
3/1/22, 3:04 PMQiskitNature_vic

Page 1 of 4http://localhost:8888/nbconvert/html/QiskitNature_vic.ipynb?download=false

Qiskit Nature
Qiskit Nature is an open-source framework that supports problems including ground state

energy computations, excited states and dipole moments of molecule, both open and

closed-shell.

The code comprises chemistry drivers, which when provided with a molecular configuration

will return one and two-body integrals as well as other data that is efficiently computed

classically. This output data from a driver can then be used as input in Qiskit Nature that

contains logic which is able to translate this into a form that is suitable for quantum

algorithms. The conversion first creates a FermionicOperator which must then be mapped,

e.g. by a Jordan Wigner mapping, to a qubit operator in readiness for the quantum

computation.

Optional Installs

To run chemistry experiments using Qiskit Nature, it is recommended that you install a

classical computation chemistry software program/library interfaced by Qiskit. Several, as

listed below, are supported, and while logic to interface these programs is supplied by Qiskit

Nature via the above pip installation, the dependent programs/libraries themselves need to

be installed separately.

1. Gaussian 16™, a commercial chemistry program

2. PSI4, a chemistry program that exposes a Python interface allowing for accessing

internal objects

3. PyQuante, a pure cross-platform open-source Python chemistry program

4. PySCF, an open-source Python chemistry program

In []: !pip install qiskit-nature

In []: !pip install pyscf

https://qiskit.org/documentation/nature/apidocs/qiskit_nature.drivers.second_quantization.gaussiand.html
https://qiskit.org/documentation/nature/apidocs/qiskit_nature.drivers.second_quantization.psi4d.html
https://qiskit.org/documentation/nature/apidocs/qiskit_nature.drivers.second_quantization.pyquanted.html
https://qiskit.org/documentation/nature/apidocs/qiskit_nature.drivers.second_quantization.pyscfd.html

3/1/22, 3:04 PMQiskitNature_vic

Page 2 of 4http://localhost:8888/nbconvert/html/QiskitNature_vic.ipynb?download=false

Creating Your First Chemistry Programming Experiment
in Qiskit

Now that Qiskit Nature is installed, let's try a chemistry application experiment using the VQE

(Variational Quantum Eigensolver) algorithm to compute the ground-state (minimum) energy

of a molecule.

In [4]: from qiskit_nature.settings import settings
from qiskit_nature.drivers import UnitsType
from qiskit_nature.drivers.second_quantization import PySCFDriver
from qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem

settings.dict_aux_operators = True

Use PySCF, a classical computational chemistry software
package, to compute the one-body and two-body integrals in
electronic-orbital basis, necessary to form the Fermionic operator
driver = PySCFDriver(atom='H .0 .0 .0; H .0 .0 0.735',
 unit=UnitsType.ANGSTROM,
 basis='sto3g')
problem = ElectronicStructureProblem(driver)

generate the second-quantized operators
second_q_ops = problem.second_q_ops()
main_op = second_q_ops['ElectronicEnergy']

particle_number = problem.grouped_property_transformed.get_property("ParticleNumber"

num_particles = (particle_number.num_alpha, particle_number.num_beta)
num_spin_orbitals = particle_number.num_spin_orbitals

setup the classical optimizer for VQE
from qiskit.algorithms.optimizers import L_BFGS_B

optimizer = L_BFGS_B()

setup the mapper and qubit converter
from qiskit_nature.mappers.second_quantization import ParityMapper
from qiskit_nature.converters.second_quantization import QubitConverter

mapper = ParityMapper()
converter = QubitConverter(mapper=mapper, two_qubit_reduction=True)

map to qubit operators
qubit_op = converter.convert(main_op, num_particles=num_particles)

setup the initial state for the ansatz
from qiskit_nature.circuit.library import HartreeFock

3/1/22, 3:04 PMQiskitNature_vic

Page 3 of 4http://localhost:8888/nbconvert/html/QiskitNature_vic.ipynb?download=false

-1.8572750301557372
=== GROUND STATE ENERGY ===

* Electronic ground state energy (Hartree): -1.857275030156
 - computed part: -1.857275030156
~ Nuclear repulsion energy (Hartree): 0.719968994449
> Total ground state energy (Hartree): -1.137306035707

=== MEASURED OBSERVABLES ===

=== DIPOLE MOMENTS ===

~ Nuclear dipole moment (a.u.): [0.0 0.0 1.3889487]

init_state = HartreeFock(num_spin_orbitals, num_particles, converter)

setup the ansatz for VQE
from qiskit.circuit.library import TwoLocal

ansatz = TwoLocal(num_spin_orbitals, ['ry', 'rz'], 'cz')

add the initial state
ansatz.compose(init_state, front=True, inplace=True)

set the backend for the quantum computation
from qiskit import Aer

backend = Aer.get_backend('aer_simulator_statevector')

setup and run VQE
from qiskit.algorithms import VQE

algorithm = VQE(ansatz,
 optimizer=optimizer,
 quantum_instance=backend)

result = algorithm.compute_minimum_eigenvalue(qubit_op)
print(result.eigenvalue.real)

electronic_structure_result = problem.interpret(result)
print(electronic_structure_result)

3/1/22, 3:04 PMQiskitNature_vic

Page 4 of 4http://localhost:8888/nbconvert/html/QiskitNature_vic.ipynb?download=false

The program above uses a quantum computer to calculate the ground state energy of

molecular Hydrogen, H2, where the two atoms are configured to be at a distance of 0.735

angstroms. The molecular input specification is processed by the PySCF driver. This driver is

wrapped by the ElectronicStructureProblem. This problem instance generates a list of

second-quantized operators which we can map to qubit operators with a QubitConverter.

Here, we chose the parity mapping in combination with a 2-qubit reduction, which is a

precision-preserving optimization removing two qubits; a reduction in complexity that is

particularly advantageous for NISQ computers.

The qubit operator is then passed as an input to the Variational Quantum Eigensolver (VQE)

algorithm, instantiated with a classical optimizer and a RyRz ansatz (TwoLocal). A Hartree-

Fock initial state is used as a starting point for the ansatz.

The VQE algorithm is then run, in this case on the Qiskit Aer statevector simulator backend.

Here we pass a backend but it can be wrapped into a QuantumInstance, and that passed to

the run instead. The QuantumInstance API allows you to customize run-time properties of

the backend, such as the number of shots, the maximum number of credits to use, settings

for the simulator, initial layout of qubits in the mapping and the Terra PassManager that will

handle the compilation of the circuits. By passing in a backend as is done above it is

internally wrapped into a QuantumInstance and is a convenience when default setting

suffice.

In the end, you are given a result object by the VQE which you can analyze further by

interpreting it with your problem instance.

Further examples

Learning path notebooks may be found in the Nature Tutorials section of the documentation

and are a great place to start

Jupyter notebooks containing further Nature examples may be found in the following Qiskit

GitHub repositories at qiskit-nature/docs/tutorials.

https://qiskit.org/documentation/nature/tutorials/index.html
https://github.com/Qiskit/qiskit-nature/tree/main/docs/tutorials

