

Modeling Systems for a Hydrogen Economy Photocatalysis with Visible Light

Modeling Systems for a Hydrogen Economy Photocatalysis with Visible Light

Molecular Rectification: DFT NEGF: I-V Characteristics Aviram, M. A. Ratner Chem. *Phys. Lett.* **29**: 277-283 (1974)

Molecular Rectification: DFT NEGF: I-V Characteristics Aviram, M. A. Ratner Chem. *Phys. Lett.* **29**: 277-283 (1974)

Molecular Rectification: DFT NEGF: I-V Characteristics Aviram, M. A. Ratner Chem. *Phys. Lett.* **29**: 277-283 (1974)

DFT-NEGF Methodology

Wendu Ding – Christian Negre

Yale University

Wendu Ding, Leslie Vogt, Christian F. A. Negre, and Victor S. Batista [J. Chem. Theory Comput 10: 3393–3400 (2014)]

Molecule-Lead coupling

Wendu Ding, Leslie Vogt, Christian F. A. Negre, and Victor S. Batista [J. Chem. Theory Comput 10: 3393–3400 (2014)]

Experimental I-V histograms

4,4'-Diaminostilbene

Prof. Latha Venkataraman Columbia University

0.2

Nanotechnology. 2009, 20, 434009

Wendu Ding

Yale University

Molecular Rectification: The Break Junction Technique & Recent Results

11-1-2013 Chris Koenigsmann

2000

0

-6

-5

increases.

4. A second low-conductance plateau (B) also observed (+400 mV).

Molecule R5

-2

-1

0

-3

Experimental and Theoretical IV curves

Latha Venkataraman, Chris Koeningsmann (I-V exp), Matthieu Koepf (synthesis), Christian Negre (I-V calc)

R5, Rectification at 0.85 V = 1.45

Molecule	Conductance (G ₀)	RR
R1	1.7 x 10 ⁻⁴	1.30
R5	2.9 x 10 ⁻⁴	1.45

Scaled, statistically most probable IV curves for the three molecules. The curves are calculated from log-binned 2D histograms with bin sizes and histogram ranges kept constant. All curves have been scaled to zero-bias conductance of molecule **3**, with the red curve multiplied by 2 and the blue curve by 4. Inset: Rectification ratio as a function of bias. Molecule **3** rectifies over three times as much as molecule **2**, with rectification at 0.85V approaching 2.

Modeling Systems for a Hydrogen Economy Molecular Inverse Design: LCAP Methodology

Modeling Systems for a Hydrogen Economy Inverse Design: Molecular Sensitizers

Dr. Dequan Xiao

Target molecular property: the total visible absorbance

 $f = \sum_{p,q} f_{pq}$ + constraint: $400nm \le \lambda_{qp} \le 800nm$

 f_{pq} is the oscillator strength of the p to q electronic transition, and λ_{pq} is the wavelength of the electronic transition.

$$f_{pq} = \frac{8\pi^2 v_{pq} m_e}{3he^2} \left| \mu_{pq} \right|^2$$

 $\mu_{pq} = \langle \psi_q | r | \psi_p \rangle$: transition dipole moment, v_{pq} : wavenumber of the electronic transition,

 m_e : electron mass.

Gradients of molecular property:

$$\frac{\partial f}{\partial b_A^i} = \frac{f(+\delta b_A^i) - f(-\delta b_A^i)}{2\delta b_A^i}$$

Finally, the **continuous optimization** of *f* by varying $\{b_A^i\}$ is performed based on a quasi-Newton (BFGS algorithm) method.

Modeling Systems for a Hydrogen Economy Inverse Design: Molecular Sensitizers

Modeling Systems for a Hydrogen Economy Inverse Design: Molecular Sensitizers

Modeling Systems for a Hydrogen Economy Liquid H-Carriers: Fuel Cell/Flow Battery Concept

Modeling Systems for a Hydrogen Economy Organic Fuel Cell/Flow Battery Concept

"Feed the hydrogenated organic liquid carrier directly into the fuel cell where it is electrochemically dehydrogenated without ever generating H_2 "

Modeling Systems for a Hydrogen Economy Organic Fuel Cell/Flow Battery Concept

"Electrochemical dehydrogenation can be done at lower temperatures and high rates"

 $LQ^{*}H_{n} \rightarrow LQ + n H^{+} + n e^{-}$ (1) $n/2 O_{2} + n H^{+} \rightarrow n/2 H_{2}O - n e^{-}$ (2) $LQ^{*}H_{n} + n/2 O_{2} \rightarrow n/2 H_{2}O + LQ$ (3)

*where LQ stands for an organic carrier molecule

Electrochemical dehydrogenation of saturated cyclic hydrocarbons (e.g., cyclohexane and decaline) is possible in alkaline electrolyte using Pd and Rh catalysts.

