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Chapter 10   Theories of Electronic Molecular 

Structure 
 

Solving the Schrödinger equation for a molecule first  requires specifying 

the Hamiltonian and then finding the wavefunctions that satisfy the equation.  

The wavefunctions involve the coordinates of all  the nuclei and electrons that 

comprise the molecule.  The complete molecular Hamiltonian consists of several 

terms.  The nuclear and electronic kinetic energy operators account for the 

motion of all  of the nuclei and electrons.  The Coulomb potential energy terms 

account for the interactions between the nuclei,  the electrons, and the nuclei 

and electrons.  Other terms account for the interactions between all  the 

magnetic dipole moments and the interactions with any external electric or 

magnetic fields.  The charge distribution of an atomic nucleus is not always 

spherical and, when appropriate,  this asymmetry must be taken into account as 

well as the relativistic effect that a moving electron experiences as a change in 

mass. 

This complete Hamiltonian is too complicated and is not needed for many 

situations.  In practice, only the terms that are essential for the purpose at hand 

are included.  Consequently in the absence of external fields, interest in spin-

spin and spin-orbit  interactions, and in electron and nuclear magnetic resonance 

spectroscopy (ESR and NMR), the molecular Hamiltonian usually is considered 

to consist only of the kinetic and potential energy terms, and the Born-

Oppenheimer approximation is made in order to separate the nuclear and 

electronic motion. 

In general,  electronic wavefunctions for molecules are constructed from 

approximate one-electron wavefunctions.  These one-electron functions are 

called molecular orbitals.   The expectation value expression for the energy is 

used to optimize these functions, i .e.  make them as good as possible.  The 
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criterion for quality is the energy of the ground state.   According to the 

Variational Principle, an approximate ground state energy always is higher than 

the exact energy, so the best energy in a series of approximations is the lowest 

energy.  In this chapter we describe how the variational method, perturbation 

theory, the self-consistent field method, and configuration interaction all  are 

used to describe the electronic states of molecules.  The ultimate goal is a 

mathematical description of electrons in molecules that enables chemists and 

other scientists to develop a deep understanding of chemical bonding, to 

calculate properties of molecules, and to make predictions based on these 

calculations.  For example, an active area of research in industry involves 

calculating changes in chemical properties of pharmaceutical drugs as a result  

of changes in their chemical structure. 

 

10.1 The Born-Oppenheimer Approximation 

The Born-Oppenheimer approximation is one of the basic concepts 

underlying the description of the quantum states of molecules.  This 

approximation makes it  possible to separate the motion of the nuclei and the 

motion of the electrons.  This is not a new idea for us.  We already made use of 

this approximation in the particle-in-a-box model when we explained the 

electronic absorption spectra of cyanine dyes without considering the motion of 

the nuclei.   Then we discussed the translational,  rotational and vibrational 

motion of the nuclei without including the motion of the electrons.  In this 

chapter we will  examine more closely the significance and consequences of this 

important approximation.  Note, in this discussion nuclear refers to the atomic 

nuclei as parts of molecules not to the internal structure of the nucleus. 

The Born-Oppenheimer approximation neglects the motion of the atomic 

nuclei when describing the electrons in a molecule.  The physical basis for the 

Born-Oppenheimer approximation is the fact that the mass of an atomic nucleus 

in a molecule is much larger than the mass of an electron (more than 1000 
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t imes).   Because of this difference, the nuclei move much more slowly than the 

electrons.  In addition, due to their opposite charges, there is a mutual 

attractive force of Ze2/r2  acting on an atomic nucleus and an electron.  This 

force causes both particles to be accelerated.  Since the magnitude of the 

acceleration is inversely proportional to the mass, a = f/m, the acceleration of 

the electrons is large and the acceleration of the atomic nuclei is small;  the 

difference is a factor of more than 1000.  Consequently, the electrons are 

moving and responding to forces very quickly, and the nuclei are not.   You can 

imagine running a 100-yard dash against someone whose acceleration is a 1000 

times greater than yours.  That person could literally run circles around you.  

So a good approximation is to describe the electronic states of a molecule by 

thinking that the nuclei aren't  moving, i .e.  that they are stationary.  The nuclei,  

however, can be stationary at different positions so the electronic wavefunction 

can depend on the positions of the nuclei even though their motion is neglected. 

Now we look at the mathematics to see what is done in solving the 

Schrödinger equation after making the Born-Oppenheimer approximation.  For a 

diatomic molecule as an example, the Hamiltonian operator is grouped into 

three terms 
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In Equation {10-1}, the first  term represents the kinetic energy of the nuclei,  

the second term represents the Coulomb repulsion of the two nuclei,  and the 

third term represents the contribution to the energy from the electrons, which 

consists of their kinetic energy, mutual repulsion for each other,  and attraction 

for the nuclei.   Bold-face type is used to represent that r  and R  are vectors 

specifying the positions of all  the electrons and all  the nuclei,  respectively. 

Exercise 10.1    Define all the symbols in Equations {10-1} through {10-3}. 
 
Exercise 10.2    Explain why the factor of 1/2 appears in the last term in Equation {10-3}. 
 

The Born-Oppenheimer approximation says that the nuclear kinetic 

energy terms in the complete Hamiltonian, Equation {10-1}, can be neglected in 

solving for the electronic wavefunctions and energies.  Consequently, the 

electronic wavefunction φe(r,R) is found as a so1ution to the electronic 

Schrödinger equation, ▲   

 elec e e eĤ ( ) φ ( ) E ( ) φ ( )=r, R r, R R r, R  {10-4} 

Even though the nuclear kinetic energy terms are neglected, the Born-

Oppenheimer approximation stil l  takes into account the variation in the 

positions of the nuclei in determining the electronic energy and the resulting 

electronic wavefunction depends upon the nuclear positions, R .  

As a result  of the Born-Oppenheimer approximation, the molecular 

wavefunction can be written as a product ▲  

 ne ne eψ ( ) χ ( ) φ ( )=r,R R r,R  {10-5} 

This product wavefunction is called the Born-Oppenheimer wavefunction.  

The function χn e(R) is the vibrational wavefunction, which is a function of the 

nuclear coordinates R  and depends upon both the vibrational and electronic 

quantum numbers or states,  n and e, respectively.  The electronic function, 
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φe(r,R),  is a function of both the nuclear and electronic coordinates, but only 

depends upon the electronic quantum number or electronic state,  e.   

Translational and rotational motion is not included here.  The translational and 

rotational wavefunctions simply multiply the vibrational and electronic 

functions in Equation {10-5} to give he complete molecular wavefunction when 

the translational and rotational motions are not coupled to the vibrational and 

electronic motion. 

In the Crude Born-Oppenheimer Approximation ,  R  is set equal to R0 ,  the 

equilibrium separation of the nuclei,  and the electronic wavefunctions are taken 

to be the same for all  positions of the nuclei.  

The electronic energy, Ee(R),  in Equation {10-4} combines with the 

repulsive Coulomb energy of the two nuclei,  to form the potential energy 

function that controls the nuclear motion as shown in Figure 10.1. 
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Consequently the Schrödinger equation for the vibrational motion is 

 nuc n e ne n eT̂ (R) V( ) χ ( ) E χ ( ) + = R R R  {10-7} 

In Chapter 6, the potential energy was approximated as a harmonic 

potential depending on the displacement, Q, of the nuclei from their equilibrium 

positions. 
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F igure  10.1  The potent ia l  energy funct ion for  a  d ia tomic molecule .  

In practice the electronic Schrödinger equation is solved using 

approximations at particular values of R  to obtain the wavefunctions φe(r,R) 

and potential energies Ve(R).   The potential energies can be graphed as 

il lustrated in Figure 10.1. 

The graph in Figure 10.1 is the energy of a diatomic molecule as a 

function of internuclear separation, which serves as the potential energy 

function for the nuclei.   When R is very large there are two atoms that are 

weakly interacting.  As R becomes smaller,  the interaction becomes stronger, 

the energy becomes a large negative value, and we say a bond is formed 

between the atoms.  At very small values of R, the internuclear repulsion is 

very large so the energy is large and positive.  This energy function controls the 

motion of the nuclei.   Previously, we approximated this function by a harmonic 

potential to obtain the description of vibrational motion in terms of the 

harmonic oscillator model.   Other approximate functional forms could be used 
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as well,  e.g. the Morse potential.   The equilibrium position of the nuclei is 

where this function is a minimum, i .e.  at  R = R0.  If  we obtain the wavefunction 

at R = R0, and use this function for all  values of R, we have employed the 

Crude Born-Oppenheimer  approximation. 

Exercise 10.3    Relate Equation {10-7} to the one previously used in our description of 
molecular vibrations in terms of the harmonic oscillator model. 

 

In this section we started with the Schrödinger equation for a diatomic 

molecule and separated it  into two equations, an electronic Schrödinger 

equation and a nuclear Schrödinger equation.  In order to make the separation, 

we had to make an approximation.  We had to neglect the effect of the nuclear 

kinetic energy on the electrons.  The fact that this assumption works can be 

traced to the fact that the nuclear masses are much larger than the electron 

mass.  We then used the solution of the electronic Schrödinger equation to 

provide the potential energy function for the nuclear motion.  The solution to 

the nuclear Schrödinger equation provides the vibrational wavefunctions and 

energies. 

Exercise 10.4    Explain the difference between the Born-Oppenheimer approximation and the 
Crude Born-Oppenheimer approximation. 

 

10.2 The Orbital Approximation and Orbital Configurations 

You should be able to recognize from the form of the electronic 

Hamiltonian, Equation {10-3}, that the electronic Schrödinger equation, 

Equation {10-4}, cannot be solved.  The problem, as for the case of atoms, is 

the electron-electron repulsion terms.  Approximations must be made, and these 

approximations are based on the idea of using one-electron wavefunctions to 

describe multi-electron systems, in this case molecules just as is done for multi-

electron atoms.  Initially two different approaches were developed.  Heitler and 

London originated one in 1927, called the Valence Bond Method, and Robert 
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Mulliken and others developed the other somewhat later,  called the Molecular 

Orbital Method.  By using configuration interaction, both methods can provide 

equivalent electronic wavefunctions and descriptions of bonding in molecules, 

although the basic concepts of the two methods are different.   We will  develop 

only the molecular orbital method because this is the method that is 

predominantly employed now.  The wavefunction for a single electron in a 

molecule is called a molecular orbital in analogy with the one-electron 

wavefunctions for atoms being called atomic orbitals.  

To describe the electronic states of molecules, we construct 

wavefunctions for the electronic states by using molecular orbitals.   These 

wavefunctions are approximate solutions to the Schrödinger equation.  A 

mathematical function for a molecular orbital is constructed, ψ i ,  as a linear 

combination of other functions, φ j ,  which are called basis functions because 

they provide the basis for representing the molecular orbital.  

 i ij j
j

ψ c φ= ∑  {10-8} 

The variational method is used to find values for parameters in the basis 

functions and for the constant coefficients in the linear combination that 

optimize these functions, i .e.  make them as good as possible.  The criterion for 

quality in the variational method is making the ground state energy of the 

molecule as low as possible. ▲    Here and in the rest of this chapter,  the 

following notation is used: σ  = a general spin function (can be either α or β),  φ  

= basis function (usually represents an atomic orbital),  ψ  = molecular orbital,  Ψ  

= electronic state wavefunction (representing a single Slater determinant or 

linear combination of Slater determinants).  

The ultimate goal is a mathematical description of electrons in molecules 

that enables chemists and other scientists to develop a deep understanding of 

chemical bonding and reactivity, to calculate properties of molecules, and to 

make predictions based on these calculations.  For example, an active area of 
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research in industry involves calculating changes in chemical properties of 

pharmaceutical drugs as a result  of changes in chemical structure. 

