

Modeling Photovoltaic Solar Cells Traditional Photovoltaic Solar Cells First and Second Generation: p-n junctions

The Power of the Sun: Walter Kohn's Description of Photovoltaic Solar Cells

> Section II Prof. Victor S. Batista

Computational Modeling and Physical Principles

- Computational design and characterization
- Solar cells for electricity
- Photocatalysis, biomimetic water oxidation
- Hydrogen economy

Dye-Sensitized Solar Cells Third Generation Photovoltaic Solar Cells

Modeling Dye-Sensitized Solar Cells Photoconversion in 4 steps: (1)-(4)

Modeling Dye-Sensitized Solar Cells Photoconversion: Energy Diagram

Modeling Dye-Sensitized Solar Cells Photoconversion into Chemical Bonds: Fuel

Modeling Dye-Sensitized Solar Cells Characteristic I-V Curve of Photoconversion

Modeling Dye-Sensitized Solar Cells Photoconversion: Efficiency

Modeling Dye-Sensitized Solar Cells Equivalent Circuit of Photoconversion

Modeling Dye-Sensitized Solar Cells Photoconversion: Output Current

Modeling Dye-Sensitized Solar Cells <u>Photoconversion Efficiency: Redox Couple</u>

Exercise 1 (due Thursday Sept 25, 2014):

Consider a dye-sensitized solar cell (DSSC) with an equivalent circuit with the following parameters:

- Photogenerated current density: $J_L = 16.7 \text{ mAmperes}/\text{cm}^2$
- Specific series resistance: $R_s = 2.0E-4 \text{ K}\Omega^*\text{cm}^2$
- Specific shunt resistance: $R_{SH} = 100 \text{ K}\Omega^* \text{cm}^2$
- Open circuit voltage (Volts): $V_{oc} = E^0 (I^-/I_3^-) E_{CB} + \Delta V (pH)$
- Reverse saturation current density: $J_0=J_L = 10^{-10} \text{ mAmperes/cm}^2$
- Diode ideality factor times kT/q= 0.0259 Volts: $nkt=V_{oc}/log(J_L/J_0+1)$
- (a) Compute the I-V characteristic at pH=7.75 assuming $E^0(I^-/I_3^-)=350$ mV, and $\Delta V(pH)=60$ mV*pH+E_{CB} relative to the hydrogen standard electrode (HSE).
- (b) Compute the light-to-electrical power conversion % efficiency (\eta) of the DSSC, assuming that incident sunpower P_i = 1 kW m^{-2}.
- (c) Compute η for an analogous DSSC, where the redox couple I^-/I_3^- has been replaced by a redox pair X^-/X_3^- with $E^0(X^-/X_3^-)=150$ mV.

Modeling Dye-Sensitized Solar Cells Photoconversion Efficiency: Redox Couple

Solution to Exercise 1 (standard fortran):

```
PROGRAM main
     PARAMETER(npt=100)
     dv=2.4/(npt-1)
     pmax=-1.
     DO i=1, npt
        v=(i-1)*dv
       rv=rj(v,rkt)
        IF(rv.GT.(-10.0)) THEN
           p=v*rv
           PRINT *,p
           IF(p.GT.pmax) THEN
              pmax=p
              vmax=v
              rmax=rv
           END TF
           WRITE(10,22) v,rv
        END IF
     END DO
     PRINT *, "n(ideality factor)", rkt/0.0259
     WRITE(11,22) 0,rmax
     WRITE(11,22) vmax,rmax
     WRITE(11,22) vmax,0.
     PRINT *, "PCE(eta*100)=",pmax
22
    FORMAT(2(e13.6, 2x))
     END
```

```
FUNCTION rj(v,rkt)
```

С

```
rjl=16.7 ! current density
      rs=2.0E-4 ! specific series resistance
      rsha=100. ! specific shunt resistance
      Voc=0.42+0.35+0.045+0.3 ! Voc
     rj0=rjl*1.0E10 ! Rev. sat. curr. Density
С
     ideality factor times kT/q= 0.0259 Volts
     rkt=Voc/log(rjl/rj0+1.)
      DO i=1,5
        IF (i.EQ.1) rj=rjl
         rj=rjl-rj0*(exp((v+rj*rs)/rkt)-1.)
           -(v+rj*rs)/rsha
     1
      END DO
      RETURN
      END
```


Conventional Solar Cells Cost and Space Requirements

Exercise (Current Scenario) (due Thursday Sept 25, 2014):

Considering that the current US energy consumption is at a rate of 3.5 TWatts:

- (1) What percentage of the US energy consumption is supplied by solar panels?
- (2) What percentage of the electricity in Germany is supplied by solar panels?
- (3) How much would the solar panels cost to supply the US with 3.5 Twatts?
- (4) How does that cost compare to the US military budget?
- (5) How much area would the solar panels take to supply 3.5 TWatts?
- (6) What percentage of the electricity in CT comes from nuclear reactors?
- (7) Where are the nuclear power plants?
- (8) When was the last time a hurricane hit the coast of CT?

Plummeting Solar Module Cost PV Parity?

"what is certain is that we're headed for parity with fossil fuels (the gray area in the graph), and then solar will beat them..." <u>Michael Graham Richard</u>, May 1, 2013

Considering \$1/Watt

230 SOLAR PANEL

EXCEPTIONAL EFFICIENCY AND PERFORMANCE

SUNPOWER

1 KWatt/m² 18.5/100 = 185 W/m²

BENEFITS

Highest Efficiency

Panel efficiency of 18.5% is the highest commercially available for residential applications

11.2/0.185 = 60.5 m² /person

Solar Panel for Current U.S. Energy Consumption Size and Cost

✓ 11.2 KWatts/person = 3.5 10¹² Watts (3.5 Twatts) ✓ Cost of solar panels: \$11,200 /person = [\$3.5 Trillions]

2012 U.S. military budget = \$2,064/person [\$0.646 Trillion] 2011 Ivanpah BrightSource Energy = \$5.1/person

WASHINGTON (Army News Service, July 8, 2010) --"We view energy security as a critical mission-enabler and an operational imperative, which can provide the Army with an essential tactical advantage," said Jerry Hansen, the Army's senior energy executive, during a bloggers roundtable discussion, July 7, at the Pentagon. "Our Army installations, our tactical operations, Soldier training -- all require secure and uninterrupted access to energy."

Modeling Photovoltaic Solar Cells U.S. Energy Consumption

✓ 11.2 KWatts/person = (3.5 TWatts)

- Each person consumes energy, on average, at a rate comparable to the energy consumption of 11 window air conditioners, or 110 light bulbs (100 Watts each).
- Sunlight shines on earth at an average flux rate of 1.0 KWatt/m². Therefore, the average flux of solar energy shining on 11.2 m² (120 ft²) corresponds to the average energy consumption per capita.

2012 U.S. Renewable Energy Consumption

April 11, 2011. DOE Finalizes \$1.6 Billion Loan Guarantee for BrightSource Energy

BrightSource

nra

Google*

As World's Largest Solar Thermal Plant Opens, California Looks to End Solar Wars

July 12, 2013. In a few weeks, the largest solar plant of its kind in the world will start producing power in California's Mojave Desert.

The <u>Ivanpah Solar Electric Generating System</u> will supply both Northern and Southern California, inching the state one step closer to its ambitious renewable energy goal.