[K.V. Kordesch, J.F. Yeager, J.S. Dereska, *US Patent* 3280014 (1966); M. Okimoto, Y. Takahashi, K. Numata, G. Sasaki, *Heterocycles*, **65** (2005) 371]

Modeling Systems for a Hydrogen Economy Organic Liquid H-Carriers

Modeling Systems for a Hydrogen Economy Organic Liquid H-Carriers

Exercise 4:

Nitrogen atoms introduced into heterocycles tune the thermodynamic tendency to absorb or release H_2 , or to absorb or release 2(H+ and e-). A particularly favorable condition is when aromatic stabilization can be achieved after cleavage of only four C-H bonds as in the following reaction:

This can be analyzed by computing the temperature $T = T_d$ that makes the dehydrogenation free energy $\Delta G = \Delta H - T \Delta S$ equal to zero. At this point $(T = T_d)$ the unfavorable enthalpy due to the endothermicity of the reaction is exactly compensated by the favorable entropy of H_2 release.

- (a) Find the minimum energy configurations of reactants and products for the dehydrogenation reaction shown above in the gas-phase at the DFT B3PW91 level of theory.
- (b) Perform a frequency calculation for reactants and products and compute the temperature ${\rm T}_{\rm d}$ at which the dehydrogenation becomes spontaneous.
- (c) Compare your results with the analogous calculation of dehydrogenation ${\rm T}_{\rm d}$ for cyclopentane.

Solution Exercise 4: See tutorial notes on ab initio free energy calculations.

Organic fuel cell/flow battery: Fuel selection from thermodynamic considerations Energy Env Sci 5: 9534-9542 (2012)

C. Moyses Araujo, Davide L. Simone, Steven J. Konezny, Aaron Shim , Robert H. Crabtree, Grigorii L. Soloveichik, and Victor S. Batista

 $H = E_{\text{elect}} + U_{\text{vib}} + U_{\text{trans}} + U_{\text{rot}} + PV \quad G = H - T(S_{\text{vib}} + S_{\text{rot}} + S_{\text{trans}})$ $H = H^0 + C_p(T - 298.15 \text{ K}) \qquad S = S^0 + C_p \ln(T/298.15 \text{ K}).$

Fuel selection for regenerative organic fuel cell/flow battery: thermodynamic consideration, EES 5: 9534-9542 (2012)

C. Moyses Araujo, Davide L. Simone, Steven J. Konezny, Aaron Shim , Robert H. Crabtree, Grigorii L. Soloveichik, and Victor S. Batista

Correlation between OCP's obtained from the calculated free energies at B3LYP/cc-PVTZ theory level and from the experimental thermodynamic data (NIST database).

Calculated open circuit potentials and hydrogen gravimetric densities for six- (type A) and fivemember (type C) ring fuels.

LOH((in dehydrogen	C ated state)	H, wt. %	E ⁰ , V
Name	Structure		
Benzene	\bigcirc	7.19	1.049
Pyridine		7.10	1.081
Pyrimidine		7.02	1.116
Pyridazine		7.02	1.085
1,3,5-triazine		6.94	1.198
Cyclopentadiene	\bigcirc	5.75	0.854
Furan		5.59	1.004
1H-pyrrole	<">N	5.67	1.092
1H-imidazole		5.59	1.203
1H-pyrazole		5.59	1.269
1H-1,2,3-triazole		5.52	1.351
1H-1,2,4-triazole		5.52	1.328

Fuel selection for regenerative organic fuel cell/flow battery: thermodynamic consideration, EES 5: 9534-9542 (2012)

C. Moyses Araujo, Davide L. Simone, Steven J. Konezny, Aaron Shim , Robert H. Crabtree, Grigorii L. Soloveichik, and Victor S. Batista

Calculated open circuit potentials and hydrogen gravimetric densities for fused six- (type D) and five-member (type E) ring fuels.