Just as for atoms, each electron in a molecule can be described by a 

product of a spatial orbital and a spin function.  These product functions are 

called spin orbitals.   Since electrons are fermions, the electronic wavefunction 

must be antisymmetric with respect to the permutation of any two electrons.  A 

Slater determinant containing the molecular spin orbitals produces the 

antisymmetric wavefunction.  For example for two electrons, 
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Solving the Schrödinger equation in the orbital approximation will  

produce a set of spatial molecular orbitals,  each with a specific energy, ε .   

Following the Aufbau Principle, 2 electrons with different spins (α  and β ,  

consistent with the Pauli Exclusion Principle) are assigned to each spatial 

molecular orbital in order of increasing energy.  For the ground state of the 2n 

electron molecule, the n lowest energy spatial orbitals will  be occupied, and the 

electron configuration will  be given as 2 2 2 2
1 2 3 nψ ψ ψ ψ .   The electron configuration 

also can be specified by an orbital energy level diagram as shown in Figure 

10.2.  Higher energy configurations exist as well,  and these configurations 

produce excited states of molecules.  Some examples are shown in Figure 10.2. 
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Figure  10.2  a)  The lowest  energy conf igurat ion of  a  c losed-shel l  sys tem.  b)  The lowest  

energy conf igurat ion of  an  open-shel l  radical .  c)  An exci ted s ingle t  conf igurat ion.  d)  An 

exci ted  t r ip let  conf igurat ion.   

  

Molecular orbitals usually are identified by their symmetry or angular 

momentum properties.   For example, a typical symbol used to represent an 

orbital in an electronic configuration of a diatomic molecule is 2σg
2 .   The 

superscript in symbol means that this orbital is occupied by two electrons; the 

prefix means that i t  is the second sigma orbital with gerade  symmetry. 

Diatomic molecules retain a component of angular momentum along the 

internuclear axis.   The molecular orbitals of diatomic molecule therefore can be 

identified in terms of this angular momentum.  A Greek letter,  e.g. σ  or π ,  

encodes this information, as well as information about the symmetry of the 

orbital.   A σ  means the component of angular momentum is 0, and there is no 
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node in any plane containing the internuclear axis,  so the orbital must be 

symmetric with respect to reflection in such a plane.  A π  means there is a node 

and the wavefunction is antisymmetric with respect to reflection in a plane 

containing the internuclear axis.   For homonuclear diatomic molecules, a g  or a 

u  is added as a subscript to designate whether the orbital is symmetric or 

antisymmetric with respect to the center of inversion of the molecule. 

A homonuclear diatomic molecule has a center of inversion in the middle 

of the bond.  This center of inversion means that ψ(x,y,z) = ±ψ(−x, −y,−z,) with 

the origin at the inversion center.   Inversion takes you from (x,y,z) to 

(−x,−y,−z).   For a heteronuclear diatomic molecule, there is no center of 

inversion so the symbols g and u are not used.  A prefix 1, 2, 3, etc.  simply 

means the first ,  second, third, etc.  orbital of that type.  We can specify an 

electronic configuration of a diatomic molecule by these symbols by using a 

superscript to denote the number of electrons in that orbital,  e.g. the lowest 

energy configuration of N2 is  

 2 2 2 2 4 2
g u g u u g1σ 1σ 2σ 2σ 1π 3σ .  {10-10} 

 
10.3 Basis Functions 

The molecular spin-orbitals that are used in the Slater determinant 

usually are expressed as a linear combination of some chosen functions, which 

are called basis functions .   This set of functions is called the basis set .   The 

fact that one function can be represented by a linear combination of other 

functions is a general property.  All that is necessary is that the basis functions 

span-the-space ,  which means that the functions must form a complete set and 

must be describing the same thing.  For example, spherical harmonics cannot be 

used to describe a hydrogen atom radial function because they do not involve 

the distance r,  but they can be used to describe the angular properties of 

anything in three-dimensional space. 
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This span-the-space property of functions is just l ike the corresponding 

property of vectors.   The unit vectors ( )x, y, z  describe points in space and form 

a complete set since any position in space can be specified by a linear 

combination of these three unit vectors.   These unit vectors also could be called 

basis vectors.  

Exercise 10.5    Explain why the unit vectors ( )x, y  do not form a complete set to describe your 
classroom. 
 

Just as we discussed for atoms, parameters in the basis functions and the 

coefficients in the linear combination can be optimized in accord with the 

Variational Principle to produce a self-consistent field (SCF) for the electrons.  

This optimization means that the ground state energy calculated with the 

wavefunction is minimized with respect to variation of the parameters and 

coefficients defining the function.  As a result,  that ground state energy is 

larger than the exact energy, but is the best value that can be obtained with that 

wavefunction. 

Intuitively one might select hydrogenic atomic orbitals as the basis set 

for molecular orbitals.   After all ,  molecules are composed of atoms, and 

hydrogenic orbitals describe atoms exactly if  the electron-electron interactions 

are neglected.  At a better level of approximation, the nuclear charge that 

appears in these functions can be used as a variational parameter to account for 

the shielding effects due to the electron-electron interactions.  Also, the use of 

atomic orbitals allows us to interpret molecular properties and charge 

distributions in terms of atomic properties and charges, which is very appealing 

since we picture molecules as composed of atoms.  As described in the previous 

chapter,  calculations with hydrogenic functions were not very efficient so other 

basis functions, Slater-type atomic orbitals  (STOs), were invented. 

A minimal basis set of STOs for a molecule includes only those STOs that 

would be occupied by electrons in the atoms forming the molecule.  A larger 

basis set,  however, improves the accuracy of the calculations by providing more 
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variable parameters to produce a better approximate wavefunction, but at the 

expense of increased computational time. 

For example, one can use more than one STO to represent one atomic 

orbital,  as shown in Equation {10-11}, and rather than doing a nonlinear 

variational calculation to optimize each zeta, use two STOs with different 

values for zeta.  The linear variation calculation then will  produce the 

coefficients (C1 and C2) for these two functions in the linear combination that 

best describes the charge distribution in the molecule.  The function with the 

large zeta accounts for charge near the nucleus, while the function with the 

smaller zeta accounts for the charge distribution at larger values of the distance 

from the nucleus.  This expanded basis set is called a double-zeta basis set .  

 1 2ζ r ζ r
2s 1 2R (r) C r e C r e− −= +  {10-11} 

 

Exercise 10.6     
(a) Plot the normalized radial probability density for a 2s hydrogenic orbital for lithium using an 
effective nuclear charge of 1.30. 
(b) Fit that radial probability density with the radial probability density for 1 STO by varying the 
zeta parameter in the STO. 
(c) Also fit the radial probability density for the hydrogenic orbital with that for the sum of 2 
STOs, as in Equation {10-11}, by varying the zeta parameters for each and their coefficients in 
the sum. 
(d) Report your values for the zeta parameters and the coefficients and provide graphs of these 
functions and the corresponding radial probability densities.  What are your conclusions 
regarding the utility of using STOs with single or double zeta values to describe the charge 
distributions in atoms and molecules? 

 

The use of double zeta functions in basis sets is especially important 

because without them orbitals of the same type are constrained to be identical 

even though in the molecule they may be chemically inequivalent.   For example, 

in acetylene the pz orbital along the internuclear axis is in a quite different 

chemical environment and is being used to account for quite different bonding 
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than the px and py orbitals.   With a double zeta basis set the pz orbital is not 

constrained to be the same size as the px and py orbitals.  

 

Exercise 10.7    Explain why the px, py, and pz orbitals in a molecule might be constrained to be 
the same in a single-zeta basis set calculation, and how the use of a double-zeta basis set would 
allow the px, py, and pz orbitals to differ. 
 

The use of a minimal basis set with fixed zeta parameters severely limits 

how much the electronic charge can be changed from the atomic charge 

distribution in order to describe molecules and chemical bonds.  This limitation 

is removed if STOs with larger n values and different spherical harmonic 

functions, the mY (θ, φ)  in the definition of STO’s in Chapter 9, are included.  

Adding such functions is another way to expand the basis set and obtain more 

accurate results.   Such functions are called polarization functions because they 

allow for charge polarization away form the atomic distribution to occur. 

While the STO basis set was an improvement over hydrogenic orbitals in 

terms of computational efficiency, representing the STOs with Gaussian 

functions produced further improvements that were needed to accurately 

describe molecules.  A Gaussian basis function has the form shown in Equation 

{10-12}.   Note that in all  the basis sets,  only the radial part of the orbital 

changes, and the spherical harmonic functions are used in all  of them to 

describe the angular part of the orbital.  

 
2n 1 α r m

n m nG (r,θ,φ) N r e Y (θ, φ)− −=  {10-12} 

Unfortunately Gaussian functions do not match the shape of an atomic 

orbital very well.   In particular,  they are flat rather than steep near the atomic 

nucleus at r  = 0, and they fall  off more rapidly at large values of r.  
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Exercise 10.8   Make plots of the following two functions 
 (1.108) exp(- r2/3) 
 (2.000) exp(-r) 
to illustrate how Gaussian functions differ from hydrogenic orbitals and Slater-type orbitals.  The 
constants multiplying the exponentials normalize these functions.  Describe the differences you 
observe between a Gaussian and a Slater-type function. 
 

To compensate for this problem, each STO is replaced with a number of 

Gaussian functions with different values for the exponential parameter α .   

These Gaussian functions form a primitive Gaussian basis set .   Linear 

combinations of the primitive Gaussians are formed to approximate the radial 

part of a STO.  This linear combination is not optimized further in the energy 

variational calculation but rather is frozen and treated as a single function.  The 

linear combination of primitive Gaussian functions is called a contracted 

Gaussian function .  Although more functions and more integrals now are part of 

the calculation, the integrals involving Gaussian functions are quicker to 

compute than those involving exponentials so there is a net gain in the 

efficiency of the calculation. 

Gaussian basis sets are identified by abbreviations such as N-MPG*.  N is 

the number of Gaussian primitives used for each inner-shell  orbital.   The 

hyphen indicates a split-basis set where the valence orbitals are double zeta.  

The M indicates the number of primitives that form the large zeta function (for 

the inner valence region), and P indicates the number that form the small zeta 

function (for the outer valence region).  G identifies the set a being Gaussian.  

The addition of an asterisk to this notation means that a single set of Gaussian 

3d polarization functions is included.  A double asterisk means that a single set 

of Gaussian 2p functions is included for each hydrogen atom. 

For example 3G means each STO is represented by a linear combination 

of three primitive Gaussian functions.  6-31G means each inner shell  (1s 

orbital) STO is a linear combination of 6 primitives and each valence shell STO 
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is split  into an inner and outer part (double zeta) using 3 and 1 primitive 

Gaussians, respectively. 

 

Exercise 10.9   The 1s Slater-type orbital 
 1ζ r

1 1 1S (r) 4ζ e with ζ 1.24−= =  
is represented as a sum of three primitive Gaussian functions. 
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α r
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j 1
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= ∑  

This sum is the contracted Gaussian function for the STO. 
(a) Make plots of the STO and the contracted Gaussian function on the same graph so they can 
be compared easily.  All distances should be in units of the Bohr radius.  Use the following 
values for the coefficients, C, and the exponential parameters, α. 
 index j αj Cj 
 1 0.1688 0.4 
 2 0.6239 0.7 
 3 3.425 1.3 
(b) Change the values of the coefficients and exponential parameters to see if a better fit can be 
obtained. 
(c) Comment on the ability of a linear combination of Gaussian functions to accurately describe 
a STO. 
 
 

10.4 The Case of H2
+ 

One can develop an intuitive sense of molecular orbitals and what a 

chemical bond is by considering the simplest molecule, H2
+.  This ion consists 

of two protons held together by the electrostatic force of a single electron.  

