to discover relationships that may be
missed if only whole-molecule properties are used for library
comparison.

Feature Counts and Overlap with Functional-Class
Fingerprints. Figure 16 shows the number of different
FCFP (rather than ECFP) features generated at increasing
iteration levels from the same four molecular libraries. It
is interesting to compare this to the results for ECFPs
shown in Figure 14. The number of FCFP features is
lower, especially after few iterations. This shows that the
generalized atom types used in FCFPs do lead to feature
abstraction. As the number of iterations increases, FCFPs
ability to provide feature abstraction decreases because
graph complexity begins to dominate in the creation of
new features.

Similarly, the overlap regions between the libraries
when considering FCFPs can be studied, as shown in
Figure 17 (the corresponding figure for ECFPs is Figure
15). It shows much greater overlap in all cases, as would
be expected from the abstraction process used to create
FCFPs. The extra abstraction of FCFPs can be useful when
the fingerprints are used in analysis methods, such as
clustering or modeling abstract classes.

Collision between Numeric Identifiers. The collision
rate in fingerprint generation is the number of times two

different structural features generate the same hashed
identifier. Collisions can add noise to analysis and can
make interpretation of important features more difficult.
In this light, we discuss the estimated collision rate during
ECFP generation.

The collision rate depends on the size of the library
being considered (more precisely, the number of different
features in the library). For example, assume we are given
a library containing 1 × 106 features. The probability of
a particular identifier out of the 4 × 109 possible identifiers
being in the set of 1 × 106 features is approximately 1 ×
106/4 × 109 ) 1/4000. Using this value as an upper bound
on the collision probability per feature added (the true
collision rate depends on the number of features already
in the set when we add a new feature), then an estimate
of the percentage of features that collide is ∼1/4,000 )
0.025%, and the number of features involved is ∼1 ×
106 × (1/4,000) ) 250. (Note that this minor collision
rate could be reduced to nearly zero by increasing the
size of the hash result from an integer with 232 features
into a 64 bit integer with 264 features.)

APPLICATIONS

ECFPs have been available for nearly a decade and in
that time have been applied to a broad range of scientifi-
cally relevant problems, using a wide variety of analysis
methods. A sampling of publications illustrating the
breadth of applications and methods that have used ECFPs
are described below. These applications are grouped into
three areas: virtual screening, structure-activity relation-
ship modeling, and compound library analysis. (This
grouping is somewhat arbitrary, as a particular application
may fit in more than one area.)

Virtual Screening. The initial applications of ECFPs have
been in the area of high-throughput screening (HTS). In
particular, when combined with Bayesian-based analysis,
ECFPs have proven to be very effective at categorizing
actives from nonactives in the processing of noisy, high-
volume, HTS data.44

Structure-Activity Relationship Modeling. This is the
construction of models given a set of molecules with some
annotation of bioactivity. A wide variety of modeling
methods are possible. The high dimensionality of ECFPs
is a particular advantage for Bayesian analysis45 or
Tanimoto (and related) similarty methods,46 as they make
good use of the wide variety and large number of ECFP
features. In contrast, methods based upon “fitting” a model
to the data (such as linear regression47,48 or neural
networks)49 can overfit the data when confronted with
large numbers of features so should be used with high-
dimensional descriptors, such as ECFPs, with care. [The
separation of a group of applications into the subheading
absorbtion, distribution, metabolism, excretion, and toxic-
ity (ADMET) is somewhat arbitrary; we tended to accept
the self-classifications of the original authors.]

Compound Library Analysis. This broad category con-
tains techniques whose common feature is a goal to analyze
some aspect of a library of molecules other than simple
structure-activity modeling. Examples include 3D docking,50

diversity analysis,51 and visualization methods.52 The final
row lists a number of papers that describe comparisons of
ECFPs with other descriptors toward a variety of tasks.
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CONCLUSION

Extended-connectivity fingerprints (ECFPs) have a
number of strengths that make them useful for a wide
variety of applications in computational chemistry. They
can be generated quickly using an easily understood
method. Because they are not defined a priori, they can
represent novel structural classes. The features are defined
to contain both positive and negative structural information
(that is, both what is and what is not present), crucial for
analyzing molecular activity. They are a highly effective
representation of topological structural information. Fi-
nally, their usefulness in the representation of molecular
information is reflected in their widespread adoption and
use across a broad range of applications and methodolo-
gies, as reported in a large number of published articles.
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