Organic cat (in dehydrogena	rrier state)	H, wL %	E ⁰ , V	Organ (in dehydr	Organic carrier		<i>E</i> [∅] , <i>V</i>
Name	Structure			(in activate	genuieu siuie)		
1H-indene	(\mathcal{D})	6.49	1.041	Name	Structure	•	
benzofuran	$\langle \rangle \rangle$	6.39	1.084	naphthalene		7.29	1.078
benzo[b]thiophene	$\langle \rangle \rangle$	5.67	1.080	quinoline	()	7.24	1.097
1H-indole	$\langle \rangle \rangle$	6.54	1.128	isoquinoline		7.24	1.098
2H-isoindole	\Leftrightarrow	6.54	1.092	4H-quinolizine		5.79	0.946
indolizine	\odot	6.54	1.064	cinnoline	()	7.19	1.087
IH-benzo [d]imidazole		0.49	1.187	phthalazine	Ň	7.19	1.098
1H-indazole	\odot	6.49	1.206	quinazoline		7.19	1.119
1H-pyrrolo [2,3-b]pyridine	\bigcirc	0.39	1.107	quinoxaline		7.19	1.108
imidazo[1,2-a] pyrazine	\square	6.34	1.145				
7H-purine	$\langle i \rangle$	6.29	1.228	1,8- naphthyridine		7.19	1.112
1,4-dihydropentalene	$\langle \square \rangle$	5.49	0.901	1,5- naphthyridine	(7.19	1.115
1H-pyrrolizine	$\langle \Sigma \rangle$	5.44	1.017	pteridine		7.09	1.128
1,4-dihydropyrrolo [3,2-b]pyrrole	$\langle \Box \rangle$	5.39	1.159	pyrazino[2,3-b] pyrazine		7.09	1.122
1,4-dihydroimidazo [4,5-d]imidazole	$\langle I \rangle$	5.30	1.313	pyrimido[4,5-d] pyrimidine		7.09	1.160

Fuel selection for regenerative organic fuel cell/flow battery: thermodynamic consideration, EES 5: 9534-9542 (2012)

C. Moyses Araujo, Davide L. Simone, Steven J. Konezny, Aaron Shim, Robert H. Crabtree, Grigorii L. Soloveichik, and Victor S. Batista

Organic car (in dehydrogenat	H, wt %	E ⁰ , V	
Name	Structur e		
9H-fluorene	\bigcirc	6.78	1.109
dibenzo[b,d]furan	$\langle \rangle \rangle$	6.71	1.125
dibenzo[b,d] thiophene	\bigcirc	6.16	1.117
5H-dibenzo [b,d]borole	Q	6.81	1.108
9H-carbazole	Q_{μ}	6.75	1.152
9H-pyrrolo [2,3-b:5,4-b'] dipyridine		6.67	1.206
5H-pyrrolo [3,2-c:4,5-c'] dipyridine	00	6.67	1.191
5H-pyrrolo [3,2-b:4,5-b'] dipyridine	Q	6.67	1.181
9X-carbazole	0H0	H 6.75	1.152
		Et	1.167
9X-1,8-	Ω	H 6.67	1.206
dıazacarbazole	diazacarbazole		1.222
	-	Et	1.230

Boiling point, specific energy and energy density of selected organic fuels, and theoretical efficiency of fuel cells based on dehydrogenation.

Organic	carrier	Boiling	Specific	Energy	Efficienc
(in hydrogena	ated state)	point, °C	energy,	density,	y, %
			Wh/kg	Wh/L	
Liquid hydrogen		-252.9	-	2539	83.0
Pyrrolidine		87	1660	1438	92.8
Tetrahydrofu	rane	66	1500	1334	93.4
Tetrahydrothi	iophene	119	1196	1195	93.5
Cyclohexane		80.7	2025	1578	94.1
Methylcycloh	lexane	101	1747	1345	94.3
Cyclohexylamine		134.5	1772	1532	95.2
Chlorocyclohexane		66	1403	1403	93.4
Cyclohexanol		160.8	1686	1622	93.0
Cyclohexanethiol		158	1292	1227	94.0
Piperidine		106	2046	1764	94.2
2-methylpipe	ridine	118	1776	1499	94.5
Piperazine		146	2055	2260	9 5.7
trans-Decalin		187	2095	1877	93.1

Modeling Systems for CO₂/CO Conversion Lesson From CO Dehydrogenases

Modeling Systems for CO/CO₂ Conversion <u>Crabtree's Biomimetic Ni Catalyst</u>

Lu, Z.; Crabtree, R. H. J. Am. Chem. Soc. 1995, 117, 3994

Inverse Design of Electrocatlysts: CO/CO₂ Conversion Crabtree's Biomimetic Ni Catalyst

Reaction Coordinate

Modeling Systems for a Hydrogen Economy CO Conversion into Liquid Fuel

The Fischer-Tropsch Process

1) Synthesis Gas Formation

$$CH_n + O_2 \xrightarrow{(Catalyst)} \frac{1}{2} n H_2 + CO$$

2) Fischer-Tropsch Reaction

2n H₂ + CO
$$\xrightarrow{\text{Catalyst}}$$
 - (CH₂-)_n- + H₂O

3) Refining

- $(CH_2-)_n$ - (Catalyst) Fuels, lubricants, etc.

Modeling Systems for CO₂ Conversion Lesson From Rubisco: CC Bond Formation

Natural CO₂ Fixation based on Mg Catalysts?

Carboxylation in Ribulose 1,5-BisPhosphate carboxylase (Rubisco)

10¹¹ metric tons of CO₂ per year are converted to organic material by the world's most abundant enzyme

Modeling Systems for CO₂ Conversion Lesson From Rubisco: CC Bond Formation