Clearly the two protons, two positive charges, repeal each other.   The protons 

must be held together by an attractive Coulomb force that opposes the repulsive 

Coulomb force.  A negative charge density between the two protons would 

produce the required counter-acting Coulomb force needed to pull the protons 

together.   So intuitively, to create a chemical bond between two protons or two 

positively charged nuclei,  a high density of negative charge between them is 

needed.  We expect the molecular orbitals that we find to reflect this intuitive 

notion. 
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The electronic Hamiltonian for H2
+ is 

 
2 2 2 2

2
elec

0 A 0 B 0

e e eĤ ( ,R)
2m 4πε r 4πε r 4πε R

= − ∇ − − +r  {10-13} 

 

where r  gives the coordinates of the electron, and R is the distance between the 

two protons.  Although the Schrödinger equation for H2
+ can be solved exactly 

because there is only one electron, we will  develop approximate solutions in a 

manner applicable to other diatomic molecules that have more than one 

electron. 

For the case where the protons in H2
+ are infinitely far apart,  we have a 

hydrogen atom and an isolated proton when the electron is near one proton or 

the other.   The electronic wavefunction would just be lsA(r) or lsB(r) depending 

upon which proton, labeled A or B, the electron is near.   Here 1sA denotes a 1s 

hydrogen atomic orbital with proton A serving as the origin of the spherical 

polar coordinate system in which the position r  of the electron is specified.  

Similarly lsB has proton B as the origin.  A useful approximation for the 

molecular orbital when the protons are close together therefore is a linear 

combination of the two atomic orbitals.   The general method of using 

 A A B Bψ( ) C 1s ( ) C 1s ( )= +r r r  {10-14} 

i.e.  of finding molecular orbitals as linear combinations of atomic orbitals is 

called the Linear Combination of Atomic Orbitals - Molecular Orbital (LCAO-

MO) Method .   In this case we have two basis functions in our basis set,  the 

hydrogenic atomic orbitals 1sA and lsB. 

For H2
+, the simplest molecule, the starting function is given by Equation 

10.2.2.  We must determine values for the coefficients,  CA and CB.  We could 
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use the variational method to find a value for these coefficients,  but for the case 

of H2
+ evaluating these coefficients is easy.  Since the two protons are 

identical,  the probability that the electron is near A must equal the probability 

that the electron is near B.  These probabilit ies are given by 2
AC  and 2

BC , 

respectively.  Consider two possibilit ies that satisfy the condition 2 2
A BC C= ;  

namely, CA = CB = C+, and CA = −CB = C− .   These two cases produce two 

molecular orbitals:  

 A B

A B

ψ C (1s 1s )
ψ C (1s 1s )

+ +

− −

= +
= −

 {10-15} 

 

The probability density for finding the electron at any point in space is given by 
2ψ  and the electronic charge density is just e 2ψ .   The important difference 

between ψ+ and ψ−  is that the charge density for ψ+ is enhanced between the 

two protons, whereas it  is diminished for ψ−  as shown in Figures 10.3 and 10.4. 

ψ−  has a node in the middle while ψ+ corresponds to our intuitive sense of what 

a chemical bond must be like.  The electronic charge density is enhanced in the 

region between the two protons.  So ψ+ is called a bonding molecular orbital .   

If  the electron were described by ψ− ,  the low charge density between the two 

protons would not balance the Coulomb repulsion of the protons, so ψ−  is called 

an antibonding molecular orbital .  

Now we want to evaluate C+ and C−  and then calculate the energy.  The 

bonding and antibonding character of ψ+ and ψ−  also should be reflected in the 

energy.  If ψ+ indeed describes a bonding orbital,  then the energy of this state 

should be less than that of a proton and hydrogen atom that are separated.  The 

calculation of the energy will  tell  us whether this simple theory predicts H2
+ to 
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be stable or not and also how much energy is required to dissociate this 

molecule. 
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Figure  10.3  a)  The 1s  bas is  funct ions  and bonding and ant ibonding molecular  orbi ta ls  

p lot ted a long the  in ternuclear  axis ,  which is  def ined as  the  z-axis ,  for  H2
+ .   The protons  are  
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located a t  ± 53 pm,  which corresponds to  the  exper imental  bond length .   b)  The e lectron 

probabi l i ty  densi ty  for  the  bonding and ant ibonding molecular  orbi ta ls .   

 
 

S L I D E S H O W 

 
 

Figure 10.4 Click the images above to open slideshows that demonstrate bonding and 
antibonding orbitals for H2 as a function of the internuclear separation.  
 

Exercise 10.10   From the information in Figure 10.1 for H2
+, calculate the difference in the 

electronic charge density (C/pm3) at a point halfway between the two nuclei for an electron in 
the bonding molecular orbital compared to one in the antibonding molecular orbital. 
 

The constants C+ and C- are evaluated from the normalization condition.  

Bracket notation, ,  is used in Equation {10-16} to represent integration 

over all  the coordinates of the electron for both functions ψ+ and ψ− .   The right 

bracket represents a function, the left  bracket represents the complex conjugate 

of the function, and the two together mean integrate over all  the coordinates.  

 ψ ψ dτ ψ ψ 1∗
± ± ± ±= =∫  {10-16} 

 [ ] [ ]A B A BC 1s 1s C 1s 1s 1± ±± ± =  {10-17} 

 ( ) ( ) ( ) ( )2
A A B B B A A BC 1s 1s 1s 1s 1s 1s 1s 1s 1±  + ± ± =   {10-18} 
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Since the atomic orbitals are normalized, the first  two integrals are just 1.  

The last two integrals are called overlap integrals and are symbolized by S and 

S*, respectively, since one is the complex conjugate of the other.  

 

Exercise 10.11   Show that for two arbitrary functions 

B A A Bφ φ is the complex conjugate of φ φ  and that these two integrals are equal if the 
functions are real. 
 

The overlap integrals are telling us to take the value of lsB at a point 

multiply by the value of lsA at that point and sum (integrate) such a product 

over all  of space.  If  the functions don’t overlap, i .e.  if one is zero when the 

other one isn’t and vice versa, these integrals then will  be zero. It  also is 

possible in general for such integrals to be zero even if the functions overlap 

because of the cancellation of positive and negative contributions, as was 

discussed in Section 4.4. 

If the overlap integral is zero, for whatever reason, the functions are said 

to be orthogonal .   Notice that the overlap integral ranges from 0 to 1 as the 

separation between the protons varies from R = ∞  to R = 0.  Clearly when the 

protons are infinite distance apart,  there is no overlap, and when R = 0 both 

functions are centered on one nucleus and A B1s 1s  becomes identical to 

A A1s 1s , which is normalized to 1, because then 1sA = 1sB. 

With these considerations and using the fact that 1s wavefunctions are 

real so  

 A B B A1s |1s 1s |1s S= =  {10-19} 

Equation {10-18} becomes 

 ( )2C 2 2S 1± ± =  {10-20} 
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The solution to Equation {10-20} is given by 

 [ ]
1
2C 2 (1 S) −

± = ±  {10-21} 

 

The energy is calculated from the expectation value integral,   

 elec
ˆE ψ H ψ± ± ±= ,  {10-22} 

 

which expands to give 

A elec A B elec B A elec B B elec A
1 ˆ ˆ ˆ ˆE 1s H 1s 1s H 1s 1s H 1s 1s H 1s

2 (1 S)±
 = + ± ±
 ±

 {10-23} 

 

 

Exercise 10.12   Show that Equation {10-22} expands to give Equation {10-23}. 
 

The four integrals in Equation {10-23} can be represented by HAA, HBB, 

HAB, and HBA, respectively.  Notice that A and B appear equivalently in the 

Hamiltonian operator,  Equation {10-13}.  This equivalence means that integrals 

involving 1sA must be the same as corresponding integrals involving lsB, i .e.  

 AA BBH H=  {10-24} 

and since the wavefunctions are real,   

 AB BAH H=  {10-25} 
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giving 

 ( )AA AB
1E H H

1 S± = ±
±

.  {10-26} 

 

Now examine the details of HA A after inserting Equation {10-13} for the 

Hamiltonian operator.  

2 2 2 2
2

AA A A A A A A
0 A 0 0 B

e e eH 1s 1s 1s 1s 1s 1s
2m 4πε r 4πε R 4πε r

= − ∇ − + −

 {10-27} 

 

The first  term is just the integral for the energy of the hydrogen atom, EH.  The 

second integral is equal to 1 by normalization; the prefactor is just the Coulomb 

repulsion of the two protons.  The last integral,  including the minus sign, is 

represented by J and is called the Coulomb integral.   Physically J is the 

potential energy of interaction of the electron located around proton A with 

proton B.  It  is negative because it  is an attractive interaction.  It  is the average 

interaction energy of an electron described by the 1sA function with proton B. 

Now consider HAB. 

2 2 2 2
2

AB A B A B A B
0 B 0 0 A

e e eH 1s 1s 1s 1s 1s 1s
2m 4πε r 4πε R 4πε r

= − ∇ − + −

 {10-28} 

In the first  integral we have the hydrogen atom Hamiltonian and the H 

atom function 1sB.  The function lsB is an eigenfunction of the operator with 

eigenvalue EH.  Since EH is a constant i t  factors out of the integral,  which then 
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becomes the overlap integral,  S.  The first  integral therefore reduces to EHS.  

The second term is just the Coulomb energy of the two protons times the 

overlap integral.   The third term, including the minus sign, is given the symbol 

K and is called the exchange integral .   I t  is called an exchange integral because 

the electron is described by the 1sA orbital on one side and by the lsB orbital on 

the other side of the operator.   The electron changes or exchanges position in 

the molecule.  In a Coulomb integral the electron always is in the same orbital;  

whereas, in an exchange integral,  the electron is in one orbital on one side of 

the operator and in a different orbital on the other side. 

Using the expressions for HAA and HAB and substituting into Equation 

{10-26} produces 

 ( )
2

H
o

1 eE E 1 S J K
1 S 4πε R±

  
= + ± + ±  ±   

 {10-29} 

 

 
2

H
0

e J KE E
4πε R 1 S±

±
= + +

±
 {10-30} 

 

 
2

H
0

e J K∆E E E
4πε R 1 S± ±

±
= − = +

±
 {10-31} 

 

Equation {10-30} tells us that the energy of the H2
+ molecule is the energy of a 

hydrogen atom plus the repulsive energy of two protons plus some additional 

electrostatic interactions of the electron with the protons.  These additional 

interactions are given by J K
1 S

±
±

.   If the protons are infinitely far apart then only 

EH is nonzero.  To get a chemical bond and a stable H2
+ molecule, ∆E±  = E±- EH 
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must be less than zero and have a minimum, i .e.  J K
1 S

±
±

 must be sufficiently 

negative to overcome the positive repulsive energy of the two protons 
2

0

e
4πε R

 

for some value of R.  For large R these terms are zero, and for small R, the 

Coulomb repulsion of the protons rises to infinity. 

Exercise 10.13   Show that Equation {10-31} follows from Equation {10-26}. 
 

We will  examine more closely how the Coulomb repulsion term and the 

integrals J,  K, and S depend on the separation of the protons, but first  we want 

to discuss the physical significance of J,  the Coulomb integral,  and K, the 

exchange integral.   J and K have been defined as 

 
A A

2 2

A A 1s 1s
0 B 0 B

e eJ 1s 1s φ ( ) φ ( ) dτ
4πε r 4πε r

∗−
= = − ∫ r r  {10-32} 

 
A B

2 2

A B 1s 1s
0 A 0 A

e eK 1s 1s φ ( ) φ ( ) dτ
4πε r 4πε r

∗−
= = − ∫ r r  {10-33} 

Note that both integrals are negative since all  quantities in the integrand 

are positive.  In the Coulomb integral,  
A A1s 1se φ ( ) φ ( )∗ r r  is the charge density of the 

electron around proton A, since r  represents the coordinates of the electron 

relative to proton A.  Since rB is the distance of this electron to proton B, the 

Coulomb integral gives the potential energy of the charge density around proton 

A interacting with proton B.  J can be interpreted as an average potential energy 

of this interaction because 
A A1s 1sφ ( ) φ ( )∗ r r  is the probability density for the 

electron at point r ,  and 
2

0 B

e
4πε r

 is the potential energy of the electron at that 

point due to the interaction with proton B.  Essentially, J accounts for the 

attraction of proton B to the electron density of hydrogen atom A.  As the two 
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protons get further apart,  this integral goes to zero because all  values for rB 

become very large and all  values for 1/rB become very small.  

In the exchange integral,  K, the product of the two functions is nonzero 

only in the regions of space where the two functions overlap.  If one function is 

zero or very small at some point then the product will  be zero or small.   The 

exchange integral also approaches zero as internuclear distances increase 

because the both the overlap and the 1/r values become zero. The product 

A B1s 1se φ (r) φ (r)∗  is called the overlap charge density .   Since the overlap charge 

density is significant in the region of space between the two nuclei,  i t  makes an 

important contribution to the chemical bond.  The exchange integral, K, is the 

potential energy due to the interaction of the overlap charge density with one of 

the protons.  While J accounts for the attraction of proton B to the electron 

density of hydrogen atom A, K accounts for the added attraction of the proton 

due the build-up of electron charge density between the two protons. 

Exercise 10.14   Write a paragraph describing in your own words the physical significance of 
the Coulomb and exchange integrals for H2

+. 
 

Figure 10.5 shows graphs of the terms contributing to the energy of H2
+. 

In this figure you can see that as the internuclear distance R approaches zero, 

the Coulomb repulsion of the two protons goes from near zero to a large 

positive number, the overlap integral goes for zero to one, and J and K become 

increasingly negative. 
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Figure  10.5  a)  The e lectros ta t ic  energy ( in  har t rees ,  27.2  eV) of  two protons  separated by 

a  dis tance R in  uni ts  of  the  Bohr  radius  (52.92 pm).   b)  The over lap,  Coulomb,  and exchange 

in tegrals  a t  d if ferent  proton separat ions .   The uni ts  for  J  and K are  har trees ;  S  has  no uni ts .  

Figure 10.6 shows the energy of H2
+ relative to the energy of a separated 

hydrogen atom and a proton as given by Equation {10-30}.  For the electron in 

the antibonding orbital,  the energy of the molecule, E−(R), always is greater 

than the energy of the separated atom and proton.   
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Figure  10.6  Energy of  the  H 2

+  bonding molecular  orbi ta l  ∆E+ and the  ant ibonding 

molecular  orbi ta l  ∆E_,  re la t ive  to  the  energy of  a  separated hydrogen a tom and proton.  

For the electron in the bonding orbital,  you can see that the big effect for 

the energy of the bonding orbital,  E+(R), is the balance between the repulsion of 

the two protons 
2

0

e
4πε R

 and J and K, which are both negative.  J and K manage 

to compensate for the repulsion of the two protons until  their separation is less 

than 100 pm (i.e the energy is negative up until  this point),  and a minimum in 

the energy is produced at 134 pm.  This minimum represents the formation of a 

chemical bond.  The effect of S is small.   It  only causes the denominator in 

Equation {10-30} to increase from 1 to 2 as R approaches 0. 

For the antibonding orbital,  -K is a positive quantity and essentially 

cancels J so there is not sufficient compensation for the Coulomb repulsion of 

the protons.  The effect of the -K in the expression, Equation {10-30}, for E−  is 

to account for the absence of overlap charge density and the enhanced repulsion 

because the charge density between the protons for ψ−  is even lower than that 

given by the atomic orbitals.  
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This picture of bonding in H2
+ is very simple but gives reasonable results 

when compared to an exact calculation.  The equilibrium bond distance is 134 

pm compared to 106 pm (exact),  and a dissociation energy is 1.8 eV compared 

to 2.8 eV (exact).  

 

Exercise 10.15   Write the final expressions for the energy of ψ+ and ψ_, explain what these 
expressions mean, and explain why one describes the chemical bond in H2

+and the other does 
not. 
 
Exercise 10.16   Figure 10.5 shows that S = 1 and J = K =1 hartree when R = 0.  Explain why S 
equals 1 and J and K equal -1 hartree when R = 0. 
 

To describe chemical bonding we need to account for the increase in 

electron density between the two nuclei.   The 1s orbitals alone are not 

particularly good for this purpose because they are spherically symmetric and 

show no preference for the space between the atomic nuclei.   The use of 

additional atomic orbitals can correct this situation and provide additional 

parameters, which can be optimized by the variational method, to give a better 

function with a lower energy and more accurate description of the charge 

density.  Introducing a 2s and 2p orbital provides a hybrid function that points 

in the direction of the bond and does not decrease as rapidly with distance away 

from the atomic nucleus as the 1s functions do.  The construction of such hybrid 

functions that point in the direction of the bonds is called hybridization ,  and 

these functions are known as hybrid orbitals .  

The result of adding a pz function to an s function produces a function 

with a larger amplitude on one side of the nucleus, where both functions are 

positive, and a smaller amplitude on the other side, where the p function is 

negative.  The shape of the hybrid function resembles that of the p function. 

To describe methane, which is tetrahedral,  hybrid orbitals are used 

because the linear combination of an s orbital with three p orbitals provides 
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four functions that point to the corners of a tetrahedron.  Methane is tetrahedral 

because this geometry is the lowest energy configuration for a C atom and 4 H 

atoms.  Methane is not tetrahedral because of sp3 hybridization.  The sp3 

hybridization scheme only serves to describe the bonding in methane that is 

determined by the interactions among the nuclei and the electrons.  The 

coefficients in the linear combination required to form the sp3 hybrid orbitals 

can be deduced from the constraint that the orbitals point to the corners of a 

tetrahedron. 

 

Exercise 10.17   Define hybridization and explain why hybrid orbitals are used, why methane is 
tetrahedral, and why sp3-hybridized orbitals are used for methane. 
 

 

10.5 Homonuclear Diatomic Molecules 

The LCAO-MO method that we used for H2
+ can be applied qualitatively 

to homonuclear diatomic molecules to provide additional insight into chemical 

bonding.  A more quantitative approach also is helpful,  especially for more 

complicated situations, l ike heteronuclear diatomic molecules and polyatomic 

molecules.  Quantitative theories are described in subsequent sections. 

First consider diatomic carbon, C2.  The first question to ask is,  “Are the 

electrons paired or unpaired?”  For example, if  we start with acetylene and 

remove 2 hydrogen atoms, we get C2 with an unpaired electron on each carbon.  

On the other hand, it  might be possible for these electrons to pair up and give 

C2 with a quadruple bond.  Let 's examine the molecular orbital theory of C2 to 

see what that theory predicts.  

Just as for the hydrogen molecule, we combine the two corresponding 

atomic orbitals from each atom.  We are using the smallest possible basis set for 

this discussion.  From each combination, we get a bonding molecular orbital 
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and an antibonding molecular orbital.   We expect the pz orbitals on the two 

atoms to have more overlap than the px and py orbitals.   We therefore expect the 

exchange integrals to be larger and the resulting molecular orbital 2pzσg to have 

a lower energy, i .e.  be more bonding, than the 2pxπu and 2pyπu,  which are 

degenerate since the x and y directions are equivalent.   Using the Aufbau 

Principle, we assign 2 electrons to each orbital as shown in Figure 10.7, and 

end up with two electrons to put in two degenerate orbitals.   Because of 

electron-electron repulsion, the lowest energy state will  have each electron in a 

different degenerate orbital where they can be further apart than if they were in 

the same orbital.   This separation reduces the repulsive Coulomb potential 

energy.  Thus in C2 we have 2 unpaired electrons, each in a bonding molecular 

orbital.   The bond order, which is given by the number of electrons in bonding 

molecular orbitals minus the number of electrons in antibonding molecular 

orbitals divided by 2, is however 2, and each unpaired electron is not localized 

on a single C atom.  So we see that the electronic structure of C2 (1sσg
2 ,  1sσu

2 ,  

2sσg
2 ,  2sσu

2 ,  2pσg
2 ,  2pπu

2) is quite different from what we would expect by 

thinking it  is acetylene without the two H atoms.  The acetylene structure 

naively predicts a triple bond and two nonbonded electrons on each carbon 

atom. 

The two unpaired electrons in the two 2pπu  orbitals of C2 predicted by 

this simple theory produce a singlet or a triplet ground state.  The singlet 

ground state results if  the electron spins are antiparallel (αβ),  and the triplet 

ground state results if  the electron spins are parallel (the three triplet spin 

functions are αα, αβ+βα, and ββ).   Hund’s rules predict the triplet state to have 

the lower energy, but the ground state of C2 is known experimentally to be a 

singlet state.  The singlet state results from a configuration where the 2pσg  

orbital has a higher energy than the 2pπu  orbitals,  and all  electrons are paired 

(1sσg
2 ,  1sσu

2 ,  2sσg
2 ,  2sσu

2 ,  2pπu
4 ,  2pσg

0).   The bond order is stil l  2, but there 

are no unpaired electrons.  All the molecular orbitals are doubly occupied. 
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Figure  10.7  Order ing of  molecular  orbi ta ls  by energy for  homonuclear  d ia tomic molecules  

with  ( r ight  s ide)  and without  ( lef t  s ide)  s ignif icant  mixing of  molecular  orbi ta ls .   The 

ver t ical  energy axis  is  not  to  scale .  

 

This configuration is accounted for theoretically by a more complete 

theory that allows the molecular orbitals to be written as linear combinations of 

all  the valence atomic orbitals not just a pair of them, see Equation {10-8}.  

The 2σg  orbital,  which in the simple scheme is 2sA+2sB, is stabilized by mixing 

with 2pz A+2pz B, which is the 3σg  orbital.   As a result of this mixing, the 3σg  

orbital is destabilized and pushed to higher energy, above the 2pπu  orbitals.   

This mixing is just an example of hybridization.  Better wavefunctions and 

better energies are obtained by using hybrid functions, which in this case is a 

linear combination of 1s and 2pz functions.  The relative energies of these 

hybrid orbitals also are shown on the right hand side of Figure 10.7. 
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For such mixing to be important,  the orbitals must have the same 

symmetry and be close to each other in energy.  Because of these constraints,  

this mixing is most important for the 2sσg  and 2pσg  orbitals,  both of which have 

σg  symmetry. 

This ordering is found for all  the diatomic molecules of the first row 

elements except O2 and F2.  For these two molecules, the energy separation 

between the 2s and 2p orbitals is larger, and consequently the mixing is not 

strong enough to alter the energy level structure from that predicted by using 

the simple two-function basis set.  

 

10.6 Semi-Empirical Methods: Extended Hückel 

An electronic structure calculation from first principles (ab initio) 

presents a number of challenges.  Many integrals must be evaluated followed by 

a self-consistent process for assessing the electron-electron interaction and then 

electron correlation effects must be taken into account.  Semi-empirical 

methods do not proceed analytically in addressing these issues, but rather uses 

experimental data to facilitate the process.  Several such methods are available.  

These methods are illustrated here by the approaches built  on the work of 

Hückel.  

One of the first semi-empirical methods to be developed was Hückel 

Molecular Orbital Theory (HMO).  HMO was developed to describe molecules 

containing conjugated double bonds.  HMO considered only electrons in pi 

orbitals and ignored all  other electrons in a molecule.  It  was successful 

because it  could address a number of issues associated with a large group of 

molecules at a time when calculations were done on mechanical calculators. 

The Extended Hückel Molecular Orbital Method (EH) grew out of the 

need to consider all  valence electrons in a molecular orbital calculation.  By 

considering all  valence electrons, chemists could determine molecular structure, 
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compute energy barriers for rotation about bonds, and even determine energies 

and structures of transition states for reactions.  The computed energies could 

be used to choose between proposed transitions states to clarify reaction 

mechanisms. 

In the EH method, only the n valence electrons are considered.  The total 

valence electron wavefunction is described as a product of the one-electron 

wavefunctions. 

 valence 1 2 3 4 jΨ ψ (1) ψ (2) ψ (3) ψ (4) ψ (n)=  {10-34} 

where n is the number of electrons and j identifies the molecular orbital.   Each 

molecular orbital is written as an linear combination of atomic orbitals (LCAO). 

 
N

j j r r
r 1

ψ c φ j 1, 2, ... N
=

= =∑  {10-35} 

where now the φ r  are the valance atomic orbitals chosen to include the 2s, 2px, 

2py, and 2pz of the carbons and heteroatoms in the molecule and the 1s orbitals 

of the hydrogen atoms.  These orbitals form the basis set .   Since this basis set 

contains only the atomic-like orbitals for the valence shell of the atoms in a 

molecule, i t  is called a minimal basis set .  

Each jψ ,  with j  = 1…N, represents a molecular orbital,  i .e.  a 

wavefunction for one electron moving in the electrostatic field of the nuclei and 

the other electrons.  Two electrons with different spins are placed in each 

molecular orbital so that the number of occupied molecular orbitals N is half 

the number of electrons, n, i .e.  N = n/2. 

The number of molecular orbitals that one obtains by this procedure is 

equal to the number of atomic orbitals.   Consequently, the indices j  and r both 

run from 1 to N.  The cj r  are the weighting coefficients for the atomic orbitals 

in the molecular orbital.   These coefficients are not necessarily equal,  or in 
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other words, the orbital on each atom is not used to the same extent to form 

each molecular orbital.   Different values for the coefficients give rise to 

different net charges at different positions in a molecule.  This charge 

distribution is very important when discussing spectroscopy and chemical 

reactivity. 

The energy of the j t h  molecular orbital is given by a one-electron 

Schrödinger equation using an effective one electron Hamiltonian, he f f ,  which 

expresses the interaction of an electron with the rest of the molecule. 

 eff j j jh ψ ε ψ=  {10-36} 

jε  is the energy eigenvalue of the j t h  molecular orbital,  corresponding to the 

eigenfunction jψ .   The beauty of this method, as we will  see later,  is that the 

exact form of he f f  is not needed.  The total energy of the molecule is the sum of 

the single electron energies. 

 π j j
j

E n ε= ∑  {10-37} 

where nj  is the number of electrons in orbital j .  

The expectation value expression for the energy for each molecular 

orbital is used to find ε j  and then Eπ .  

 j eff j j eff j
j

j jj j

ψ h ψ dτ ψ h ψ
ε

ψ ψψ ψ dτ

∗
= =

∗
∫

∫
.  {10-38} 

The notation ,  which is called a bra-ket,  just simplifies writing the 

expression for the integral.   Note that the complex conjugate now is identified 

by the left-side position and the bra notation  and not by an explicit  *. 
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After substituting Equation {10-35} into {10-38}, we obtain for each 

molecular orbital 

 

N N

jr r eff js s
r 1 s 1

j N N

jr r js s
r 1 s 1

c φ h c φ
ε

c φ c φ

= =

= =

=
∑ ∑

∑ ∑
 {10-39} 

which can be rewritten as 

 

N N
*
r s r eff s

r 1 s 1
N N

*
r s r s

r 1 s 1

c c φ h φ
ε

c c φ φ

= =

= =

=
∑ ∑

∑ ∑
 {10-40} 

where the index j  for the molecular orbital has been dropped because this 

equation applies to any of the molecular orbitals.  

 

Exercise 10.18   Consider a molecular orbital made up of three atomic orbitals, e.g. the three 
carbon 2pz orbitals of the allyl radical, where the internuclear axes lie in the xy-plane. Write the 
LCAO for this MO.  Derive the full expression, starting with Equation {10-38} and writing each 
term explicitly, for the energy expectation value for this LCAO in terms of heff.  Compare your 
result with Equation {10-40} to verify that Equation {10-40} is the general representation of 
your result. 
 
Exercise 10.19   Write a paragraph describing how the Variational Method could be used to find 
values for the coefficients cjr in the linear combination of atomic orbitals. 
 

To simplify the notation we use the following definitions.  The integrals 

in the denominator of Equation {10-40} represent the overlap between two 

atomic orbitals used in the linear combination.  The overlap integral is written 

as Sr s .   The integrals in the numerator of Equation {10-40} are called either 

resonance integrals or coulomb integrals depending on the atomic orbitals on 

either side of the operator he f f  as described below. 
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r s r sS φ φ=  is the overlap integral.  r rS 1=  because we use normalized 

atomic orbitals.   For atomic orbitals r  and s on different atoms, rsS has some 

value between 1 and 0: the further apart the two atoms, the smaller the value of 

rsS . 

r r r eff rH φ h φ=  is the Coulomb Integral .   I t  is the kinetic and potential 

energy of an electron in, or described by, an atomic orbital,  φ r ,  experiencing the 

electrostatic interactions with all  the other electrons and all  the positive nuclei.  

r s r eff sH φ h φ=  is the Resonance Integral or Bond Integral .   This integral 

gives the energy of an electron in the region of space where the functions φ r  and 

φ s  overlap.  This energy sometimes is referred to as the energy of the overlap 

charge.  If  r  and s are on adjacent bonded atoms, this integral has a finite value.  

If  the atoms are not adjacent,  the value is smaller,  and assumed to be zero in the 

Hückel model.  

In terms of this notation, Equation {10-40} can be written as 

 

N N
*
r s rs

r 1 s 1
N N

*
r s rs

r 1 s 1

c c H
ε

c c S

= =

= =

=
∑ ∑

∑ ∑
.  {10-41} 

We now must find the coefficients,  the c 's.   One must have a criterion for 

finding the coefficients.   The criterion used is the Variational Principle .   Since 

the energy depends linearly on the coefficients in Equation {10-41}, the method 

we use to find the best set of coefficients is called the Linear Variational 

Method.  

The task is to minimize the energy with respect to all  the coefficients by 

solving the N simultaneous equations produced by differentiating Equation 

{10-41} with respect to each coefficient.  
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t

ε 0 for t 1, 2, 3, ... N
c

∂
= =

∂
 {10-42} 

Actually we also should differentiate Equation {10-41} with respect to the *
tc ,  

but this second set of N equations is just the complex conjugate of the first  and 

produces no new information or constants.  

To carry out this task, rewrite Equation {10-41} to obtain Equation 

{10-43} and then take the derivative of Equation {10-43} with respect to each 

of the coefficients.  

 * *
r s rs r s rs

r s r s
ε c c S c c H=∑ ∑ ∑ ∑  {10-43} 

Actually we don't  want to do this differentiation N times, so consider the 

general case where the coefficient is ct .   Here t  represents any number between 

1 and N. 

This differentiation is relatively easy, and the result ,  which is shown by 

Equation {10-44}, is relatively simple because some terms in Equation {10-43} 

don't  involve ct  and others depend linearly on c t .   The derivative of the terms 

that don't  involve ct  is zero (e.g. 
*
3 4 34

2

c c H 0
c

∂
=

∂
).   The derivative of terms that 

contain ct  is just the constant factor that multiples the c t ,  (e.g. 
*

*3 2 32
3 32

2

c c H c H
c

∂
=

∂
).   Consequently, only terms in Equation {10-43} that 

contain ct  contribute to the result ,  and whenever a term contains c t ,  that term 

appears in Equation {10-44} without the ct  because we are differentiating with 

respect to c t .   The result  after differentiating is 

 * *
r rt r rt

r r
ε c S c H=∑ ∑ .  {10-44} 

If we take the complex conjugate of both sides, we obtain 



Chapter 10   © JCE 2005 Page 39 of 66  

 * * *
r rt r rt

r r
ε c S c H=∑ ∑ .  {10-45} 

Since ε  = ε*, *
rt trS S= ,  and *

rt trH H= ,  this equation can be reversed and written as 

 r tr r tr
r r

c H ε c S=∑ ∑  {10-46} 

or upon rearranging as 

  

 r tr tr
r

c (H S ε) 0− =∑ .  {10-47} 

There are N simultaneous equations that look like this general one; N is the 

number of coefficients in the LCAO.  Each equation is obtained by 

differentiating Equation {10-43} with respect to one of the coefficients.  

 

Exercise 10.20   Explain why the energy ε = ε*, show that *
rt trS S= (write out the integral 

expressions and take the complex conjugate of Srt), and show that *
rt trH H=  (write out the 

integral expressions, take the complex conjugate of Hrt, and use the Hermitian property of 
quantum mechanical operators). 
 
Exercise 10.21   Rewrite your solution to Exercise 10.18 for the 3-carbon pi system found in the 
allyl radical in the form of Equation {10-43} and then derive the set of three simultaneous 
equations for the coefficients.  Compare your result with Equation {10-47} to verify that 
Equation {10-47} is a general representation of your result. 
 

This method is called the linear variational method because the variable 

parameters affect the energy linearly unlike the shielding parameter in the 

wavefunction that was discussed in Chapter 10.  The shielding parameter 

appears in the exponential part of the wavefunction and the effect on the energy 

is nonlinear.   A nonlinear variational calculation is more laborious than a linear 

variational calculation. 
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Equations {10-46} and {10-47} represent a set of homogeneous linear 

equations.  As we discussed for the case of normal mode analysis in Chapter 6, 

a number of methods can be used for solving these equations to obtain values 

for the energies, ε 's ,  and the coefficients,  the cr’s.  

Matrix methods are the most convenient and powerful.   First we write 

more explicitly the set of simultaneous equations that is represented by 

Equation {10-46}.  The first  equation has t  = 1, the second t = 2, etc .   N 

represents the index of the last atomic orbital in the linear combination. 

 

1 11 2 12 n 1N 1 11 2 12 N 1N

1 21 2 22 n 2N 1 21 2 22 N 2N

1 N1 2 N22 N NN 1 N1 2 N2 N NN

c H c H c H c S ε c S ε c S ε
c H c H c H c S ε c S ε c S ε

c H c H c H c S ε c S ε c S ε

+ + = + +
+ + = + +

=
+ + = + +

 {10-48} 

This set of equations can be represented in matrix notation. 

 ε′ ′H C = S C  {10-49} 

Here we have square matrix H  and S  multiplying a column vector C'  and a 

scalar ε. Rearranging produces 

 
ε 0

[ ε] 0
′ ′ =

′ =
H C - S C

H - S C
 {10-50} 

 
Exercise 10.22   For the three atomic orbitals you used in Exercises 10.18 and 10.6, write the 
Hamiltonian matrix H, the overlap matrix S, and the vector C'.  Show by matrix multiplication 
according to Equation {10-49} that you produce the same Equations that you obtained in 
Exercise 10.21. 
 

The problem is to solve these simultaneous equations, or the matrix 

equation, and find the orbital energies, which are the ε 's ,  and the atomic orbital 

coefficients,  the c's,  that define the molecular orbitals.  
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Exercise 10.23   Identify two methods for solving simultaneous equations and list the steps in 
each. 
 

 
 

In the EH method we use an effective one electron Hamiltonian, he f f ,  and 

then proceed to determine the energy of a molecular orbital 

 

*
jr js rs

r s
j *

jr js rs
r s

c c H
ε

c c S
=

∑ ∑
∑ ∑

 {10-51} 

where rs r eff sH φ h φ=  and rs r sS φ φ= .  

Minimization of the energy with respect to each of the coefficients again 

yields a set of simultaneous equations just l ike Equation {10-47}. 

 r tr tr
r

c (H S ε) 0− =∑  {10-52} 

As before, these equations can be written in matrix form 

 ε′ ′H C = S C .  {10-49} 

Equation {10-49} accounts for one molecular orbital.   It  has energy ε ,  and 

it  is defined by the elements in the C' column  vector, which are the coefficients 

that multiply the atomic orbital basis functions in the linear combination of 

atomic orbitals.  

We can write one matrix equation for all  the molecular orbitals.  

 EH C = S C  {10-53} 

where H  is a square matrix containing the Hr s ,  the one electron energy integrals,  

and C  is the matrix of coefficients for the atomic orbitals.   Each column in C  is 

the C' that defines one molecular orbital in terms of the basis functions.  In 
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extended Hückel theory, the overlap is not neglected, and S  is the matrix of 

overlap integrals.   E  is the diagonal matrix of orbital energies.  All of these are 

square matrices with a size that equals the number of atomic orbitals used in the 

LCAO for the molecule under consideration. 

Equation {10-53} represents an eigenvalue problem.  For any extended 

Hückel calculation, we need to set up these matrices and then find the 

eigenvalues and eigenvectors.  The eigenvalues are the orbital energies, and the 

eigenvectors are the atomic orbital coefficients that define the molecular orbital 

in terms of the basis functions. 

 
Exercise 10.24   What is the size of the H matrix for HF?  Write out the matrix elements in the 
H matrix using symbols for the wavefunctions appropriate to the HF molecule.  Consider this 
matrix and determine if it is symmetric by examining pairs of off-diagonal elements.  In a 
symmetric matrix, pairs of elements located by reflection across the diagonal are equal, i.e. Hrc = 
Hcr where r and c represent the row and column, respectively.  Why are such pairs of elements 
equal?  Write out the S matrix in terms of symbols, showing the diagonal and the upper right 
portion of the matrix.  This matrix also is symmetric, so if you compute the diagonal and the 
upper half of it, you know the values for the elements in the lower half.  Why are pairs of S 
matrix elements across the diagonal equal? 
 

The elements of the H  matrix are assigned using experimental data.  This 

approach makes the extended Hückel method a semi-empirical  molecular orbital 

method.  The basic structure of the method is based on the principles of physics 

and mathematics while the values of certain integrals are assigned by using 

educated guessing and experimental data.  The Hr r  are chosen as valence state 

ionization potentials with a minus sign to indicate binding.  The values used by 

R. Hoffmann when he developed the extended Hückel technique were those of 

H.A. Skinner and H.O. Pritchard (Trans. Faraday Soc. 49 (1953), 1254).  These 

values for C and H are listed in Table 10.1.  The values for the heteroatoms (N, 

O, and F) are taken from Pople and Beveridge, Approximate Molecular Orbital 

Theory .    
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Table 10.1  Ionization potentials of various atomic orbitals.  

Atomic orbital Ionization potential (eV) 

H 1s 13.6 

C 2s 21.4 

C 2p 11.4 

N 2s 25.58 

N 2p 13.9 

O 2s 32.38 

O 2p 15.85 

F 2s 40.20 

F 2p 18.66 

 

The Hr s  values are computed from the ionization potentials according to 

 ( )rs rr ss rs
1H K H H S
2

= +  {10-54} 

The rationale for this expression is that the energy should be proportional 

to the energy of the atomic orbitals,  and should be greater when the overlap of 

the atomic orbitals is greater.   The contribution of these effects to the energy is 

scaled by the parameter K.  Hoffmann assigned the value of K after a study of 

the effect of this parameter on the energies of the occupied orbitals of ethane.  

The conclusion was that a good value for K is K = 1.75.  

Exercise 10.25   Fill in numerical values for the diagonal elements of the Extended Hückel 
Hamiltonian matrix for HF using the ionization potentials given in Table 10.1. 
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The overlap matrix also must be determined.  The matrix elements are 

computed using the definition rs r sS φ φ=  where φ r  and φ s  are the atomic 

orbitals.  Slater-type orbitals (STO’s) are used for the atomic orbitals rather 

than hydrogenic orbitals because integrals involving STO's can be computed 

more quickly on computers.   Slater type orbitals have the form 

  {10-55} 

where zeta, ζ ,  is a parameter describing the screened nuclear charge.  In the 

extended Hückel calculations done by Hoffmann, the Slater orbital parameter ζ  

was 1.0 for the H1 s and 1.652 for the C2 s and C2 p orbitals.  

Exercise 10.26   Describe the difference between Slater-type orbitals and hydrogenic orbitals. 
 

Overlap integrals involve two orbitals on two different atoms or centers.   

Such integrals are called two-center integrals.  In such integrals there are two 

variables to consider,  corresponding to the distances from each of the atomic 

centers,  rA and rB.  Such integrals can be represented as  

 ( ) ( )
2s 2s

5

A B A A B B
4 ζS r exp ζ r r exp ζ r dτ

3
 

= − − 
 

∫  {10-56} 

but elliptical coordinates must be used for the actual integration.  Fortunately 

the software that does extended Hückel calculations contains the programming 

code to do overlap integrals.   The interested reader will  find sufficient detail  on 

the evaluation of overlap integrals and the creation of the programmable 

mathematical form for any pair of Slater orbitals in Appendix B4 (pp. 199 - 

200) of the book Approximate Molecular Orbital Theory  by Pople and 

Beveridge.  The values of the overlap integrals for HF are given in Table. 10.2. 
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Exercise 10.27   Using the information in Table 10.2, identify which axis (x, y, or z) has been 
defined as the internuclear axis.  Fill in the missing values in Table 10.1; which requires no 
calculation, only insight. 
 

Table 10.2  Overlap Integrals for HF 

 F 2s F 2px F 2py F 2pz H 1s 

F 2s     0.47428 

F 2px     0 

F 2py     0.38434 

F 2pz     0 

H 1s      
 
 
 
Exercise 10.28   Using the information in Tables 10.1 and 10.2, write the full Hückel H matrix 
and the S matrix that appears in Equation {10-53} for HF. 
 

 

Our goal is to find the coefficients in the linear combinations of atomic 

orbitals and the energies of the molecular orbitals.   For these results,  we need 

to transform Equation {10-53} 

 H C = S C E  {10-53} 

into a form that allows us to use matrix diagonalization techniques.  We are 

hampered here by the fact that the overlap matrix is not diagonal because the 

orbitals are not orthogonal.   Mathematical methods do exist that can be used to 

transform a set of functions into an orthogonal set.   Essentially these methods 

apply a transformation of the coordinates from the local coordinate system 

describing the molecule into one where the atomic orbitals in the LCAO are all  

orthogonal.   Such a transformation can be accomplished through matrix algebra, 

and computer algorithms for this procedure are part of all  molecular orbital 
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programs.  The following paragraph describes how this transformation can be 

accomplished. 

If the matrix M  has an inverse M - 1  then 

 1 1− =M M  {10-57} 

and we can place this product in a matrix equation without changing the 

equation.  When this is done for Equation {10-53}, we obtain 

 1 1− −=H M M C S M M C E  {10-58} 

Next multiply on the left  by M- 1and determine M  so the product M- 1SM  is the 

identity matrix, i .e.  a matrix that has 1's on the diagonal and 0's off the 

diagonal is the case for an orthogonal basis set.  

 -1 -1 -1 -1=  M H M M C M S M M C E  {10-59} 

which then can be written as  

 ′′ ′′ ′′ ′′=H C C E  {10-60} 

where 

 -1=′C M C  {10-61} 

The identity matrix is not included because multiplying by the identity matrix is 

just l ike multiplying by the number 1.  It  doesn’t change anything.  The H"  

matrix can be diagonalized by multiplying on the left  by the inverse of C"  to 

find the energies of the molecular orbitals in the resulting diagonal matrix E .    

 -1= ′′ ′′ ′′E C H C  {10-62}   

The matrix C ′ ′  obtained in the diagonalization step is finally back transformed 

to the original coordinate system with the M  matrix, C = M C ′ ′  since C ′ ′  = M -

1C. 
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Fortunately this process is automated in some computer software.  For 

example, in Mathcad, the command genvals(H,S) returns a list  of the 

eigenvalues for Equation {10-53}.  These eigenvalues are the diagonal elements 

of E .   The command genvecs(H,S) returns a matrix of the normalized 

eigenvectors corresponding to the eigenvalues.  The i t h  eigenvalue in the list  

goes with the i t h  column in the eigenvector matrix.  This problem, where S  is 

not the identity matrix, is called a general eigenvalue problem, and gen in the 

Mathcad commands refers to general .  

 
Exercise 10.29   Using your solution to Exercise 10.28, find the orbital energies and 
wavefunctions for HF given by an extended Hückel calculation.  Construct an orbital energy 
level diagram, including both the atomic and molecular orbitals, and indicate the atomic orbital 
composition of each energy level.  Draw lines from the atomic orbital levels to the molecular 
orbital levels to show which atomic orbitals contribute to which molecular orbitals.   What 
insight does your calculation provide regarding the ionic or covalent nature of the chemical bond 
in HF? 
 

10.7 Mulliken Populations 

Mulliken populations (R.S. Mulliken, J.  Chem. Phys. 23, 1833, 1841, 

23389, 2343 (1955)) can be used to characterize the electronic charge 

distribution in a molecule and the bonding, antibonding, or nonbonding nature 

of the molecular orbitals for particular pairs of atoms.  To develop the idea of 

these populations, consider a real,  normalized molecular orbital composed from 

two normalized atomic orbitals.  

 i i j j i k kψ c φ c φ= +  {10-63}  

The charge distribution is described as a probability density by the square of 

this wavefunction. 

 2 2 2 2 2
i i j j i k k i j i k j kψ c φ c φ 2c c φ φ= + +  {10-64} 

Integrating over all  the electronic coordinates and using the fact that the 

molecular orbital and atomic orbitals are normalized produces 
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 2 2
i j i k i j i k j k1 c c 2c c S= + +  {10-65} 

where Sj k  is the overlap integral involving the two atomic orbitals.  

Mulliken's interpretation of this result  is that one electron in molecular 

orbital ψι  contributes 2
i jc  to the electronic charge in atomic orbital φ j ,  2

i kc  to the 

electronic charge in atomic orbital φk ,  and 2ci jc i kSj k  to the electronic charge in 

the overlap region between the two atomic orbitals.   He therefore call  2
ijc  and 

2
i kc ,  the atomic-orbital populations ,  and 2ci jc i kSj k ,  the overlap population .   The 

overlap population is >0 for a bonding molecular orbital,  <0 for an antibonding 

molecular orbital,  and 0 for a nonbonding molecular orbital.  

It  is convenient to tabulate these populations in matrix form for each 

molecular orbital.   Such a matrix is called the Mulliken population matrix .   If  

there are two electrons in the molecular orbital,  then these populations are 

doubled.  Each column and each row in a population matrix is corresponds to an 

atomic orbital,  and the diagonal elements give the atomic-orbital populations, 

and the off-diagonal elements give the overlap populations.  For our example, 

Equation {10-63}, the population matrix is 

 
2
i j i j i k j k

2
i j i k j k i k

c 2c c S
2c c S c

 
=   

 
iP .  {10-66} 

Since there is one population matrix for each molecular orbital,  i t  

generally is difficult  to deal with all  the information in the population matrices.  

Forming the net population matrix decreases the amount of data .   The net 

population matrix is the sum of all  the population matrices for the occupied 

orbitals.  

 
i occupied=

= ∑ iNP P  {10-67} 
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The net population matrix gives the atomic-orbital populations and 

overlap populations resulting from all  the electrons in all  the molecular 

orbitals.   The diagonal elements give the total charge in each atomic orbital,  

and the off-diagonal elements give the total overlap population, which 

characterizes the total contribution of the two atomic orbitals to the bond 

between the two atoms. 

The gross population matrix condenses the data in a different way.  The 

net population matrix combines the contributions from all  the occupied 

molecular orbitals.   The gross population matrix combines the overlap 

populations with the atomic orbital populations for each molecular orbital.   The 

columns of the gross population matrix correspond to the molecular orbitals,  

and the rows correspond to the atomic orbitals.   A matrix element specifies the 

amount of charge, including the overlap contribution, that a particular 

molecular orbital contributes to a particular atomic orbital.   Values for the 

matrix elements are obtained by dividing each overlap population in half and 

adding each half to the atomic-orbital populations of the participating atomic 

orbitals.   The matrix elements provide the gross charge that a molecular orbital 

contributes to the atomic orbital.  Gross means that overlap contributions are 

included.  The gross population matrix therefore also is called the charge 

matrix for the molecular orbitals .   An element of the gross population matrix 

(in the j t h  row and i t h  column) is given by 

 j i j j j k
k j

1
2 ≠

= + ∑GP Pi Pi  {10-68} 

where Pi  is the population matrix for the i t h  molecular orbital,  Pi j j  is  the 

atomic-orbital population and the Pi j k  is the overlap population for atomic 

orbitals j  and k in the i t h  molecular orbital.  

Further condensation of the data can be obtained by considering atomic 

and overlap populations by atoms rather than by atomic orbitals.   The resulting 
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matrix is called the reduced-population matrix .   The reduced population is 

obtained from the net population matrix by adding the atomic orbital 

populations and the overlap populations of all  the atomic orbitals of the same 

atom.  The rows and columns of the reduced population matrix correspond to 

the atoms. 

Atomic-orbital charges are obtained by adding the elements in the rows of 

the gross population matrix for the occupied molecular orbitals.   Atomic 

charges are obtained from the atomic orbital charges by adding the atomic-

orbital charges on the same atom.  Finally, the net charge on an atom is 

obtained by subtracting the atomic charge from the nuclear charge adjusted for 

complete shielding by the 1s electrons. 

Exercise 10.30   Using your results from Exercise 10.29 for HF, determine the Mulliken 
population matrix for each molecular orbital, the net population matrix, the charge matrix for the 
molecular orbitals, the reduced population matrix, the atomic orbital charges, the atomic charges, 
the net charge on each atom, and the dipole moment.  Note: The bond length for HF is 91.7 pm 
and the experimental value for the dipole moment is 6.37 x 10-30 C m. 
 

 

10.8 The Self-Consistent Field and the Hartree-Fock Limit 

In a modern ab initio electronic structure calculation on a closed shell  

molecule, the electronic Hamiltonian is used with a single determinant 

wavefunction.  This wavefunction, Ψ ,  is constructed from molecular orbitals,  ψ,  

that are written as linear combinations of contracted Gaussian basis functions, 

φ. 

 j j k k
k

φ c φ= ∑  {10-69} 

The contracted Gaussian functions are composed from primitive Gaussian 

functions to match Slater-type orbitals.   The exponential parameters in the 

STOs are optimized by calculations on small molecules using the nonlinear 

variational method and then those values are used with other molecules. 
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The problem is to calculate the electronic energy from 

 
*

*

ˆΨ H Ψ dτ
E

Ψ Ψ dτ
= ∫

∫
 {10-70} 

and find the optimum coefficients cj k  for each molecular orbital in Equation 

{10-69} by using the Self Consistent Field Method and the Linear Variational 

Method to minimize the energy as was described in the previous chapter for the 

case of atoms. 

To obtain the total energy of the molecule, we need to add the 

internuclear repulsion to the electronic energy calculated by this procedure.  

The total energy of the molecule can be calculated for different geometries (i .e.  

bond lengths and angles) to find the minimum energy configuration.  Also, the 

total energies of possible transition states can be calculated to find the lowest 

energy pathway to products in chemical reactions. 

 
N 1 N

r s
r s

r 1 s r 1 r s

z zV
r

−

= = +

= ∑ ∑  {10-71} 

Exercise 10.31   For a molecule with three nuclei, show that the sums in Equation {10-71} 
correctly include all the pairwise potential energy terms without including any twice. 
 

As we improve the basis set used in calculations by adding more and 

better functions, we expect to get better and better energies.  The variational 

principle says an approximate energy is an upper bound to the exact energy, so 

the lowest energy that we calculate is the most accurate.  At some point,  the 

improvements in the energy will  be very slight.   This limiting energy is the 

lowest that can be obtained with a single determinant wavefunction.  This limit 

is called the Hartree-Fock limit ,  the energy is the Hartree-Fock energy ,  the 

molecular orbitals producing this l imit are called Hartree-Fock orbitals ,  and the 

determinant is the Hartree-Fock wavefunction .  
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Exercise 10.32   Write a one-sentence definition of the Hartree-Fock wavefunction that captures 
all the essential features of this function. 
 

You may encounter the terms restricted and unrestricted Hartree-Fock.  

The above discussion pertains to a restricted HF calculation.  In a restricted HF 

calculation, electrons with α  spin are restricted or constrained to occupy the 

same spatial orbitals as electrons with β  spin.  This constraint is removed in an 

unrestricted calculation.  For example, the spin orbital for electron 1 could be 

Aψ ( )α(1)1r ,  and the spin orbital for electron 2 in a molecule could be Bψ ( )β(2)2r ,  

where both the spatial molecular orbital and the spin function differ for the two 

electrons.  Such spin orbitals are called unrestricted .   If  both electrons are 

constrained to have the same spatial orbital,  e.g. Aψ ( )α(1)1r  and A 2ψ ( )β(2)r ,  then 

the spin orbital is said to be restricted .   While unrestricted spin orbitals can 

provide a better description of the electrons, twice as many spatial orbitals are 

needed, so the demands of the calculation are much higher.  Using unrestricted 

orbitals is particular beneficial when a molecule contains an odd number of 

electrons because there are more electrons in one spin state than in the other.  

Now consider the results of a self-consistent field calculation for carbon 

monoxide, C−O.  It  is well known that carbon monoxide is a poison that acts by 

binding to the iron in hemoglobin and preventing oxygen from binding.  As a 

result,  oxygen is not transported by the blood to cells.   Which end of carbon 

monoxide, carbon or oxygen, do you think binds to iron by donating electrons?  

We all  know that oxygen is more electron-rich than carbon (8 vs 6 electrons) 

and more electronegative.  A reasonable answer to this question therefore is 

oxygen ,  but experimentally it  is carbon that binds to iron. 

A quantum mechanical calculation done by Winifred M. Huo, published in 

J.  Chem. Phys. 43, B24 (1965), provides an explanation for this counter-

intuitive result .   The basis set used in the calculation consisted of 10 functions: 

the ls,  2s,  2px, 2py, and 2pz atomic orbitals of C and O.  Ten molecular orbitals 
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(mo’s) were defined as linear combinations of the ten atomic orbitals,  which are 

written as  

 
10

k k j j
j 1

ψ C φ
=

= ∑  {10-72} 

where k identifies the mo and j  identifies the atomic orbital basis function.  The 

ground state wavefunction Ψ  is written as the Slater Determinant of the five 

lowest energy molecular orbitals kψ .   Equation 10.3.5 gives the energy of the 

ground state,  

 
ˆΨ H Ψ

E
Ψ Ψ

= ,  {10-73} 

where the denominator accounts for the normalization requirement.  The 

coefficients Ck j  in the linear combination are determined by the variational 

method to minimize the energy.  The solution of this problem gives the 

following equations for the mo's.   Only the largest terms have been retained 

here. These functions are listed and discussed in order of increasing energy. 

lσ  ≈  0.94 lsO .   The 1 says this is the first  σ  orbital.   The σ  says it  is 

symmetric with respect to reflection in the plane of the molecule.  The large 

coefficient,  0.94, means this is essentially the 1s atomic orbital of oxygen.  The 

oxygen 1s orbital should have a lower energy than that of carbon because the 

positive charge on the oxygen nucleus is greater.  

2σ  ≈  0.92 1sC .  This orbital is essentially the 1s atomic orbital of carbon.  

Both the lσ  and 2σ  are “nonbonding” orbitals since they are localized on a 

particular atom and do not directly determine the charge density between atoms. 

3σ  ≈  (0.72 2sO + 0.18 2pzO) + (0.28 2sC + 0.l6 2pzC) .   This orbital is a 

“bonding” molecular orbital because the electrons are delocalized over C and O 
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in a way that enhances the charge density between the atoms.  The 3 means this 

is the third σ  orbital.   This orbital also il lustrates the concept of hybridization.  

One can say the 2s and 2p orbitals on each atom are hybridized and the 

molecular orbital is formed from these hybrids although the calculation just 

obtains the linear combination of the four orbitals directly without the à priori  

introduction of hybridization.  In other words, hybridization just falls out of the 

calculation.  The hybridization in this bonding LCAO increases the amplitude of 

the function in the region of space between the two atoms and decreases it  in 

the region of space outside of the bonding region of the atoms. 

4σ  ≈  (0.37 2sC + 0.1 2pzC) + (0.54 2pzO - 0.43 2sO) .   This molecular 

orbital also can be thought of as being a hybrid formed from atomic orbitals.   

The hybridization of oxygen atomic orbitals,  because of the negative coefficient 

with 2sO, decreases the electron density between the nuclei and enhances 

electron density on the side of oxygen facing away from the carbon atom.  If we 

follow how this function varies along the internuclear axis,  we see that near 

carbon the function is positive whereas near oxygen it  is negative or possibly 

small and positive.  This change means there must be a node between the two 

nuclei or at the oxygen nucleus.  Because of the node, the electron density 

between the two nuclei is low so the electrons in this orbital do not serve to 

shield the two positive nuclei from each other.   This orbital therefore is called 

an “antibonding” mo and the electrons assigned to it  are called antibonding 

electrons.  This orbital is the antibonding partner to the 3σ  orbital.  

1π  ≈   0.32 2pxC + 0.44 2pxO and 2π  ≈  0.32 2pyC + 0.44 2pyO .   These two 

orbitals are degenerate and correspond to bonding orbitals made up from the px 

and py atomic orbitals from each atom.  These orbitals are degenerate because 

the x and y directions are equivalent in this molecule.  π  tells us that these 

orbitals are antisymmetric with respect to reflection in a plane containing the 

nuclei.  
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5σ  ≈  0.38 2sC - 0.38 2pC - 0.29 2pzO .   This orbital is the sp hybrid of the 

carbon atomic orbitals.   The negative coefficient for 2pC puts the largest 

amplitude on the side of carbon away from oxygen.  There is no node between 

the atoms.  We conclude this is a nonbonding orbital with the nonbonding 

electrons on carbon.  This is not a “bonding” orbital because the electron 

density between the nuclei is lowered by hybridization.  It  also is not an 

antibonding orbital because there is no node between the nuclei.   When carbon 

monoxide binds to Fe in hemoglobin, the bond is made between the C and the 

Fe.  This bond involves the donation of the 5σ  nonbonding electrons on C to 

empty d orbitals on Fe.  Thus mo theory allows us to understand why the C end 

of the molecule is involved in this electron donation when we might naively 

expect O to be more electron-rich and capable of donating electrons to iron. 

 

Exercise 10.33   Summarize how Quantum Mechanics is used to describe bonding and the 
electronic structure of molecules. 
 
Exercise 10.34   Construct an energy level diagram for CO that shows both the atomic orbitals 
and the molecular orbitals.  Show which atomic orbitals contribute to each molecular orbital by 
drawing lines to connect the mo’s to the ao’s.  Label the molecular orbitals in a way that reveals 
their symmetry.  Use this energy level diagram to explain why it is the carbon end of the 
molecule that binds to hemoglobin rather than the oxygen end. 
 

 

10.9 Correlation Energy and Configuration Interaction 

The Hartree-Fock energy is not as low as the exact energy.  The 

difference is due to electron correlation effects and is called the correlation 

energy.  The Hartree-Fock wavefunction does not include these correlation 

effects because it  describes the electrons as moving in the average potential 

field of all  the other electrons.  The instantaneous influence of electrons that 

come close together at some point is not taken into account.   Electrons repel 

each other,  and they will  try to stay away from each other.   Their motion 
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therefore is correlated, and this correlation reduces the energy of the system 

because it  reduces the electron-electron repulsion.  The Hartree-Fock 

wavefunction does not account for this correlation and therefore produces an 

energy that is too high. 

One method for accounting for these correlation effects and the 

correlation energy is called configuration interaction  (CI).   In configuration 

interaction, Slater determinants are formed from two or more orbital occupation 

configurations.  The CI wavefunction then is written as a linear combination of 

these determinants,  and the coefficients are determined to minimize the energy. 

 CI 1 1 2 2Ψ c D c D= +  {10-74} 

 

Exercise 10.35   Define correlation energy and explain why it is omitted in a SCF calculation 
and how it is included in a CI calculation. 
 

Exercise 10.36   Write a CI wavefunction for helium using Slater determinants for the 1s2 and 
1s12s1 configurations.  Explain how addition of the 1s12s1 configuration to the wavefunction 
accounts for electron correlation in terms of keeping the electrons apart in different regions of 
space.   
 

Good quality one-electron molecular orbitals are obtained by using a 

large basis set,  by optimizing the parameters in the functions with the 

variational method, and by accounting for the electron-electron repulsion using 

the self-consistent field method.  Electron correlation effects are taken into 

account with configuration interaction (CI).   The CI methodology means that a 

wavefunction is written as a series of Slater Determinants involving different 

configurations, just as we discussed for the case of atoms.  The limitation in 

this approach is that computer speed and capacity limit the size of the basis set 

and the number of configurations that can be used. 
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10.10 Electronic States 

The electronic configuration of an atom or molecule is a concept imposed 

by the orbital approximation.  Spectroscopic transitions and other properties of 

atoms and molecules result  from the states and not from the configurations, 

although it  is useful to think about both the configuration and the state 

whenever possible.  While a single determinant wavefunction generally is 

adequate for closed-shell  systems (i .e.  all  electrons are paired in spatial 

orbitals),  the best descriptions of the electronic states,  especially for excited 

states and free radicals that have unpaired electrons, involve configuration 

interaction using multiple determinants.   In these descriptions different 

configurations are mixed together and the picture of an orbital configuration 

disintegrates, and other properties,  such as orbital and spin angular momentum 

and symmetry, are needed to identify and characterize the electronic states of 

molecules. 

While a component of orbital angular momentum is preserved along the 

axis of a linear molecule, generally orbital angular momentum is quenched due 

to the irregular shapes of molecules.  Angular momentum is quenched because 

circular motion is not possible when the potential energy function does not have 

circular symmetry. 

The spin orbitals,  however, stil l  can be eigenfunctions of the spin angular 

momentum operators because the spin-orbit  coupling usually is small.   The 

resulting spin state depends on the orbital configuration, e.g .  see Figure 10.2.  

For a closed-shell  configuration, the spin state is a singlet and the spin angular 

momentum is 0 because the contributions from the α and β  spins cancel.   For an 

open shell  configuration, which is characteristic of free radicals,  there is an odd 

number of electrons and the spin quantum number S = ½.  This configuration 

produces a doublet spin state since 2S+1 = 2.  Excited configurations result  

when electromagnetic radiation or exposure to other sources of energy promotes 

an electron from an occupied orbital to a previously unoccupied orbital.   An 
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excited configuration for a closed shell  system produces two states,  a singlet 

state (2S+1 = 0) and a triplet state (2S+1 = 3) depending on how the electron 

spins are paired.  The z-components of the angular momentum for 2 electrons 

can add to give +1, 0, or –1 in units of ħ .   The three spin functions for a triplet 

state are 

 [ ]

α(1) α(2)
1 α(1) β(2) α(2) β(1)
2

β(1) β(2)

+  {10-75}  

and the singlet spin function is  

 [ ]1 α(1) β(2) α(2) β(1)
2

−  {10-76} 

The singlet and triplet states differ in energy even though the electron 

configuration is the same.  This difference results from the antisymmetry 

condition imposed on the wavefunctions.  The antisymmetry condition reduces 

the electron-electron repulsion for triplet states,  so triplet states have the lower 

energy. 

The electronic states of molecules therefore are labeled and identified by 

their spin and orbital angular momentum and symmetry properties,  as 

appropriate.   For example, the ground state of the hydrogen molecule is 

designated as 1
gX Σ+ .   In this symbol, the X identifies the state as the ground 

state,  the superscript 1 identifies it  as a singlet state,  the sigma says the orbital 

angular momentum is 0, and the g identifies the wavefunction as symmetric with 

respect to inversion.  Other states with the same symmetry and angular 

momentum properties are labeled as A, B, C, etc in order of increasing energy 

or order of discovery.  States with different spin multiplicities from that of the 

ground state are labeled with lower case letters,  a,  b,  c,  etc.  
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For polyatomic molecules the symmetry designation and spin multiplicity 

are used.  For example, an excited state of naphthalene is identified as 1B1 u.   

The superscript 1 identifies it  as a singlet state,  The letter B and subscript 1 

identifies the symmetry with respect to rotations, and the subscript u says the 

wavefunction is antisymmetric with respect to inversion. 

Good quality descriptions of the electronic states of molecules are 

obtained by using a large basis set,  by optimizing the parameters in the 

functions with the variational method, and by accounting for the electron-

electron repulsion using the self-consistent field method.  Electron correlation 

effects are taken into account with configuration interaction (CI).   The CI 

methodology means that a wavefunction is written as a series of Slater 

Determinants involving different configurations, just as we discussed for the 

case of atoms.  The limitation in this approach is that computer speed and 

capacity limit the size of the basis set and the number of configurations that can 

be used. 

 
 
Study Guide 

•  What is meant by the expression ab initio  calculation? 

•  List all  the terms in a complete molecular Hamiltonian. 

•  Why are calculations on closed-shell  systems more easily done than on open-

shell  systems? 

•  How is it  possible to reduce a multi-electron Hamiltonian operator to a 

single-electron Fock operator? 

•  Why is the calculation with the Fock operator called a self-consistent field 

calculation? 

•  What is the physical meaning of a SCF one-electron energy? 
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•  Why is the nonlinear variational method not used in every case to optimize 

basis functions, and what usually is done instead? 

•  Why is i t  faster for a computer to use the variational principle to determine 

the coefficients in a linear combination of functions than to determine the 

parameters in the functions? 

•  Identify the characteristics of hydrogenic, Slater,  and Gaussian basis sets.  

•  What is meant by the Hartree-Fock wavefunction and energy? 

•  What is the difference between a restricted and unrestricted Hartree-Fock 

calculation? 

•  What is neglected that makes the Hartree-Fock energy necessarily greater 

than the exact energy? 

•  What is meant by correlation energy? 

•  What purpose is served by including configuration interaction in a 

calculation? 

 

Problems 

 

1.  Produce computer-generated graphs like those in Figure 10.1 that plot the 

amplitude of the atomic and molecular orbitals along the inter-nuclear axis 

(defined as the z-axis) of the H2
+ molecule. 

a)  Plot the four basis functions for the H2
+ molecule (

z z1sA 1sB 2p A 2p Bφ , φ , φ , φ ).  

b)  Construct and graph a bonding molecular orbital using these basis 

functions with a parameter λ  multiplying the 2pz functions, for a few 

values of the parameter λ  between 0 and 1.  Determine the normalization 

constant N for each value of λ  by assuming that the atomic overlap 
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integrals are either 0 or 1. 

 
z z1sA 1sB 2p A 2p B

1ψ φ φ λ (φ φ )
N

 = + + +   

c)  Explain why the molecular orbital you graphed is a bonding orbital.  

d)  Explain why a value for λ  greater than 0 should improve the description 

of a bonding orbital.  

2.  Construct energy level diagrams for B2 and O2 that show both the atomic 

orbitals and the molecular orbitals and use these diagrams to explain why 

both molecules are paramagnetic.  Label the molecular orbitals to reveal both 

their symmetry and their atomic orbital parentage.  Note: one diagram and 

labeling does not apply to both molecules. 

 

3.  Defend or shoot down the following statement.  The Born-Oppenheimer 

approximation predicts that vibrational frequencies, vibrational force 

constants,  and bond dissociation energies should be independent of isotopic 

substitution. 

 

4.  From the following bond lengths and dipole moments, compute the charges 

on the hydrogen atom and the halide atom.  Compare the results with the 

electronegativities predicted from the order of these elements in the Periodic 

Table.  What do these charges tell  you about the contribution of the 

hydrogen 1s atomic orbital to the molecular orbitals for each molecule?  Use 

the insight you gained from this problem, to define ionic and covalent 

bonding. 

Molecule R0 in pm µ  in 10- 3 0 C m 

HF 91.7 6.37 
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HCl 127.5 3.44 

HBr 141.4 2.64 

HI 160.9 1.40 

 

5.  Explain in terms of both the electronic charge density and the electronic 

energy, why chemists describe the overlap of atomic orbitals as being 

important for bond formation. 

 

6.  Compare the extended Hückel calculation on HF with the SCF calculation 

reported in  

B.j. Ransil, Rev. Mod. Phys. 32, 239, 245 (1960) in J.A. Pople and D.L. Beveridge, Approximate 
Molecular Orbital Theory (McGraw-Hill, 1970) pp. 46-51.  

 

 

Activity 1  Extended Hückel calculations on formaldehyde 

A Mathcad worksheet for this activity is provided.  

Acrobat file: FormaldehydeMC11.pdf 
 
Mathcad 11 file: FormaldehydeMC11.mcd 
 
Mathcad 2000 file: FormaldehydeMC2000.mcd 

 

 

Activity 2  Analysis of a photoelectron spectrum 

A photoelectron spectrum is obtained by measuring the kinetic energy, 

EK, of electrons emitted from a molecule by ionization with a high-energy 
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source with energy hν0 .   The ionization energy or potential,  IE,  of these 

electrons is given by 

 E 0 KI h ν E= − .  {10-77} 

Koopmans’ Theorem or Approximation says that an orbital wave function, 

φk ,  and orbital energy, εk ,  obtained by a SCF calculation doesn’t change if an 

electron is added or removed from this orbital.   Consequently, the peaks or 

bands appearing in a photoelectron spectrum can be assigned to ionization from 

particular molecular orbitals in a molecule by comparing the SCF orbital 

energies with the ionization energies determined from the photoelectron 

spectrum. 

 

In this activity, Hyperchem (or the software provided by your instructor) 

will  be used to calculate orbital energies to provide the information needed to 

analyze the photoelectron spectrum of formamide.  Formamide is the simplest 

manifestation of the amide bond.  The amide bond, also known as the peptide 

linkage, joins amino acids to form peptides and proteins. 

Data for you to analyze is provided in the Mathcad or Acrobat links 

above. 

 

a)  Use Hyperchem to perform a 6-31G SCF calculation on formamide. 

b)  Use the data to identify the orbitals being ionized to produce the peaks 

labeled 1 through 6 in the formamide photoelectron spectrum given 

below. 

c)  Characterize these orbitals by specifying their atomic orbital parentage 

and their bonding, antibonding, and nonbonding properties.  

 

Using Hyperchem for an ab initio  calculation: 
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•  Double click on the Draw tool to produce the Periodic Table. 

•  Click on the Element in the Table and then click on the Workspace 
to produce that element.  Close the Periodic Table when finished. 

•  Drag from one atom to another to produce single bonds. 

•  Left-Click on a bond to produce a double bond.  Right-Click to 
remove a bond. 

•  On the Build menu select Add H and Model Build. 

•  On the Setup menu select ab initio. 

•  Select Basis Set Other 6-31G.  Use default parameters for all  
options. 

•  Make sure Options/Configuration Interaction is None. 

•  Under File menu select Start Log.  Type Title and identify a 
Directory for the file.  

•  Under Compute menu select Geometry Optimization. 

•  Log information level should be Level 4.  Assume this is the case 
by default.  

•  When calculation is finished, Stop Log under the File menu. 

•  Examine data pertaining to the orbitals in the File menu. 

•  Examine the orbitals using Orbitals under the Compute menu. 

•  Experiment with other Basis Sets and Configuration Interaction if 
you have time. 
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Figure 10.8  Photoelectron Spectrum of  formamide H 2NCHO. ( f rom Kimura,  permiss ion 

pending)   
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Activity 3 

Carry out an Extended Hückel Calculation on CO and compare the results 

with the SCF calculation reported by Huo J. (Chem. Phys. 43, B24 (1965)).  
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